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A multi-modal analysis on the intermittent contact between an atomic force micro-

scope (AFM) with a soft sample is presented. The intermittent contact induces the

participation of the higher modes into the motion and various subharmonic motions are

shown. The AFM tip mass enhances the coupling of different modes. The AFM tip mass

Galerkin method. The necessity of applying multi-modal analysis to the intermittent

contact problem is demonstrated. Unlike the impact oscillator model which assumes

the impact/contact time is infinitesimal, the contact time can be a significant fractional

portion in each cycle, especially for the soft sample case and thus results in different

dynamic behavior from that of an impact oscillator.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Atomic force microscope (AFM) has been a very useful tool in many fields since its inception in 1986 [1]. One of the
AFM operatingmodes is called vibrating or tapping mode [2,3], which can reduce shear [4] and it can thus be used for soft
materials to prevent or reduce the damage. For example, AFM is used to measure the cell wall nanomechanical motion of
the living Saccharomyces cerevisiae (baker’s yeast) [5]. The intermittent contact between the AFM tip and sample often
occurs in the tapping mode. Since Burham et al. [6] first linked the AFM intermittent contact dynamics to an impact
oscillator model developed by Pippard for a pin hitting a loudspeaker [7], many theories/models have been developed
[3,4,8–13]. In those studies [3,4,8–13], either one degree-of-freedom (DOF) model of a spring–mass system as shown in
Fig. 1 or the single mode analysis is applied to the AFM cantilever of a continuous system. One DOF model or single mode
analysis can be accurate in some special cases. For example, an AFM vibrates with a driving frequency lower than or
around the first natural frequency of the AFM cantilever and has no contact with the sample [14]. However, the driving
frequency can be much higher than the first natural frequency of AFM cantilever [6,15] and the higher modes can thus
participate in the motion. In the AFM imaging application, the phase shift of higher mode has been used to characterize the
mechanical, electrical and magnetic interactions [15]. We demonstrate that the results computed by the single mode
analysis can be very different from those computed by multimodes when the driving frequency is higher than the AFM
cantilever first natural frequency. Even when the driving frequency is less than the AFM first natural frequency, the higher
modes can still participate in the motion due to the repulsive tip–sample interaction of impact [16]. The repulsive tip–
sample interaction has much shorter acting range and time than those of the attractive ones such as van der Waals (vdW)
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Fig. 1. Schematic diagrams of one DOF modeling. (a) The vibro-impact oscillator model; (b) impact oscillator.
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and Casimir forces. The repulsive tip–sample interaction acts as an impulse to excite the higher modes[16]. The total
harmonic distortion (THD) is used to measure the fraction of power transferred from the fundamental into the higher
harmonics and THD ranges from 0 to 100 percent. THD with the maximum value of 15 percent is observed when an AFM is
driven at the first natural frequency [16]. The higher modes participation in the motion has been fully recognized in the
vibration of scanning acoustic microscope, which is also a cantilever structure and has stronger tip–sample interaction
[17]. Attard et al. [13] noticed that the tip mass can significantly contribute to the whole system inertia. The concentrated
mass not only affects the system natural frequencies but also couples the (orthogonal) modes as reflected by the Dirac
delta function used to model the concentrated mass even for the linear small vibration case [18,19]. Furthermore, the
geometrical nonlinearity of large vibration amplitude can also couple the modes [20]. The multi-modal analysis rather
than one DOF model or single mode analysis should be the general approach for the study of the AFM intermittent contact
dynamics. The reasons for this can be summarized as the following three: (1) that the AFM driving frequency can be higher
than the first natural frequency; (2) that the repulsive tip–sample interaction can induce the motion of higher modes;
(3) mode coupling due to the concentrated tip mass or the geometrical nonlinearity of large motion.

