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Plastic flow localization in ductile materials subjected to pure shear loading and uniaxial tension is inves-
tigated respectively in this paper using a reduced strain gradient theory, which consists of the couple-
stress (CS) strain gradient theory proposed by Fleck and Hutchinson (1993) and the strain gradient hard-
ening (softening) law (C–W) proposed by Chen and Wang (2000). Unlike the classical plasticity frame-
work, the initial thickness of the shear band and the strain rate distribution in both cases are
predicted analytically using a bifurcation analysis. It shows that the strain rate is obviously non-uniform
inside the shear band and reaches a maximum at the center of the shear band. The initial thickness of the
shear band depends on not only the material intrinsic length lcs but also the material constants, such as
the yield strength, ultimate tension strength, the linear hardening and softening shear moduli. Specially,
in the uniaxial tension case, the most possible tilt angle of shear band localization is consistent qualita-
tively with the existing experimental observations. The results in this paper should be useful for engi-
neers to predict the details of material failures due to plastic flow localization.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Plenty of experiments have shown that metallic material
behaviors display strong size effects when the characteristic length
scale is on the order of micrometer or sub-micrometer (Yang et al.,
1990; Stelmashenko et al., 1993; Fleck et al., 1994; Lloyd, 1994;
Atkinson, 1995; Ma and Clarke, 1995; McElhaney et al., 1998; Stol-
ken and Evans, 1998; Saha et al., 2001; Saha and Nix, 2002; Swa-
dener et al., 2002; Feng and Nix, 2004; Chen et al., 2005). For
examples, Fleck et al. (1994) found that the torsion strength of a
thin copper wire increases about three times when the diameter
of thin copper wire decreases from 170 lm to 12 lm. Stolken
and Evans (1998) found that the bending strength of a thin nickel
beam with thickness at the micrometer scale increases signifi-
cantly along with a decreasing thickness of the ultra-thin beam.
Lloyd (1994) observed that the flow strength of aluminum-magne-
sium matrix composites reinforced by silicon-carbide particles in-
creases substantially as the particle diameter is reduced from
16 lm to 7.5 lm at a fixed particle volume fraction of 15%.

The classical plasticity theory can not predict these size effects
due to no intrinsic lengths included in the constitutive model.
Strain gradient theories have been developed to extend continuum
ll rights reserved.
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plasticity to the micrometer scale, which can be divided into two
classes. The first one involves the higher-order stress as the work
conjugate of the strain gradient. In these higher-order strain gradi-
ent theories, the order of the equilibrium equations are higher than
that in the conventional continuum theories, therefore additional
boundary conditions are required. Examples include Fleck and
Hutchinson (1993, 1997, 2001), Fleck et al. (1994), Fleck and Willis
(2009), Gao et al. (1999a,b), Gurtin (2000, 2002), Huang et al.
(2000a,b), Hwang et al. (2003, 2002), Lam et al. (2003), Yang
et al. (2002), Yi et al. (2009). Another framework of strain gradient
plasticity theories does not involve higher-order stress and re-
quires no additional boundary conditions. The plastic strain gradi-
ent comes into play through the incremental plastic modulus.
Examples include Bassani and Acharya (1995), Acharya and Beaud-
oin (2000), Chen and Wang (2000, 2001, 2002a), Bassani (2001),
Evers et al. (2002), Huang et al. (2004), Hu et al. (2005), et al.

Strain gradient plasticity theories have given reasonable agree-
ments with the size dependence in several typical experiments,
such as thin-wire torsion (e.g. Chen and Wang, 2000, 2001,
2002a; Fleck et al., 1994; Gao and Huang, 2001), thin-beam bend-
ing (e.g. Chen and Wang, 2000, 2001, 2002a; Gao and Huang, 2001;
Stolken and Evans, 1998), micro- and nano-indentation (e.g. Chen
et al., 2004; Huang et al., 2000b; Nix and Gao, 1998; Saha et al.,
2001; Wei and Hutchinson, 2003; Xue et al., 2002) as well as the
composite material experiments (e.g. Chen and Wang, 2002b;
Fleck and Hutchinson, 1997; Shu and Fleck, 1999; Wei, 2001; Liu
and Hu, 2005).
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Classical plasticity theories also fail to explain the fracture
behavior of some ductile materials. In 1994, Elssner et al. measured
both the macroscopic fracture toughness and atomic work of sep-
aration of an interface between a single crystal of niobium and a
sapphire single crystal. The macroscopic work of fracture was
found to be two to three orders of magnitude higher than the
atomic work of separation. This large difference between the mac-
roscopic work of fracture and its counterpart at the atomic level
was attributed to plastic dissipation in niobium, i.e., there must
be significant plastic deformation associated with dislocation
activities in niobium. However, Elssner et al. (1994) observed that
the interface between two materials remained atomistically sharp.
Meanwhile the stress level needed to produce atomic decohesion
of a lattice or a strong interface is typically on the order of 0.03
times the Young’s modulus, or 10 times the tensile yield stress.
But the maximum stress level that can be achieved near a crack
tip is not larger than 4 or 5 times the tensile yield stress of metals,
according to models based on conventional plasticity theories
(Hutchinson, 1997). This clearly falls short of triggering the atomic
decohesion observed in Elssner et al.’s experiments (1994).

The strain gradient theories have also been successfully applied
to study the crack tip field in order to narrow down the gap in the
stress levels for macroscopic cracking and for atomistic fracture
(Wei and Hutchinson, 1997; Jiang et al., 2001; Chen and Wang,
2002c; Mikkelsen and Goutianos, 2009). It is found that the stress
fields ahead of a mode I crack tip consist of a strain gradient dom-
inating field, a HRR field and an elastic K one with the distance far
away from the crack tip. The effective stress in the strain gradient
dominated field is improved significantly and achieves 10 times or
more the tensile yield stress (Jiang et al., 2001; Chen and Wang,
2002c).

Shear band localization in metallic materials is another field
that may involve length scales. However, due to the absence of
material intrinsic length and neglect of the gradient terms, classical
plasticity theories cannot predict the thickness of shear band.
Moreover, in numerical simulation of localization, classical contin-
uum models may frequently encounter such problems as spurious
mesh-dependency and high sensitivity to constitutive relations.

