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Flow Past Two Freely
Rotatable Triangular Cylinders
in Tandem Arrangement1

In this paper we investigate the interaction of two freely rotatable triangular cylinders
that are placed in tandem in a laminar flow. To study how the spacing between the two
cylinders may influence the dynamic behavior of the cylinders and vortical structure of
the flow, we have performed a series of numerical simulations of the two-cylinder-flow
system. In all the simulations, the dimensionless moment of inertia and Reynolds number
are fixed to 1.0 and 200, respectively. Four cases with the spacing ratio (L/D) of 2.0, 3.0,
4.0, and 5.0 are studied. With the increase of spacing, three different states of motion of
the system are found. At L/D¼ 2.0, oscillatory rotation (swinging in both directions) is
observed. At L/D¼ 3.0 both cylinders exhibit quasi-periodic autorotations. At L/D¼ 4.0
and 5.0, a more complicated pattern (irregular autorotation) is observed. For each case,
the time history of angular velocity, the phase portrait (angular acceleration versus
angular velocity,) and the spectra of the moments of forces on both cylinders are plotted
and analyzed. The vortical structures in the near and far wake are visualized. Physical
interpretations for various phenomenon observed are presented whenever possible.
[DOI: 10.1115/1.4004637]

1 Introduction

The interaction of multiple bodies in a viscous flow is ubiquitous
in nature and engineering applications. For example, a school of
swimming fish in the ocean or a cluster of particles/droplets/bub-
bles moving in a fluid in chemical engineering devices. Specifi-
cally, there are three types of interactions underlying these complex
phenomenon, i.e., fluid-body interaction, wake interaction, and
direct-contact interaction among the bodies. Here we only focus on
the first two types of interactions.

Deformable body immersed in a fluid is a typical case where
fluid-body interaction occurs. To tackle this type of problem, the
equations of elasticity for the bodies have to be coupled with the
Navier-Stokes equations for the fluid (two-way coupling). Although
such two-way coupling is not present when stationary bodies are
placed in a stream or bodies undergo a prescribed motion, it does
exist in cases where the rigid bodies move freely in a fluid. In such
problems, the Newton’s second law governing the motion of the
body has to be coupled with the Navier-Stokes equations. In the
present work, one of such cases is studied, i.e., two freely rotatable
triangular cylinders are placed in tandem in a viscous flow.

Flow-induced rotation is an interesting phenomenon that we
often observe in nature and is closely related to applications in
wind engineering, aeroballistics, and meteorology. In this prob-
lem, the rotation of the body is driven by the unsteady hydrody-
namic moment of force. On the other hand, the rotating body
surface also acts as a time-dependent boundary condition for the
surrounding flow. The study of this phenomenon can date back to
as far as 1853 when Maxwell [1] first analyzed the behavior of a
falling paper and categorized the motion into “fluttering” (side-
to-side motion) and “tumbling” (end-over-end rotation). Since

then, researchers have attempted to develop a better understand-
ing of this behavior by modeling and experimentation. Early ex-
perimental studies on this subject can be found in [2] and [3].
Lugt [4] first conducted numerical simulations to study the
“autorotation” of an elliptic cylinder (autorotation is defined as
the continuous rotation of a freely rotatable body in a flow in the
absence of any other driving forces). Some works on the subject
of autorotation were reviewed in [5]. Skews [6] studied the effect
of thickness-to-chord ratio on the autorotation of a rectangular
plate. Skews [7] studied the autorotation of many-sided bodies in
an airstream by laboratory experiments and found that among the
cross section of equilateral polygons the triangular prisms rotate
fastest and polygons with more than eight sides do not autorotate.
Skews [8] further studied the autoroation of polygonal prisms
with an upstream vane. Zaki et al. [9] studied the autorotation of a
square cylinder both numerically and experimentally and
attempted to model the dynamics of the cylinder by a nonlinear
ordinary differential equation. Copeland [10] proposed a per-
turbed-pendulum model for flat-plate autorotation. Mittal et al.
[11] studied the effect of Reynolds number and thickness-to-
length ratio on the autorotation of a plate. Srigrarom and Koh [12]
studied the self-excited rotational oscillation of an equilateral tri-
angular cylinder. More studies on rotation of falling papers can be
found in [13–25].