When the stiffness K1 of the vibro-impact system as shown in Fig. 1a approaches infinity or a mass–spring system hits
an infinitely hard substrate as shown in Fig. 1b, the system becomes an impact oscillator [21]. The impact of an impact
oscillator is instantaneous and the instantaneous reflection velocity is only related to the instantaneous velocity just before
the impact via the coefficient of restitution [3,21]. The coefficient of restitution is also responsible for the major energy loss
in an impact oscillator system. The challenges of applying the impact oscillator model to the AFM intermittent contact
dynamics are recognized and summarized as the following two questions by van de Water and Molenaar [3]: Is the energy
loss concentrated at the impact instance and is the impact instantaneous? The contact time is dependent on the driving
frequency/amplitude, the bending and contact stiffnesses of AFM and surface, etc. [22]. The interaction/contact time of the
tapping-mode AFM and sample surface in general is a considerable fraction of the cycle time [16]. Besides the coefficient of
restitution, the hysteresis due to the adhesive forces can also cause the energy dissipation [9]. van de Water and Molenaar
[3] demonstrated that for the grazing impact, the tapping-mode AFM displays the characteristic features of an impact
oscillator. However, the grazing impact is a particular impact case with zero impact velocity [22,23]. The AFM studied by
van de Water and Molenaar interacts with the rigid surface through a liquid bridge, which offers a mechanism to realize
the grazing impact [3]. However, the zero velocity impact is not general in the AFM intermittent contact dynamics. In this
study the contact between an AFM tip and a surface is modeled as the AFM hitting a linear spring and a damper. The
relatively small spring stiffness is chosen to model the soft sample and the contact time can thus be a significant fraction of
the period. We demonstrate that the bifurcation diagram and phase portraits of the system are very different from those of
an impact oscillator. The more general criterion of using the AFM tip displacement [8,12] to tell whether the contact occurs
is also adopted in this study.

The subharmonics and chaos are the two characteristic features in the intermittent contact dynamics of both the
macroscopic structure [7,21,24–29] and the microstructure (of AFM) [3,6,9]. Measuring the AFM frequency shift has been
demonstrated as an effective method to determine the tip–sample potential [30,31]. However, in those frequency shift
theories/models there is an implicit assumption that the AFM subharmonic motion does not occur. When the AFM tip–
sample distance is in the order of interatomic spacing [31], the very strong tip–sample interaction due to Lennard-Jones
potential can induce not only the aforementioned higher modes participation in motion but also the subharmonic motion,
which can cause great trouble in the frequency shift theories/models. For a microstructure, the contribution of the
adhesion, vdW and Casimir forces [8,14,32] can be significant to the system dynamics and stability. For an AFM in the
noncontact tapping mode, the vdW force is responsible for the system frequency shift and softening effect [14]. However,
for the AFM intermittent contact in tapping mode, the impact/contact itself is of the primary importance to the AFM
dynamic behavior [3,9]. The nonlinearity of impact/contact forces is of the secondary importance. Although adhesion
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induces nonlinear contact behavior, the adhesion influence is rather weak as compared with an elastic one [33]. The
adhesion influence only stands out when the external mechanical load is very small [33] and the elastic force due to
impact is dominant in the AFM intermittent dynamics. Because the long-range attractive vdW force does not contribute to
the energy loss of the tapping-mode AFM, its influence on the AFM dynamics is ignored [3,9]. This study is to investigate
the AFM intermittent dynamics with more than one mode participation and the interaction with a relatively soft sample.
The secondary influences of adhesion, vdW and Casimir forces are thus not included.

2. Model development

In Fig. 2a, the coordinate system and AFM cantilever dimensions are shown. The AFM cantilever and its tip are separated
from the sample substrate with the distances of g0 and g1, respectively. AFM is driven with a forced motion y(t) (t is time) at
its fixed end. w(x,t) in Fig. 2b is the beam deflection measured from the fixed end. When the AFM tip hits the sample (Fig. 2c),
the AFM tip is in contact with a spring with stiffness K1 and a damper with the viscous damping of C1 as seen in Fig. 2d. The
spring stiffness K1 physically corresponds to the contact stiffness between the AFM tip and substrate and its value depends
on the tip geometry, Young’s moduli and Poisson’s ratios of the tip and substrate [33]. C1 can be obtained by measuring the
energy dissipated into the sample per cycle [34]. Fig. 2e shows the first three modes of cantilever beam. Because of the
participation of higher modes into the motion, it is well possible that the other part of AFM rather than the tip is in contact
with the sample as shown in Fig. 2f. If such scenario occurs, it is a rather difficult task to compute the contact area and
equilibrium [35]. We assume that such contact scenario does not happen. During the computation, the driving frequency/
amplitude and other related parameters are carefully chosen and examined to avoid such contact scenario.