Some strain gradient plasticity theories have been used to study
the plastic flow localization. Aifantis (1984), Aifantis (1987), Zbib
and Aifantis (1988), Zbib and Aifantis (1992) applied their gradient
plasticity model to study shear band localization in metals. Fleck
and Hutchinson (1998) and Zhao et al. (2005) predicted the shear
band thickness in materials only with simple elastic and softening
phases under pure shear loading. Shi et al. (2000) and Shi et al.
(2009) studied the shear band localization using the deformation
and flow version of MSG theory, respectively, but also with a pure
shear model. Engelen et al. (2006) analyzed the ability of Fleck and
Hutchinson (1997), Fleck and Hutchinson (2001) theories and the
nonlocal theory of Engelen et al. (1999), Engelen et al. (2003) to
handle material softening by considering the bifurcation of a bar
under uniform tensile straining, in which they found that the Fleck
and Hutchinson, 1997 theory showed the desired localization
behavior at and beyond the transition from hardening to softening,
while the pathological localization at the peak strength was not
prevented by the Fleck and Hutchinson, 2001 theory and the non-
uniform solutions could occur even before the peak load. As for the
nonlocal theory of Engelen et al. (1999), Engelen et al. (2003), it
allows for a transition from hardening to softening and within
the softening regime it correctly predicts a localization band of
finite width. Recently, a more systematical study on localization
properties predicted by different gradient plasticity models has
been done by Jirasek and Rolshoven (2009a), Jirasek and Rolshoven
(2009b), in which they divided the gradient theories into two dis-
tinct groups: strain gradient models and models with gradients of
internal variables. The evolution of localization in a one-
dimensional setting that a bar of a constant cross section was fixed
at one end and loaded by an applied displacement at the opposite
end, was analyzed systematically. In the first group, Jirasek and
Rolshoven (2009a) considered the strain gradient plasticity model
proposed by Chambon et al. (1998), the one proposed by Fleck and
Hutchinson (1997) and the mechanism-based strain gradient plas-
ticity theory suggested by Gao et al. (1999a), Gao et al. (1999b).
Detailed analysis of the onset of localization, considered as a bifur-
cation from a uniform state, has shown that the first two models
act as proper localization limiters, preventing localization of plastic
yielding into a set of zero measure and at the same time allowing
localization into a process zone of a finite thickness. However, con-
sidering the subsequent evolution of localization, the plastic zone
tends to expand over the entire specimen in the first model and
the plastic zone shrinks at late stage of softening and an instability
develops in the second model. In the second group (Jirasek and
Rolshoven, 2009b), models with gradients of internal variables
are further divided into the one with gradient of internal variables
appearing directly in the hardening-softening law and the one with
implicit formulations. The same one-dimensional setting as that in
Jirasek and Rolshoven (2009a) was analyzed and the reasonability
of the initial bifurcation from a uniform state and response at late
stages of the softening process was also mainly focused and
discussed.

All of the above theoretical models are studied using the strain
gradient plasticity theories, which have their own application
range, i.e., the metallic materials, because most of the strain gradi-
ent theories are physically motivated by the concept of statistically
store and geometrically necessary dislocations. Plastic localization
in metallic materials may be analyzed by most of the strain gradi-
ent plasticity theories.

Shear bands can also present for metallic glass, polymers and
geomaterials, and has attracted many researchers’ interest, which
are generally treated as material instabilities by bifurcation theory
(Hadamad, 1903; Hill, 1958; Thomas, 1961; Rudnicki and Rice,
1975; Rice, 1976; Peirce et al., 1983; Ortiz, 1987; Ottosen and Run-
esson, 1991; De Borst and Van der Giessen, 1998). Based on the
earlier experiments (Oda et al., 1982), Oda and Kazama (1998)
found that the formation of shear bands coincides with the buck-
ling of the particle columns through particle rotation rather than
sliding. Particle rotation in the shear band is unidirectional and
highly non-uniform (see, Gardiner and Tordesillas, 2004). In this
circumstance, the rotation gradient terms become very important
and can no longer be neglected. Oda and Iwashita (2000) proved
that the presence of the small couple stress plays a very important
role in the formation and development of microstructure in shear
bands based on numerical simulation and laboratory tests. How-
ever, theoretical analysis for the formation and thickness of shear
band localization considering the function of the couple-stress is
absence. Furthermore, uniaxial tension or compression tests are of-
ten used to study the shear bands in addition to the pure shear
tests. Peirce et al. (1983) considered the strain hardening proper-
ties and crystal geometries to analyze the direction of shear band
formation for single crystals subjected to tensile loading. Ortiz
(1987) presented a theoretical framework for the analysis of shear
localized failure under biaxial and uniaxial stress loadings. Due to
the absence of material length scale and neglect of the gradient
terms, the thickness of shear bands can not be predicted. As for
the inclination angle of shear bands in a uniaxial test, Schuster
et al. (2007), Schuster et al. (2008), Donovan (1988), Donovan
(1989) found that the tilt angle of the shear band is about 42�,
independent of specimen size. Volkert et al. (2008) found the tilt
angle is about 50 ± 4� in amorphous metals.

Inspired by the above experiments for metallic and non-metal-
lic materials and the couple stress gradient theory considering
rotation vectors with the assumption that crystalline-metallic
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solids can be looked as materials composed by multi-crystals
(Fleck and Hutchinson, 1993; Chen and Wang, 2001), obvious
questions are as follows:

(1) Does the rotation gradient term become very important in
predicting the thickness of plasticity flow localization for
metallic materials, similar to the case for a granular one
(Oda and Iwashita, 2000)?

(2) What factors will influence the tilt angle of shear band?
(3) Do the tilt angle or material constants influence the thick-

ness of shear band?
(4) Is there a range of tilt angle for possible plastic flow

localization?

In order to answer the above questions, a reduced strain gradi-
ent theory will be used to analyze plastic flow localization under
pure shear loading and uniaxial tension one, respectively. Espe-
cially, the possible tilt angle of the shear band under uniaxial ten-
sion loading will be investigated theoretically.

One should be noted that the strain gradient theories belong to
the framework of continuum mechanics, which do not focus on the
specific microstructures and the microscopic mechanisms. All the
materials analyzed by the strain gradient theories are assumed to
be isotropic continuum one. The details of microstructure evolu-
tion are reflected by the intrinsic materials lcs and l1 corresponding
to the rotation gradient and stretch gradient, respectively. The
macroscopically observed materials’ behaviors, as a manifestation
of microscopic mechanism, are described by the constitutive law
of materials.

2. Brief introduction of the reduced strain gradient theory

The strain gradient theory by Chen and Wang (2001), Chen and
Wang (2002a) includes a general couple stress strain gradient the-
ory, in which the effect of rotation gradient is considered through
the interaction of the Cauchy stress and the couple stress, and an
incremental hardening (softening) law, in which the stretch gradi-
ent, as an internal variable, influences the instantaneous hardening
(softening) tangential moduli in order to avoid higher order stress.
The reduced strain gradient theory in this paper comes from the
strain gradient theory by Chen and Wang (2001), Chen and Wang
(2002a), in which we let the micro-rotation vector to be equal to
the material rotation one and the general couple stress theory in
Chen and Wang (2001), Chen and Wang (2002a) reduces to the
CS strain gradient theory. The reduced strain gradient theory is
now combined essentially by the couple stress strain gradient the-
ory proposed by Fleck and Hutchinson (1993) and the strain gradi-
ent hardening (softening) law suggested by Chen and Wang (2000).