Furthermore, when multiple bodies are involved in a problem,
wake interactions are present. This has attracted the attentions of
many researchers because of its importance in engineering appli-
cations. Two cylinders in tandem is perhaps the most frequently
studied configuration. Plenty of literatures can be found on this
topic. Most of the studies focused on the interaction among sta-
tionary cylinders [26–32]. Other studies dealed with flow-induced
body oscillations [33–36]. Very recently, wake interaction
between two tandem flexible flags placed in a steady stream were
studied experimentally in [37,38] and numerically [39].

To the best knowledge of the authors, the study of wake interac-
tion among freely rotatable bodies is very rare in the literature.
The work by our group on the two tandem rotatable cylinders in a
viscous flow is probably the first such study. In this paper, we
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report numerical results of flow field (especially vortex structure)
together with some description and analysis of the dynamic
behaviors of the two cylinders. The emphasis is placed on their
dependence on the spacing of the two cylinders.

The rest of this paper is organized as follows. In Sec. 2 we out-
line the setup of the problem. Section 3 is a short introduction of
the numerical method used in the study. The numerical observa-
tions are described Sec. 4. Finally, some conclusions are drawn in
Sec. 5.

2 Problem Setup

The configuration of this problem is illustrated in Fig. 1. Two
hinged equilateral triangular cylinders are placed in tandem in a
uniform free stream of velocity U. In this study we assume that
the flow is two-dimensional and laminar.

The governing equations for the incompressible flow can be
written in a dimensionless form as

@u

@t
þ u � ru ¼ �rpþ 1

Re
r2u (1)

r � u ¼ 0 (2)

where u and p represent velocity vector and pressure, respectively.
The Reynolds number Re is defined as

Re ¼ UD

�
(3)

where D is the diameter of the circumcircle of the cylinder and �
is the kinematic viscosity of the fluid.

The dynamics of the rotating cylinders is governed by the fol-
lowing equation:

~I
d2h
dt2
¼ ~CM (4)

Here ~I is the dimensionless moment of inertia of the cylinder. For
a triangular cylinder, ~I can be evaluated as
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where w is the thickness and qs and qf are the densities of the cyl-
inder and the fluid, respectively.

The dimensionless moment of force ~CM exerted on the cylinder
is calculated by the surface integration

~CM ¼ z �
þ
@S

½pn� 1

Re
ðruþrTuÞ � n� � rds (6)

where n is the unit norm vector on the surface of the body; r is the
position vector, and z is the unit vector pointing out of the paper.

The relevant parameters in our problem are the Reynolds num-
ber Re, the dimensionless moment of inertia ~I, and the spacing ra-
tio L/D.

3 Computational Method

In this study, an unstructured Chimera grid method is employed
to solve the Navier-Stokes equations. This approach is very adapt-
able in the sense that it allows the use of multiple overlapping
unstructured grids to simulate moving objects of arbitrary shapes.
The solution procedure of this approach is briefly summarized
here. For technical details and validations of this numerical meth-
odology, please refer to [40]. A second-order upwind scheme is
used to discretize the convective term and the Crank-Nicholson
scheme is used for the temporal advancing. A SIMPLEC method
is used to couple the pressure and the velocity. Different interpola-
tion methods are designed for the velocity and the pressure on the
interior boundaries to couple the solutions of different subdo-
mains. This interpolation is incorporated into the inner loop of the
velocity-pressure coupling within each time step. The equation of
dynamics (4) is integrated using a leapfrog scheme [41].

Fig. 1 A schematic diagram of the setup of the problem. Two
hinged equilateral triangular cylinders are placed in tandem in a
uniform free stream of velocity U. D is the diameter of the cir-
cumcircle of the triangular cylinder. L is the distance between
the circumcenters of the two cylinders.

Fig. 2 The size of the computational domain. The computa-
tional domain is 37D–40D by 50D, with 10D from the inlet and
25D from the outlet. (The figure is not to scale.)

Fig. 3 Computational mesh: (a) around one cylinder, including
the background mesh (in blue color) and the moving mesh (in
red color); (b) zoom in near the top corner. Quadrilateral ele-
ments are deployed near the surface of the cylinder to capture
the flow features in the boundary layer; (c) locally refined mesh
used in the wake region (the background mesh is in blue color,
and moving mesh in red color).