The cantilever beam displacement v(x, t) in the coordinate system shown in Fig. 2a is

vðx,tÞ ¼wðx,tÞþyðtÞþg0, (1)

the beam tip displacement vT ðx,tÞ is

vT ðx,tÞ ¼ vT ðtÞ ¼ vðL,tÞ�ðg0�g1Þ ¼wðL,tÞþyðtÞþg1: (2)

For brevity, the following equation of motion is given, which is derived by applying the Hamilton principle [19]

½Mdðx�LÞþm�
q2v

qt2
þC

qv

qt
þEI

q4v

qx4
¼ 0, vT 40,

½Mdðx�LÞþm�
q2v

qt2
þC

qv

qt
þEI

q4v

qx4
þK1dðx�LÞ½wðx,tÞþyðtÞþg1�þC1dðx�LÞ

qv

qt
¼ 0, vT r0:
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>>>:
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Fig. 2. Schematic diagrams of the cantilever beam with a concentrated mass at the free end. (a) The beam (neutral axis) and the tip are initially separated

from the substrate with the gap distances of g0 and g1, respectively. The coordinate system is also shown. (b) y(t) is the oscillation of the beam fixed end

and wðx,tÞ is the beam deflection from the fixed end. (c) The beam tip hits the substrate when the tip displacement reaches a certain value. (d) When the

tip is in contact with the substrate, we model the beam tip hits a spring with the stiffness of K1 and a damper with the viscous damping of C1. (e) The

lowest three mode shapes are shown. (f) With the participation of higher mode shapes participate, the beam part other than the AFM tip is in contact

with sample, which is the contact with a finite length rather than a point contact.
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M is the tip mass and m is the mass per unit length of the beam. C is the viscous damping of the beam. E is the beam
Young’s modulus and I¼ bh3=12 (b: beam width, h: beam height) for a rectangular beam. Here d is the Dirac delta function.
K1 is the spring stiffness and C1 is the viscous damping due to the tip–sample contact. vT defines the switching condition

[8,21,26,27]. vT is a function of time t, vT ¼ 0 indicates that the AFM tip starts the contact with the sample, or say, impacts
the sample. However, keep in mind that the contact/impact time is unknown. Although the analytical solutions before and
after impact are available to the piecewise linear impact oscillator, the unknown property of impact time makes the
system nonlinear [26,22]. y(t) is a sinusoidal driving motion given as follows:

yðtÞ ¼ f sinðotÞ: (4)

f and o are the driving amplitude and frequency, respectively. The following dimensionless quantities are introduced to
nondimensionalize equation (3)

x¼
x

L
, t¼

ffiffiffiffiffiffiffiffiffi
EI

mL4

s
t, W ¼

w

g0
, V ¼

v

g0
, VT ¼

vT

g0
, O¼

ffiffiffiffiffiffiffiffiffi
mL4

EI

s
o: (5)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=mL4

q
is with the unit of Hertz and it is the same order of the first natural frequency of uniform and undamped

cantilever beam [36]. The governing equations of Eq. (3) now become as follows:

½a1dðx�1Þþ1�
q2W

qt2
þa3

qW

qt
þ
q4W

qx4
¼ ½a1dðx�1Þþ1�a2O

2 sinðOtÞ�a2a3O cosðOtÞ, VT 40,

½a1dðx�1Þþ1�
q2W

qt2
þa3

qW

qt
þ
q4W

qx4
þa4dðx�1ÞWþa6dðx�1Þ

qW

qt
¼ ½a1dðx�1Þþ1�a2O

2 sinðOtÞ

�a2a3O cosðOtÞ�a2a4dðx�1ÞsinðOtÞ�a4a5dðx�1Þ�a2a6dðx�1ÞO cosðOtÞ, VT r0:

8>>>>>>><
>>>>>>>:

(6)

Here ai’s (i¼1–6) are defined as

a1 ¼
M

mL
, a2 ¼

f

g0
, a3 ¼ C

ffiffiffiffiffiffiffiffiffi
L4

EIm

r
, a4 ¼

K1L3

EI
, a5 ¼

g1

g0
, a6 ¼

C1

L

ffiffiffiffiffiffiffiffiffi
L4

EIm

r
: (7)

Physically a1 indicates the ratio of the tip mass to the whole beam mass and a4 indicates the ratio of the spring stiffness to
the beam bending stiffness. a2 and a5 indicate the relationship between driving amplitude and tip separation distance
with the beam separation distance, respectively. a3 and a6 indicate the damping influence.