The couple stress strain gradient theory (CS) proposed by Fleck
and Hutchinson (1993) fits neatly within the framework of Toupin
(1962), Mindlin (1964), Mindlin (1965) and Eringen (1968), which
are based on the general couple stress theory developed by Coss-
erat and Cosserat (1909). In CS theory, it is assumed that the strain
energy density of a homogeneous isotropic solid depends upon the
scalar invariants of the strain tensor e and the curvature tensor v.
The generalized (overall) effective stress Re is defined as the work
conjugate of the generalized (overall) effective strain Ee, and is a
unique function of Ee. For an incompressible solid, the virtual work
done on the solid per unit volume equals the increment in strain
energy density

dw ¼ RedEe ¼ r : deþm : dv ¼ s : deþm : dv ð1Þ

where

E2
e ¼ e2

e þ l2
csv2

e e2
e ¼

2
3
eijeij eij ¼

1
2
ðui;j þ uj;iÞ ð2Þ
lcs is an intrinsic material length associated with the rotation gradi-
ent. s is the deviatoric part of r. Micro-rotation vector x, the rota-
tion gradient tensor v and the effective rotation gradient are
defined as

xi ¼
1
2

eijkuk;j vij ¼ eitsejs;t v2
e ¼

2
3
vijvij ð3Þ

Then the deviatoric stress tensor s, couple stress tensor m can be
obtained as

sij ¼
@w
@eij
¼ 2

3
Re

Ee
eij mij ¼

@w
@vij
¼ 2

3
Re

Ee
l2
csvij ð4Þ

where

Re ¼ r2
e þ l�2

cs m2
e

� �1=2
r2

e ¼
3
2

sijsij m2
e ¼

3
2

mijmij ð5Þ

The classical plasticity hardening (softening) law is expressed as

re ¼ AðeeÞ ð6Þ

In order to consider the influence of stretch gradient, an incremen-
tally hardening or softening law proposed by Chen and Wang
(2000) is introduced

_Re ¼ A0ðEeÞ 1þ l1g1

Ee

� �1=2
_Ee ¼ BðEe; l1g1Þ _Ee ð7Þ

where B(Ee, l1g1) is a new function including the stretch gradient ef-
fect. l1 is an intrinsic material length associated with the stretch
gradient and g1 is the effective stretch gradient defined as

g1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð1Þijk gð1Þijk

q
. The definition of gð1Þijk can be found in Smyshlyaev

and Fleck (1996). Due to the incremental law, no high-order stress
is introduced in the reduced strain gradient theory, only the Cauchy
stress tensor and the couple stress one. The equilibrium equations
can be written as (Fleck and Hutchinson, 1993)

rij;j þ sij;j ¼ 0 ð8Þ

where sij is the anti-symmetric part of the Cauchy stress and can be
given as

sjk ¼
1
2

eijkmip;p ð9Þ

The traction boundary conditions are the same as those in Fleck and
Hutchinson (1993),

T ¼ ðrþ sÞ � n
q ¼m � n

�
ð10Þ
3. Plastic flow localization under pure shear

The simple model as shown in Fig. 1 has been adopted by Fleck
and Hutchinson (1998), Shi et al. (2000), Zhao et al. (2005), Osinov
and Wu (2009) and Shi et al. (2009) to study plastic flow localiza-
tion using different strain gradient theories, in which the infinite
solid is subjected to a remote pure shear loading r121. Another sim-
ple setting that a bar of a constant cross section is fixed at one end
and loaded by an applied displacement at the opposite end, has al-
ready been analyzed systematically by Jirasek and Rolshoven
(2009a,b), which will not be investigated in the present paper.

Similar to Shi et al. (2009), a simple uniaxial stress-strain rela-
tion that exhibits the elastic, linear work hardening and softening
behavior is adopted in the present paper as shown in Fig. 2. The
elastic modulus is denoted as E, the linear work hardening modu-
lus is Et and the softening modulus is �Es. The yield stress is ry and
the ultimate tensile strength is ru.



21σ ∞

1x

21σ ∞

2h
2x

shear band

softening

unloading

Fig. 1. Model of an infinite solid subjected to a remote pure shear r121 to study
plastic flow localization. A shear band initiates parallel to the remote shear due to
the material softening and elastic unloading happens outside the shear band. 2h is
the thickness of shear band.
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Fig. 2. Uniaxial stress-strain relation with Young’s modulus E, linear hardening
modulus Et, yield stress ry, and the ultimate tensile strength ru. At the initiation of
shear band, two strain paths at ru will happen, one (dashed line) corresponds to
elastic unloading with modulus E, and the other (solid line) corresponds to
softening with softening modulus �Es (Es < 0).
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The infinite solid is assumed to be incompressible so that the
relation between the generalized effective stress Re and the gener-
alized effective strain Ee can be written as

Re ¼ 3GEe for 0 6 Ee 6
ry

3G

Re ¼ ry þ 3Gt Ee � ry

3G

� 	
for ry

3G 6 Ee 6
ry

3Gþ
ru�ry

3Gt

Re ¼ ru þ 3Gs Ee � ry

3G�
ru�ry

3Gt

� �
for Ee P ry

3Gþ
ru�ry

3Gt

8>><
>>: ð11Þ

where G, Gt and Gs are shear moduli corresponding to E/3, Et/3 and
Es/3. The strain field inside the solid keeps uniform until the remote
shear loading r121 reaches the maximum value ru=

ffiffiffi
3
p

, which corre-
sponds to the ultimate tensile strength ru in Fig. 2. At r121 ¼ ru=

ffiffiffi
3
p

,
there are two possible strain paths as shown in Fig. 2. One corre-
sponds to the elastic unloading (dashed line) with a decreasing
strain. The other corresponds to softening (solid line) with an
increasing strain. In this model, the localized softening region is as-
sumed as a band parallel to the remote shear loading as shown in
Fig. 1.

Elastic unloading from the point at the ultimate tensile strength
can be expressed as

Re ¼ ru þ 3G Ee �
ry

3G
� ru � ry

3Gt

� �
ð12Þ

The nonvanishing displacement in the present model is assumed to
be u1, which is parallel to the direction of the external pure shear
r121 and depends only on the coordinate x2 normal to the shear band
as shown in Fig. 1. The non-zero strain rate and rotation gradient
rate are
_e12 ¼ _e21 ¼
_c
2

_v32 ¼ �
_c;2
2

ð13Þ

where c = du1/dx2 is the engineering shear strain and is also a func-
tion of the coordinate x2.

The rate of the generalized effective strain is given as

_Ee ¼
_cffiffiffi
3
p ð14Þ

Considering the constitutive Eq. (4) and the non-zero rotation gra-
dient rate _v32, one can see that the non-zero couple stress rate is
only _m32. Then, the nonvanishing rate of anti-symmetric part of
Cauchy stress is

_s12 ¼ � _s21 ¼
_m32;2

2
ð15Þ

The couple stress mij and the anti-symmetric part of Cauchy stress
sij also depend only on the coordinate x2, then the equilibrium
equation can be written as

r12;2 þ s12;2 ¼ 0 ð16Þ

which can be integrated and written as an incremental form

_r12 þ _s12 ¼ _r121 ð17Þ
3.1. Bifurcation analysis outside the shear band

At the point of ultimate tensile strength, bifurcation analysis is
used to study the initiation of a shear band. One should note that at
the moment of shear band initiating, the strain field is still uniform
but the rate of strain field is non-uniform, i.e., g1 ¼ 0; _g1 – 0;
ve ¼ 0; _ve – 0, which has also been adopted in Engelen et al.

(2006), Jirasek and Rolshoven (2009a), Jirasek and Rolshoven
(2009b), Shi et al. (2009).

The solid outside the shear band undergoes elastic unloading so
that it abides by the relation describing in Eq. (12). The incremental
relation between the rate of the generalized effective stress _Re and
the rate of generalized effective strain E_e is

_Re ¼ 3G _Ee 1þ l1g1

Ee

� �1=2

ð18Þ

The rates of symmetric and anti-symmetric parts of Cauchy stress
outside the shear band at the moment of shear band initiating,
can be obtained from Eqs. (4) and (18) as

_r12 ¼ 2
3

Re
Ee

e12

� ��
¼ G _c

_s12 ¼ 1
2

_m32;2 ¼ 1
3

Re
Ee

l2
csv32

� �
;2


 ��
¼ � ru

6eu
l2cs

_c;22

8>><
>>: ð19Þ

where

eu ¼
ry

3G
þ ru � ry

3Gt
:

From above, one should note that there is no influence of the stretch
gradient length scale l1 on the behavior of materials outside the ini-
tial shear band since we have g1 = 0.

Substituting Eq. (19) into equilibrium Eq. (17) yields the gov-
erning equation outside the shear band

G _c� ru

6eu
l2
cs

_c;22 ¼ _r121 ð20Þ

The solution to the above differential equation is

_c ¼ _r112
G þ Ae�nx2 þ Benx2

n ¼
ffiffiffiffiffiffiffi
6euG
rul2cs

q
¼ 1

lcs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½GtryþGðru�ryÞ�

Gtru

q
8<
: ð21Þ
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Due to anti-symmetry, we only consider the upper half-plane,
namely x2 P 0. Then x2 ? +1 yields a vanishing B.

Furthermore, we know that _c 6 0 outside the shear band and
_c P 0 inside the shear band. The continuity condition of _c across
the shear band boundary requires

_cjx2¼h ¼ 0 ð22Þ

which leads to

A ¼ �
_r121enh

G
ð23Þ
σ ∞

θ

softening

(shear band)

unloading

2h

σ ∞

2x

1x′

2x ′

1x

Fig. 3. Model of an infinite thin plate subjected to remote uniaxial tension to study
plastic flow localization. A shear band will initiate at a tilt angle h when r1

increases to the ultimate tensile strength ru. 2h is the thickness of shear band.
3.2. Bifurcation analysis inside the shear band

When the shear band initiates, the tangent modulus changes
discontinuously from a positive value Gt to a negative value Gs.
The solid in the shear band undergoes softening and the relation
between the overall effective stress and the overall effective strain
can be expressed as

Re ¼ ru þ 3GsðEe � euÞ ðGs < 0Þ ð24Þ

The incremental softening law with the effect of stretch gradient
can be written as,

_Re ¼ 3Gs
_Ee 1þ l1g1

Ee

� �1=2

ð25Þ

The rates of symmetric and anti-symmetric parts of Cauchy stress
inside the shear band at the moment of shear band initiating, can
be obtained from Eqs (4) and (25) as

_r21 ¼ 2
3

Re
Ee

e21

� ��
¼ Gs _c

_s12 ¼ 1
2

_m32;2 ¼ 1
3

Re
Ee

l2
csv32

� �
;2


 ��
¼ � ru

6eu
l2
cs

_c;22

8>><
>>: ð26Þ

Substituting Eq. (26) into equilibrium Eq. (17) yields the governing
equation inside shear band,

Gs _c� ru

6eu
l2
cs

_c;22 ¼ _r121 ð27Þ

Also, the stretch gradient has no effect on the behavior of materials
inside the initial shear band. Only the rotation gradient works at the
moment of shear band initiating.

The solution to the above differential Eq. (27) can be obtained,

_c ¼ _r121
Gs
þ C sinðgx2Þ þ D cosðgx2Þ

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
� 6euGs

rul2cs

q
¼ 1

lcs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½GsGtryþGGsðru�ryÞ�

�GGtru

q
8><
>: ð28Þ

The anti-symmetric condition about the center of shear band
requires

_c;2jx2¼0 ¼ 0 ð29Þ

which also suggests that _c reaches maximum at the center of shear
band. Then we find

C ¼ 0 ð30Þ

At the boundary of shear band, the continuity of the shear strain
rate _c requires

_cjx2¼h�0 ¼ _cjx2¼hþ0 ð31Þ

which results in

D ¼ � _r112

Gs cosðghÞ ð32Þ

Then, the rate of shear strain in the upper half-plane can be ex-
pressed as
_c ¼ _r121
G ½1� enðh�x2Þ�; at x2 > h

_c ¼ _r121
Gs

1� cos gx2
cos gh

h i
; at 0 6 x2 6 h

8<
: ð33Þ

Furthermore, the continuity of couple stress traction at x2 = h
requires

_c;2jx2¼h�0 ¼ _c;2jx2¼hþ0 ð34Þ

which yields the shear band thickness analytically as,

h ¼ lcs

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2GGtru

GsGtry þ GGsðru � ryÞ

s
p� arctan

ffiffiffiffiffiffiffiffiffi
�Gs

G

r !
ð35Þ

Here one can see that the initial thickness of shear band has a linear
relation with the material intrinsic length lcs and depends also on
the material constants, such as the elastic shear modulus, the hard-
ening tangential modulus, the softening one, the yield stress and
the ultimate tensile strength.

The evolution of plasticity localization is out of scope of the
present paper. Simply, according to Jirasek and Rolshoven
(2009a), Jirasek and Rolshoven (2009b), the above solution re-
mains valid if the rates are replaced by finite increments with re-
spect to the state at bifurcation since the internal length lcs is
normally considered as a constant. The size and shape of the shear
band therefore remain constant. As for a nonlinear softening law,
methods used in Jirasek and Rolshoven (2009a), Jirasek and Rol-
shoven (2009b) should be required to analyze the evolution of
plasticity localization.
4. Plastic flow localization under uniaxial tension

In contrast to Section 3, the characteristics of shear band local-
ization under uniaxial tension is investigated in this section. The
plane stress tension model is shown in Fig. 3, in which an infinite
thin plate is subjected to a remote uniform stress r1. The deforma-
tion inside the plate increases uniformly with the remote loading
r1 until it reaches the ultimate tensile strength ru as shown in
Fig. 2. After that, a shear band initiates with a tilt angle h as shown
in Fig. 3, outside which elastic unloading will happen and inside
which material softening emerges simultaneously. Thus the strain
field becomes nonuniform corresponding to a decreasing strain
outside the shear band and an increasing strain inside the shear
band, respectively. The solid in the uniaxial tension model is also
assumed to abide by the simple uniaxial stress-strain relation in
Eq. (11).