The switching condition of Eq. (2) is now nondimensionalized as follows:

VT ¼Wð1,tÞþ f

g0
sinðOtÞþ g1

g0
¼Wð1,tÞþa2 sinðOtÞþa5: (8)

Here the Galerkin method is used for the computation of Eq. (6) and Wðx,tÞ is discretized as

Wðx,tÞ ¼
XN

j ¼ 1

ajðtÞfiðxÞ, (9)

ajðtÞ is the unknown modal amplitude to be determined and N is the mode number. fjðxÞ is the mode shape of cantilever
beam given by Chang and Craig [36]. Substitute Eq. (9) into Eq. (6), time fiðxÞ and integrate from 0 to 1, the following
governing equations are derived:

½MI
� €Xþ½CI

� _Xþ½KI
�X¼ FI, VT 40,

½MII
� €Xþ½CII

� _Xþ½KII
�X¼ FII, VT r0:

(
(10)

Here _ðÞ ¼ q=qt, X¼ ða1,a2, . . . ,aNÞ
T, FI
¼ ðFI

1,FI
2, . . . ,FI

NÞ
T and FII

¼ ðFII
1 ,FII

2 , . . . ,FII
NÞ

T. During the integration, the orthogonality
property of the mode shapes and integration property of the Dirac delta function are used [19]. Matrices ½MI

�, ½CI
� and ½KI

�

are derived as follows:

½MI
�ij ¼

a1fið1Þfið1Þþ
R 1

0 fiðxÞfiðxÞ dx, i¼ j,

a1fið1Þfjð1Þ, iaj,

(
(11)

½CI
�ij ¼

a3

R 1
0 fiðxÞfiðxÞ dx, i¼ j,

0, iaj,

(
(12)

and

½KI
�ij ¼

R 1
0 fiðxÞ

q4fiðxÞ
qx4

dx, i¼ j,

0, iaj,

8><
>: (13)
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Clearly due to the integration property of the Dirac delta function, ½MI
� is not diagonal, which means the coupling of modes

even for small linear vibration. Vector FI is defined as

FI
i ¼ a2O

2 a1fið1Þþ

Z 1

0
fiðxÞ dx

" #
sinðOtÞ�a2a3

Z 1

0
fiðxÞ dx cosðOtÞ: (14)

Matrices ½MII
�, ½CII

� and ½KII
� are given as follows:

½MII
� ¼ ½MI

�, (15)

½CII
�ij ¼

a3

R 1
0 fiðxÞfiðxÞ dxþa6fið1Þfið1Þ, i¼ j,

a6fið1Þfjð1Þ, iaj,

(
(16)

and

½KII
�ij ¼

R 1
0 fiðxÞ

q4fiðxÞ
qx4

dxþa4fið1Þfið1Þ, i¼ j,

a4fið1Þfjð1Þ, iaj,

8>><
>>: (17)

Clearly the spring/damper also couples the mode shapes due to the Dirac delta function. FII is given as follows:

FII
i ¼ FI

i�a2a4fið1Þ sinðOtÞ�a4a5fið1Þ�a2a6fið1ÞO cosðOtÞ: (18)

The fourth-order Runge–Kutta integration is used for the time integration of Eq. (10) [37]. As indicated in Eq. (10), the
natural frequencies of the systems before and after contact can be very different depending on a4. To achieve the same
accuracy for the system before and after contact, the time step is different. It is well possible that the integration routine
with large time step can overshoot the discontinuity to cause the computational inaccuracy [38]. To avoid such scenario is
either to construct the time grid which reduces dramatically as an AFM/oscillator approaches the spring and keeps small
during contact [38] or just to take very small time step for both contact and noncontact regions.