When the remote uniform stress r1 reaches the ultimate ten-
sile stress ru, the stresses in the Cartesian coordinate system
(x1,x2) as shown in Fig. 3 are obtained as

r11 ¼ ru sin2 h r22 ¼ ru cos2 h r12 ¼
1
2
ru sinð2hÞ ð36Þ
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Then the strains can be expressed as

e11 ¼ eu sin2 h� 1
2 cos2 h

� �
e22 ¼ eu cos2 h� 1

2 sin2 h
� �

e33 ¼ �ðe11 þ e22Þ ¼ � eu
2

e12 ¼ 3eu sinð2hÞ
4

8>>>>>><
>>>>>>:

ð37Þ

where

eu ¼
ry

3G
þ ru � ry

3Gt
ð38Þ

If all the material undergoes an elastic unloading when the remote
stress r1 attains the ultimate tensile stress ru (actually, this case is
not real), the displacement functions for the unloading line can be
obtained as

u01 ¼ � 1
2

ry

3Gþ
ru�ry

3Gt
� ru

3Gþ r1
3G

� �
x01

u02 ¼
ry

3Gþ
ru�ry

3Gt
� ru

3Gþ r1
3G

� �
x02

8><
>: ð39Þ

Using the formula of coordinate transformation, the displacement
field in the coordinate systems (x1,x2) can be written as

u1 ¼ 1
2

ry

3Gþ
ru�ry

3Gt
� ru

3Gþ r1
3G

� �
ð3 sin2 h� 1Þx1

þ 3
4

ry

3Gþ
ru�ry

3Gt
� ru

3Gþ r1
3G

� �
sinð2hÞx2

u2 ¼ 3
4

ry

3Gþ
ru�ry

3Gt
� ru

3Gþ r1
3G

� �
sinð2hÞx1

þ 1
2

ry

3Gþ
ru�ry

3Gt
� ru

3Gþ r1
3G

� �
ð3 cos2 h� 1Þx2

8>>>>>>>>>>><
>>>>>>>>>>>:

ð40Þ

Then, the velocity field in the coordinate system (x1,x2) is given as

v1 ¼ _r1
6G ð3 sin2 h� 1Þx1 þ _r1

4G sinð2hÞx2

v2 ¼ _r1
4G sinð2hÞx1 þ _r1

6G ð3 cos2 h� 1Þx2

(
ð41Þ

However, when the remote tension stress r1 reaches the ultimate
tensile strength ru, two possible strain paths exist as shown in
Fig. 2. One corresponds to the elastic unloading (dashed line) out-
side the shear band and the other corresponds to the softening (so-
lid line) inside the shear band. On the other hand, the solid abides
by the reduced strain gradient theory not the classical one. The gen-
eration of shear band and the strain gradient theory will cause a
fluctuation on the velocity field derived from the classical plasticity
theory in Eq. (41). We assume that the fluctuation on velocity field
will only influence the term in the direction of x2. Then, the velocity
field governed by the reduced strain gradient theory in Section 2
can be written as

v1 ¼ _r1
6G ð3 sin2 h� 1Þx1 þ k1ðx2Þ

v2 ¼ _r1
4G sinð2hÞx1 þ k2ðx2Þ

(
ð42Þ

where k1(x2) and k2(x2) are two unknown functions about x2.
Eq. (42) yields the known strain rate

_e11 ¼
_r1

6G
ð3 sin2 h� 1Þ ð43Þ

but _e22 and _e12 are still unknown. Although the field of strain rate is
nonuniform when the shear band initiates, _e22 and _e12 should still
be uniform a little outside the shear band.

The non-vanishing rate of rotation gradient is then obtained as

_v ¼
0 0 � _e22;2

0 0 0
0 � _e12;2 0

0
B@

1
CA ð44Þ

and the rate of the overall effective strain can be written as
_Ee ¼ _e12 sinð2hÞ þ _e11 sin2 hþ _e22 cos2 h ð45Þ

The non-vanishing rates of the couple stress and the anti-symmetric
parts of Cauchy stress can be written respectively as

_m ¼
0 0 _m13

0 0 0
0 _m32 0

0
B@

1
CA _s ¼

0 _m32;2=2 0
� _m32;2=2 0 0

0 0 0

0
B@

1
CA ð46Þ

which also depend only on x2, such that the equilibrium equation
can be simplified as

r12;2 þ s12;2 ¼ 0
r22;2 ¼ 0

�
ð47Þ

Eq. (47) yields the incremental form

_r12 þ _s12 ¼ _r1
2 sinð2hÞ

_r22 ¼ _r1 cos2 h

(
ð48Þ

which should govern both fields outside and inside the shear band.

4.1. Bifurcation analysis outside the shear band

At the moment of shear band initiating, the solid outside the
shear band will undergo an elastic unloading. Then, the relation
of the generalized effective stress Re and the generalized effective
strain Ee for the solid outside the shear band is

Re ¼ ru þ 3G Ee �
ry

3G
� ru � ry

3Gt

� �
ð49Þ

Considering the effect of the stretch gradient yields

_Re ¼ 3G _Ee 1þ l1g1

Ee

� �1=2

ð50Þ

The rates of symmetric and anti-symmetric parts of Cauchy stress
outside the shear band are

_r21 ¼ 2Re
3Ee

e21

� ��
¼ 2ru

3eu
� sin2ð2hÞ

2
ru�3Geu

eu

� �
_e21

� sinð2hÞ
2

ru�3Geu
eu
ð _e11 sin2 hþ _e22 cos2 hÞ

_s22 ¼ 2Re
3Ee

e22

� ��
¼ 2ru

3eu
_e22 � 2 cos2 h�sin2 h

3
ru�3Geu

eu

�ð _e11 sin2 hþ _e22 cos2 hþ _e12 sinð2hÞÞ
_s33 ¼ �2Re

3Ee
ðe11 þ e22Þ

h i�
¼ � 2ruð _e11þ _e22Þ

3eu
þ ru�3Geu

3eu

�½ _e11 sin2 hþ _e22 cos2 hþ _e12 sinð2hÞ�

_s12 ¼ 1
2

_m32;2 ¼ 1
3

Re
Ee

l2
csv32

� �
;2


 ��
¼ � ru

3eu
l2cs

_e12;22

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð51Þ

Due to the plane stress state, it is reasonable to assume

_r33 ¼ 0 ð52Þ

Then, one can obtain

_r22 ¼ _e11
2ru
3eu
� 1

4
ru�3Geu

eu
sin2ð2hÞ

h i
þ _e22

4ru
3eu
� ru�3Geu

eu
cos4 h

h i
� _e12

ru�3Geu
eu

sinð2hÞ cos2 h
ð53Þ

Substituting Eq. (53) into equilibrium Eq. (48) leads to the rate of e22

as functions of _e11 and _e12,

_e22¼
_r1 cos2 hþ _e21

ru�3Geu
eu

sinð2hÞcos2 h� _e11
2ru
3eu
� ru�3Geu

4eu
sin2ð2hÞ

h i
4ru
3eu
� ru�3Geu

eu
cos4 h

ð54Þ

and the governing equation outside the shear band,
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A1 _e12 �
ru