3. Eigenfrequencies and mode coupling

The homogeneous parts of Eq. (10) are

½MI
� €Xþ½CI

� _Xþ½KI
�X¼ 0, VT 40,

½MII
� €Xþ½CII

� _Xþ½KII
�X¼ 0, VT r0:

(
(19)

For the natural frequency of the system, we only need to study the contact part because the noncontact part is the
particular case of a4 ¼ a6 ¼ 0. The eigenvalue problem can be formed as the following form [39]:

½Mn
� _Q ðtÞþ½Kn

�Q ðtÞ ¼ 0: (20)

½Mn
�, ½Kn

� and Q ðtÞ are defined as

½Mn
� ¼

½MII
� 0

0 ½�KII
�

 !
, ½Kn

� ¼
½CII
� ½KII

�

½KII
� 0

 !
, Q ¼ ð _XðtÞT XðtÞTÞ: (21)

The eigenfrequencies of the beam in contact can be computed from Eq. (20). In order to compare the results with the
eigenfrequencies of a uniform and undamped cantilever beam obtained by Chang and Craig [36], a3 and a6 are set zero,
and the dimensionless frequency o0i is defined as

o0i ¼

ffiffiffiffiffiffiffiffiffi
mL4

EI

s
fi: (22)

fi is the ith dimensional eigenfrequency of a uniform and undamped cantilever beam, which is the case of
a1 ¼ a3 ¼ a4 ¼ a6 ¼ 0. o0i is given by Chang and Craig [36]. Here we give the first three of them

o01 ¼ 1:8752
¼ 3:52, o02 ¼ 4:6942

¼ 22:03, o03 ¼ 7:8552
¼ 61:7: (23)

The first two natural frequencies of Eq. (20) as functions of a1 and a4 are presented in Fig. 3. They are divided by o01 and
o02 to show the relative change. Clearly a1 and a4 have larger influences on the system first natural frequency o1. It is also
worth mentioning that the eigenfrequency for this intermittent contact system is amplitude-independent, which is not
usual in a nonlinear system [27]. The discontinuity of eigenfrequencies, or say, the discontinuity of stiffness, which is
embodied in switching condition, is responsible for the nonlinearity of the intermittent contact system with small
vibration amplitude here. For one DOF system, the natural frequency discontinuity before and after contact can be directly
incorporated in the equation of motion [26]. However, Fig. 3 does not tell any information on the mode coupling. To show
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the mode coupling effect, we present an example here. The parameters are given as follows:

a1 ¼ a2 ¼ 0:1, a3 ¼ a5 ¼ a6 ¼ 0, a4 ¼ 20: (24)

a5 here is set to be zero to make sure that the system can always have the intermittent contact because it is well possible
that the system does not have any contact under some driving frequency and amplitude for nonzero a5 [28]. With the
parameters in Eq. (24), the three eigenfrequencies of the system in contact are

o1 ¼ 7:79, o2 ¼ 20:33, o3 ¼ 55:81: (25)

It is interesting to notice that compared with the eigenfrequencies without contact in Eq. (23), o1 increases dramatically,
while both o2 and o3 reduce. The driving frequency O is taken as 4.1, which is between o01 and o1, but far from the
second and third eigenfrequencies of the system with or without contact. At a first look, the first mode should be dominant
in the motion at O¼ 4:1 for both free-play and contacting vibrations. If it is true, single mode analysis should be accurate
enough to describe the motion. While, the convergence study as shown in Fig. 4 disagrees with this conclusion. The tip
motion in Fig. 4 is the steady-state motion. Clearly the motion computed by the single mode (N¼1) has a significant
difference with those of N¼2, 3, 4. For N¼3, 4, there is very little difference in the motion. The second and third modes
participation in the motion induced by the intermittent contact are responsible for the difference. Fig. 4 demonstrates that
even for the system under the low driving frequency which is far from the second and third eigenfrequencies, the higher
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modes (N¼2, 3) can still be excited by the intermittent contact. As VT r0 indicates that the tip is in contact with sample, it
can be seen from Fig. 4 that the contact time is a significant portion of the cycle. This can make the dynamic behavior of the
system quite different from that of an impact oscillator.
4. Results and discussions

Subharmonic is the period-n oscillation that takes n forcing periods to complete a full cycle [40,41]. Subharmonic is the
structurally stable type of bifurcation [42], which physically means that when the perturbation is qualitatively similar, the
system will have similar dynamic behavior (phase portrait).

In Figs. 5–17, the following parameters are fixed:

a2 ¼ 0:1, a3 ¼ 0:1, a4 ¼ 20, a5 ¼ 0, a6 ¼ 0:2: (26)
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The vibration of AFM in air has high Q factor, or say small damping [14]. Therefore, here the relative small values are taken
for a3 and a6 to make the system an underdamped one. Recently, both experiment and theory show that due to the
fluctuating electromagnetic field between the AFM tip and sample, there is a noncontact friction force which is several
orders of magnitude larger than the vdW friction and this noncontact force shares the same form as that of damping
force [43]. Therefore, this noncontact friction force may also be incorporated in this model by choosing large a3. a4 defined
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in Eq. (7) indicates the ratio of the stiffness of the tip–sample contact to that of the AFM cantilever. The stiffness of the AFM
cantilever is given as Kc ¼ 3EI=L3 [33,35] and the tip–sample contact stiffness can be calculated by Hertz model as
K1 ¼ 2En

ffiffiffiffiffiffiffi
RD
p

(R: the radius of tip, D is the indentation depth; 1=En ¼ ð1�n2
1Þ=E1þð1�n2

2Þ=E2; here E1, E2 and n1, n1 are
Young’s moduli and Poisson’s ratios of the tip and sample, respectively) [33]. In [44], 10 different samples with E2 ranging
from 1 MPa to 50 GPa were indented by an AFM tip made of single crystal silicon (E1 ¼ 130 GPa and n1 ¼ 0:27). Suppose
D¼ R=9, a4’s of these 10 materials can be calculated as a4 ¼ K1L3=ðEIÞ ¼ 3K1=Kc , which range from 4.7�10�3 to 233.5. For
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polystyrene (E2¼4 GPa) and highly oriented pyrolytic graphite (E2¼5 Gpa) [44], their a4’s are 18.7 and 23.4, respectively.
As mentioned before, the tip mass can have significant impact on the intermittent contact dynamics by changing the
system eigenfrequencies and coupling modes. In Figs. 5–15, a1 is selected as 0.1 to show its influence. In Figs. 16 and 17,
a1 ¼ 0 is selected for a comparison study.

Fig. 5 shows the bifurcation of system as control parameter O changes. Xmax is the tip amplitude at the steady-state. For
the grazing impact, the Poincaré mapping can be analytically derived [3,23]. Therefore, the bifurcation and the transition
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to chaos can be clearly shown [3]. However, for the system with the tip mass modeled by the Dirac delta function and
multi-modal analysis, to analytically derive the Poincaré mapping will be extremely difficult if not impossible [26]. In
Figs. 5, period-1 and period-2 bifurcations are shown. While, other subharmonic motion like period-3 exists, which is not
shown in Fig. 5. If the driving frequency further increases, nonperiodic motions will evolve from period-1 motions. In the
region of 2:0rOr2:15, nonperiodic motions evolving from period-2 are also observed. But it is safe not to conclude that
those nonperiodic motions are chaos. It may be transitional behavior as several period-n motions coexist at one driving
frequency. So the nonperiodic motion can be the transitional results that the motion of period-m evolves to the motion of
period-n, or the motion itself oscillates between the orbits even the time lasts long enough. It is also worth mentioning
that in Shaw and Holmes’s bifurcation diagram, they define a transitional zone and chaos is not shown, either [26]. It is
noticed that the bifurcation diagram in Fig. 5 is very different from that of an impact oscillator [26].

Fig. 6 examines the time series and phase portraits of two period-1 motions marked as 1 and 2 in the bifurcation diagram
of Fig. 5. Both the motions of intermittent contact shown in both time series and phase portraits are asymmetric. The
discontinuity of the spring stiffness and damping are responsible for the asymmetry and distortion. The time series and
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phase portraits of the motion marked as 3 in Fig. 5 are shown in Fig. 7a and b. Besides period-1 and period-2 motions at
O¼ 2:6, period-3 motion also exists. The time series and phase portrait of period-3 motion are presented in Fig. 7c and d.