3eu
l2
cs

_e12;22 ¼ B1 ð55Þ

where the coefficients are

A1¼
2ruGtG½3ðcos4 hþsin2ð2hÞÞðru�ryÞðG�GtÞþ4ruGt �
½GtryþGðru�ryÞ�½3cos4 hðru�ryÞðG�GtÞþ4ruGt �

B1¼
_r1Gtru

32

ryðG�GtÞð9sinð6hÞ�12sinð4hÞ�51sinð2hÞÞ
þru½sinð2hÞð51Gþ13GtÞ�ð9sinð6hÞ�12sinð4hÞÞðG�GtÞ�

� �
½GtryþGðru�ryÞ�½3cos4 hðru�ryÞðG�GtÞþ4ruGt �

8>>>>><
>>>>>:

ð56Þ

The solution to the above differential Eq. (55) is

_e12 ¼
B1

A1
þ Ae�nx2 þ Benx2 ð57Þ

where

B1
A1
¼ _r1 sinð2hÞ

4G

n ¼
ffiffiffiffiffiffiffiffiffi
3euA1

rul2cs

q
8<
: ð58Þ

Due to anti-symmetry, we only consider the upper half-plane,
namely x2 P 0. When x2 ! þ1; _e12 ! _r1 sinð2hÞ=ð4GÞ, which re-
quires a vanishing B. On the other hand, the rate of the overall effec-
tive strain inside the shear band is positive and that outside the
shear band is negative. On the boundary of the shear band, the con-
tinuity condition should be satisfied, i.e.,

_Eejx2¼h ¼ 0 ð59Þ

which gives

A¼
_r1

e�nh

1
48G 4tanh�9sinð2hÞ�12sin2 htanh� 6ry cos2 hcoth

ru
�2coth

� �
þ 1

8Gt

ry cothcos2 h
ru

�cos2 hcoth
� �

2
64

3
75
ð60Þ
4.2. Bifurcation analysis inside the shear band

Inside the shear band, the relation between the overall effective
stress Re and the overall effective strain Ee is

Re ¼ ru þ 3GsðEe � euÞ ðGs < 0Þ ð61Þ

Considering the effect of stretch gradient yields

_Re ¼ 3Gs
_Ee 1þ l1g1

Ee

� �1=2

ð62Þ

Then, the rates of symmetric and anti-symmetric parts of Cauchy
stresses inside the shear band can be given,

_r21¼ 2
3

Re
Ee
e21

� ��
¼ 2ru

3eu
�1

2 sin2ð2hÞru�3Gseu
eu

� �
_e21

�1
2 sinð2hÞru�3Gseu

eu
ð _e11 sin2 hþ _e22 cos2 hÞ

_r22¼ _s22þ _rm¼ _e11
2ru
3eu
�ru�3Gseu

4eu
sin2ð2hÞ

h i
� _e12

ru�3Gseu
eu

sinð2hÞcos2 h

þ _e22
4ru
3eu
�ru�3Gseu

eu
cos4 h

h i
_s12¼ 1

2
_m32;2¼ 1

3
Re
Ee

l2
csv32

� �
;2


 ��
¼� ru

3eu
l2cs

_e12;22

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð63Þ

Substituting the above stress rates into equilibrium Eq. (48) results
in

_e22¼
_r1 cos2 hþ _e21

ru�3Gseu
eu

sinð2hÞcos2 h� _e11
2ru
3eu
� ru�3Gseu

4eu
sin2ð2hÞ

h i
4ru
3eu
� ru�3Gseu

eu
cos4 h

ð64Þ
and

A2 _e12 �
ru

3eu
l2
cs

_e12;22 ¼ B2 ð65Þ

where

A2 ¼
2ruGt G

3ryGs½ðGt � GÞðsin2ð2hÞ þ cos4 hÞ�
þGru½3ðsin2ð2hÞ þ cos4 hÞðGs � GtÞ þ 4Gt �

( )
½GtryþGðru�ryÞ�½3ðGt�GÞGsry cos4 hþ4GGtruþ3Gru cos4 hðGs�GtÞ�

B2 ¼

_r1Gtru

f�64G sinð2hÞ þ ½9 sinð6hÞ þ 13 sinð2hÞ
�12 sinð4hÞ�ðGs � GtÞgGru

þ½�9Gs sinð6hÞ þ ð64G� 13GsÞ sinð2hÞ
þ12Gs sinð4hÞ�ðG� GtÞry

8>>><
>>>:

9>>>=
>>>;

�32½GtryþGðru�ryÞ�½3ðGt�GÞGsry cos4 hþ4GGtruþ3Gru cos4 hðGs�GtÞ�

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð66Þ

(a) If the coefficient A2 < 0, the solution to Eq. (65) is

_e12 ¼ B2
A2
þ C cosðgx2Þ þ D sinðgx2Þ

g ¼
ffiffiffiffiffiffiffiffiffiffiffi
�3euA2

rul2cs

q
8<
: ð67Þ

The anti-symmetry about the center of shear band requires

_Ee;2 ¼ 0 ð68Þ

which also suggests that Ėe reaches maximum at the center of shear
band and results in

D ¼ 0 ð69Þ

The continuity of the rate of shear strain, _e12, at the boundary of the
shear band requires

_e12jx2¼h�0 ¼ _e12jx2¼hþ0 ð70Þ

which gives

C ¼ B1

A1
þ Ae�nh � B2

A2

� �
cosðghÞ ð71Þ

The continuity of couple stress traction at the boundary of shear
band requires

_e12;2jx2¼h�0 ¼ _e12;2jx2¼hþ0 ð72Þ

Then, we have,

tanðghÞ ¼ nAe�nh

gC cosðghÞ ¼

ffiffiffiffiffiffiffiffiffiffi
�A1

A2

s
Ae�nh

C cosðghÞ ð73Þ

If we define the coefficient

A3¼
Ae�nh

C cosðghÞ

¼�1
2
½3ðcoshÞ4ðGt�GÞðry�ruÞþ4Gtru�½GtryþGðru�ryÞ�
GruGt ½3ð3cos4 h�4cos2 hÞðGt�GÞðry�ruÞ�4Gtru�

A2 ð74Þ

Due to 3(3cos4h � 4cos2h) 2 [�4,0] and A2 < 0, the coefficient A3 is
always negative. The thickness of shear band is

h ¼ pþ arctan

ffiffiffiffiffiffiffiffiffiffi
�A1

A2

s
A3

 !" #
=g ð75Þ

Then, the rates of shear strain inside and outside shear band at the
moment of shear band initiating are,

_e12 ¼
_r1 sinð2hÞ

4G
þ Ae�nx2 at x2 > h ð76Þ

_e12 ¼
B2

A2
þ C cosðgx2Þ at 0 6 x2 6 h ð77Þ

where n and g are given in Eqs. (58) and (67), respectively.
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(b) If the coefficient A2 > 0, no reasonable solution can be found
to Eq. (65). The solving procedure is very similar to the above anal-
ysis. Here we omit the details for conciseness.

From the above analysis, one can find that the coefficient A2 de-
pends on not only the material constants but also the tilt angle of
shear band. In order to ensure a solution for the thickness of shear
band, A2 should be negative, which exerts some constraints on the
tilt angle for a determined material. That means for one kind of
material, the shear band can not initiate at an arbitrarily possible
angle. There is a region of the tilt angle that shear band may initi-
ate. Detail discussions will be carried out in the following numer-
ical analysis.

5. Numerical results

Numerical analysis is studied in this section for further under-
standing the characteristics of shear band in pure shear and uniax-
ial tension models.

5.1. Plastic flow localization under pure shear

Eq. (33) could give the expression of the normalized shear strain
rate inside and outside the shear band as

G _c
_r121j j
¼ e

ffiffiffiffiffi
G
�Gs

p
p�arctan

ffiffiffiffiffi
�Gs

G

p� 	
1�x2

hð Þ � 1; at x2 > h

G _c
_r121j j
¼ G

Gs

cos p�arctan
ffiffiffiffiffi
�Gs

G

p� 	
x2
h

� �
cos p�arctan

ffiffiffiffiffi
�Gs

G

p� 	 � 1

" #
; at 0 6 x2 6 h

8>>><
>>>:

ð78Þ

To investigate the nonuniform distribution of shear strain rate in
the solid, we assume the softening secant modulus Gs = �G/2 where
G is the elastic shear modulus. Fig. 4 shows the distribution of the
shear strain rate normalized by the remote shear strain rate,
G _c= _r121

�� ��, inside and outside the shear band. From Fig. 4, one can
see that the shear strain rate increases monotonically from zero
at the boundary of shear band to a maximum in the center. While
the shear strain rate is uniform a little outside the shear band.
The maximum shear strain rate normalized by the remote shear
strain rate can be obtained from Eq. (78) as

G _cmax

_r121

�� �� ¼ G
Gs

1= cos p� arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Gs=G

p� �
� 1

h i
ð79Þ

which shows that the normalized maximum shear strain rate is
independent of the yield stress ry, the ultimate tension strength
ru, and the linear hardening secant modulus Gt. Only the ratio of
-8 -6 -4 -2 0 2 4 6 8
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Fig. 4. The distribution of the normalized shear strain rate G _c= _r121

�� �� inside and
outside the shear band, where _r121 is the remote shear stress rate, G is the elastic
shear modulus and the softening secant modulus Gs = �G/2.
G/jGsj shows influence on the maximum shear strain rate as shown
in Fig. 5. One can see that the normalized maximum shear strain
rate decreases along with an increasing ratio jGsj/G, which displays
a strong effect of the softening secant modulus on plastic flow local-
ization. Specially, for jGsj/G = 0.1, the maximum shear strain rate is
more 20 times the remote shear strain rate, which shows a clear
picture of plastic flow localization. It is well known that the coun-
terpart predicted by the conventional plasticity theory will go from
�1 outside the shear band to 2 inside the shear band.

The dimensionless thickness of shear band by the intrinsic
length, h/lcs, can be given from Eq. (35) as a function of material
constants as

h
lcs
¼

ffiffiffi
2
p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gt=G

jGs j
G

Gt
G

ry

ru
þ jGs j

G 1� ry

ru

� �
vuut p� arctan

ffiffiffiffiffiffiffiffi
jGsj
G

r !
ð80Þ

Fig. 6 shows the variation of the dimensionless thickness of shear
band along with the ratio jGsj/G for Gt = G/2 and different ratios
ru/ry. From Fig. 6, one can see that the softening secant modulus
has a significant effect on the dimensionless shear band thickness
for fixed ratios Gt/G and ru/ry. With an increasing ratio of the ulti-
mate tension strength ru to the yield stress ry, the dimensionless
thickness of shear band decreases for fixed values Gt/G and jGsj/G.

Fig. 7 shows the relation between the dimensionless thickness
of shear band h/lcs and the ratio Gt/G for a determined value jGsj/
G = 1/2 and different ratios ru/ry. As the ratio Gt/G increases from
0 to 1, the dimensionless thickness h/lcs monotonously increases
from 0 to a constant, which can also be found from Eq. (80) when
Gt/G = 1. With an increasing ru/ry, the dimensionless thickness of
shear band decreases slightly for fixed values Gt/G and jGsj/G. Com-
paring Figs. 6 and 7 shows that the softening modulus has a more
obvious effect on the plastic flow localization than the linear hard-
ening one.

5.2. Plastic flow localization under uniaxial tension

The possible tilt angle of shear band in the case of uniaxial ten-
sion is constrained by the value of A2 in Eq. (66). The dimensionless
coefficient A2 by the elastic shear modulus G can be expressed as

A2

G
¼

2 Gt
G

3ry

ru

Gs
G

Gt
G �1
� 	

ðsin2ð2hÞþcos4 hÞ
h i

þ 3ðsin2ð2hÞþcos4 hÞ Gs
G �

Gt
G

� 	
þ4 Gt

G

h i
8><
>:

9>=
>;

Gt
G

ry

ru
þ 1� ry

ru

� �h i
3 Gt

G �1
� 	

Gs
G

ry

ru
cos4 hþ4 Gt

G þ3cos4 h Gs
G �

Gt
G

� 	h i
ð81Þ
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Fig. 5. The normalized maximum shear strain rate G _cmax= _r121

�� �� versus the dimen-
sionless softening secant modulus jGsj/G.
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We assume that the linear hardening secant modulus Gt = G/2 and
the ratio of the ultimate tensile strength ru to the yield stress ry

is ru/ry = 1.5. When G/jGsj is approximately larger than 4, the
dimensionless parameter A2/G decreases first from 1.5 to a negative
value and then increases to a positive value as shown in Fig. 8(a). It
means there is an interval of h to ensure a negative A2 and shear
band initiating. With the value G/jGsj decreasing, the interval ensur-
ing A2 < 0 increases, which means a larger softening secant modulus
jGsj permits more chance and a much wider region for shear band
initiating.