Figs. 8 and 9 show the time series and phase portraits of two period-1 motions at O¼ 20. As seen in Eq. (23), O¼ 20 is close to
the second natural frequency. These two motions only have very small difference, which indicates the start of bifurcation and is
also the reason why we put them in two separate plots. The amplitude is 0.145 in Fig. 8 and 0.148 in Fig. 9. Compared with the
two period-1 motions at O¼ 2:6 in Fig. 6, these two period-1 motions at O¼ 20 are much less asymmetric and phase portraits
are less distorted. Besides these two period-1 motions, other coexisting long period motions at O¼ 20 are also observed. Figs. 10
and 11 show the time series and phase portraits of period-11 and period-28 motions. Compared with those period-1 motions, the
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maximum amplitudes of period-11 and period-28 are 1.18 and 1.45, respectively. The asymmetry of their time series is severe
and their phase portraits are greatly distorted. Two period-21 motions with O¼ 20 are also observed as shown in Figs. 12 and 13.
Their maximum amplitudes are 0.34 and 0.245, respectively, which have the same order of magnitude of those period-1 motions
and much less than those of period-11 and period-28. The asymmetry of the two period-21 motions are also severe, while, their
phase portraits are much less distorted. It is worth pointing out that the phase portraits of these two period-21 motions are very
similar to those of an impact oscillator [26]. The nonperiodic motion as shown in Fig. 14 also exists at O¼ 20. Although it shows
some pattern and looks like some long period motion, it just does not repeat its motion within the tolerance of computational
error. It is noticed that the amplitude of this nonperiodic motion is close to those of period-11 and period-28.

It is indicated in Eq. (10) and Fig. 3 that the concentrated mass (a1) physically causes the eigenfrequency change and
mathematically couples the modes in the governing equation. For nonzero a1 case, it is very difficult to tell the separate
contribution of eigenfrequency change and mode coupling to the dynamic behavior of the intermittent contact system. In
Figs. 15–17, a1 is set to be zero. So mathematically, the modes derived from Eq. (10) are decoupled in the noncontact
region. Fig. 15 shows two period-1 motions at O¼ 2:6. The difference of these two period-1 motions with those in Fig. 6 is
very obvious. So is the period-2 motion in Fig. 16 with that in Fig. 7a and b. We do not find the period-3 motion for a1 ¼ 0
case at O¼ 2:6. However, period-4 motion which is not found in a1 ¼ 0:1 case exists in a1 ¼ 0 case. Fig. 17 shows the time
series and phase portraits of the two period-4 motions. For the a1 ¼ 0 case, the mode coupling effect is gone. As a1 changes
to zero, not only the eigenfrequencies change (thus the system response to the driving amplitude/frequency changes), but
also the ratio of the eigenfrequencies before and after contact changes though the discontinuity of stiffness keeps the
same. These two changes together result in the different dynamic behavior during the intermittent contact.
5. Conclusion

In the AFM intermittent contact dynamics, the primary effects are the frequency–amplitude response and intermittent contact.
In this study, the sample is relatively soft and the system with intermittent shows much richer dynamic behavior than that of an
impact oscillator. Various subharmonic and nonperiodic motions are observed. Some subharmonic motions are very similar to
those of an impact oscillator; some subharmonics exhibit very different asymmetric motions and greatly distorted phase portraits.
The bifurcation diagram of the system also shows the difference with that of an impact oscillator. The rich subharmonic patterns
are obtained by changing driving frequency and initial conditions. These subharmonic motions can have significant impact on the
interpretation of the experimental data obtained in the AFM tapping mode. The participation of the higher modes into the motion
even for the relatively low driving frequency is also shown. The multi-modal analysis and convergence study are thus necessary.
The tip mass effects on the whole system dynamic behavior are also shown. This analysis offers a more accurate and general
approach to study the AFM intermittent contact dynamics, especially for the intermittent contact with a soft sample.
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