However, when the value G/jGsj is smaller than 4 or so, the var-
iation trend of A2/G is different from that in Fig. 8(a), which is
shown in Fig. 8(b). For fixed material constants, the value A2/G
has a singular break at a critical angle h. Smaller than the critical
angle yields a positive A2/G, which increases with an increasing h.
If h is larger than the critical angle, A2/G changes from a negative
value to a positive one and there exists an interval ensuring A2/G
to be negative.

For a fixed value of G/jGsj and varying G/Gt, the relation between
A2/G and h is found to be very similar to Fig. 8(a) and (b), but with
an approximate value G/Gt = 2 to separate different varying trends
like Fig. 8(a) and (b). The details are not repeated in the present
paper.
Fig. 9(a) and (b) plot the relation between the dimensionless
thickness of possible shear band h/lcs and permitted tilt angle h
with fixed values G/Gt = 2 and ru/ry = 1.5 for cases of G/jGsj > 4
and G/jGsj 6 4, respectively. From Fig. 9(a), one can see that the
thickness of shear band decreases first and then almost keeps a
constant, after that the value of thickness increases again, along
with an increasing h in its permitted region. The thickness of shear
band tends to be very large near the smallest and largest permitted
tilt angles, i.e., possible overall plastic flow may emerge, which is a
hardly happening phenomenon for most materials. When G/
jGsj 6 4, the dimensionless thickness of shear band keeps almost
a constant in a wide region of the permitted tilt angles, then in-
creases sharply near the largest permitted tilt angle.

The relation between the dimensionless thickness of shear band
h/lcs and permitted tilt angle h with fixed values G/jGsj and ru/ry for
different G/Gt is also very similar to that in Fig. 9(a) and (b), which
is omitted here.

Fig. 10 plots the relation between the dimensionless thickness
of shear band, h/lcs, and the ratio jGsj/G for a fixed value of G/
Gt = 2, a fixed tilt angle h = p/5 and different ru/ry. From Fig. 10,
one can see that the dimensionless thickness of shear band de-
creases significantly with a decreasing value of jGsj/G for a deter-
mined ru/ry, and decreases slightly with an increasing ru/ry for
a determined jGsj/G.

Fig. 11 shows the dimensionless thickness of shear band, h/lcs, as
a function of the ratio Gt/G for a fixed value of G/jGsj = 4, a fixed tilt
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angle h = p/5 and different ru/ry. One can see that the dimension-
less thickness of shear band increases from near zero to almost a
constant 3 when Gt/G increases from zero to one for various ru/
ry. The dimensionless thickness of shear band increases slightly
when ru/ry decreases. Comparing Figs. 10 and 11 finds that the ef-
fect of jGsj/G on the dimensionless thickness is much more obvious
than that of Gt/G.

In order to study the distribution of the generalized effective
strain rate, we assume that the linear hardening secant modulus
Gt = G/2; the softening secant modulus Gs = �G/4; the ratio of the
ultimate strength ru and the yield stress ry is ru/ry = 1.5 and the
tilt angle of shear band h = p/5. Fig. 12 shows the distribution of
the generalized effective strain rate normalized by the remote
shear strain rate, 3G _Ee=j _r1j, inside and outside the shear band,
where it is shown that the generalized effective strain rate inside
the shear band increases monotonically from zero at the boundary
of shear band to a maximum in the center. While the generalized
effective strain rate is uniform a little outside the shear band.
The non-uniformity of the generalized effective strain rate almost
only exists inside and near the shear band. The maximum of the
generalized effective strain rate is much larger than the remote
one, which indicates clearly the plastic flow localization.

Fig. 13 shows the normalized maximum generalized effective
strain rate 3G _Eemax=j _r1j versus the possible tilt angle h with
Gs = �G/4, Gt = G/2 and different ratio of ultimate tensile strength
to the yield stress, ru/ry. The maximum generalized effective strain
rate decreases with the increasing possible tilt angle, then keeps al-
most a constant in a small region of h, after which the maximum
generalized effective strain rate increases with the increasing pos-
sible tilt angle. The value of ru/ry does not show significant effect
on 3G _Eemax=j _r1j. It is interesting that one can infer from Fig. 13 that
for a determined solid under uniaxial tension, the most possible tilt
angle for the shear band initiating may correspond to the smallest
value of 3G _Eemax=j _r1j. For the solid studied in Fig. 13, the most pos-
sible tilt angle for the shear band initiating is about 37�.

Fig. 14 gives the relation of the normalized maximum general-
ized effective strain rate 3G _Eemax=j _r1j and the ratio of the linear
hardening secant modulus to the shear modulus Gt/G for fixed val-
ues of Gs = �G/4, ru/ry = 1.5, and h = p/5. The maximum value of Gt/
G is one. The normalized maximum generalized effective strain
rate decreases sharply at the initial stage, then keeps almost a con-
stant, when the value of Gt/G increases from zero to one.

Fig. 15 show the normalized maximum generalized effective
strain rate 3G _Eemax=j _r1j versus the ratio of the softening secant
modulus to the shear modulus jGsj/G for fixed values Gt = G/2, ru/
ry = 1.5, and h = p /5. One can see that the normalized maximum
generalized effective strain rate decreases sharply before jGsj/
G = 0.1, then decreases slowly for a wide range of jGsj/G, after that
the maximum generalized effective strain rate increases sharply
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when jGsj/G P 1.5. The maximum generalized effective strain rate
may achieve more than 20 times the remote strain rate, which also
indicates clearly plastic flow localization.
6. Summary and discussion

Plastic flow localization in an infinite solid subjected to a pure
shear loading and uniaxial tension is studied using a reduced strain
gradient theory. The initial thickness of shear band in both cases
can be obtained analytically.

The shear strain rate in the pure shear case and the generalized
effective strain rate in the uniaxial tension case display an obvious
non-uniformity inside and outside the shear band, which varies
from zero at the boundary of shear band to a maximum in the cen-
ter of the shear band. The maximum shear rate or the maximum
generalized effective strain rate can achieve over tens times the re-
mote uniform strain rate, which indicates significantly the plastic
flow localization. The initial thickness of shear band is influenced
more significantly by the softening secant modulus than the linear
hardening secant one. The effect of ratio of the ultimate strength to
the yield one on the shear band initial thickness is not very
obvious.

Specially, in the uniaxial tension model, the most possible tilt
angle for shear band initiating is the one, at which the maximum
generalized effective strain rate attains the smallest value for all
possible tilt angles as shown in Fig. 16, and is consistent qualita-
tively with experiment observations (Donovan, 1988; Donovan,
1989; Volkert et al., 2008).
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The results in this paper should give some insights and guid-
ance for engineers to predict the initial thickness of plastic flow
localization and the most possible tilt angle of shear band initiating
in a real metallic material.
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