081202-2 / Vol. 133, AUGUST 2011 Transactions of the ASME

Downloaded 21 Mar 2012 to 159.226.231.78. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



The size of the computational domain in this paper is 37D–40D
by 50D (see Fig. 2). The choice of this size is a compromise
between the computational cost and the blocking effect from the
boundaries. The total number of elements is 55,000, with 43,000
elements in the background mesh and 12,000 elements in the two
submeshes that surround the two cylinders. Only triangular ele-
ments are used in the background mesh while some quadrilateral
elements are deployed near the surface of the cylinder in the two
submeshes to capture the flow features in the boundary layer (see
Fig. 3). Each surface of the two triangular cylinders is meshed with
105 line elements. A time step of 0.005 is used in all the computa-
tions and the maximum CFL number corresponding to this time
step is approximately 0.2. The grid resolution and time step in this
paper are comparable to that used in [40] where reasonable results
were obtained on flow over a stationary and rotating circular cylin-
der at the Reynolds number of 200. Mesh-independent and time
step-independent tests are performed to ensure the accuracy of the
solutions obtained (see Appendix A for the details).

4 Numerical Observations

There are three important dimensionless parameters in our
problem: Re, ~I, and L=D. The first two parameters are fixed
(Re¼ 200 and ~I¼ 1.0) while the spacing ratio varies in the range
of 2.0 to 5.0. For the purpose of comparison, a simpler configura-
tion which involves only a single triangular cylinder in a uniform
flow is first investigated. The same Reynolds number and moment
of inertia are also used in the single-cylinder case. The numerical
observations of the flow patterns and the dynamic behaviors of the
cylinders are presented as follows.

4.1 A Single Cylinder. First we perform a simulation which
involves only one cylinder. Our computation begins with a fixed
cylinder that is placed in a uniform flow. When the periodic Kar-
man vortex street is fully developed, the cylinder is then forced to
rotate impulsively with a prescribed angular velocity. After impos-

ing the boundary condition of constant angular velocity for some
time, the cylinder is set free, i.e., its motion is now determined by
the moment of force exerted on it. The direction of the initial rota-
tion can be either anticlockwise or clockwise. Without loss of gen-
erality, we choose to start the rotation in the anticlockwise
direction. It is assumed that the initial effect will disappear and an
intrinsic state independent of the initial condition will be reached if
the time elapsed is long enough. After this state is reached, some
characteristic quantities are then recorded and analyzed. The value

Fig. 4 Angular velocity versus time for a single cylinder. The
angular velocity of the autorotation triangular cylinder is of mul-
tifrequency and quasi-periodic.

Fig. 5 Phase portrait (angular acceleration versus angular ve-
locity) for a single cylinder. A multifrequency and quasi-peri-
odic solution is obtained.

Fig. 6 Power spectrum of the moment of force on the single
cylinder. Five frequencies are involved in the autorotation: 0.05,
0.20, 0.25, 0.45, and 0.50.

Fig. 7 Power spectrum of the moment of force on a fixed cylin-
der with different relative positions to the upstream flow. Three
different positions are shown: (a) “back-to-flow” configuration
(.), the dominant vortex shedding frequency is 0.2; (b) “face-to-
flow” configuration (/), the dominant vortex shedding fre-
quency is 0.25; (c) “side-to-flow” configuration (D), the domi-
nant vortex shedding frequency is 0.225.
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of 1.0 is used as the dimensionless initial angular velocity to start
the cylinder. As that will be shown later, this value is much larger
than the intrinsic terminal angular velocities (in an averaged sense)
for all cases in this study. In the tandem-cylinder case, the two cyl-
inders are also started to rotate in the same way as that in the sin-
gle-cylinder case. The effects of the initial rotation on the final
solution are discussed in Appendix B.

Figure 4 shows the time history of the angular velocity. It is
found that a single cylinder autorotates with a dimensionless aver-
aged angular velocity of 0.53 (which corresponds to a tip speed of
0.27U). The pattern of fluctuation in Fig. 4 is indicative of a multi-
frequency or quasi-periodic solution. This is confirmed by the

phase portrait (angular acceleration versus angular velocity) in
Fig. 5 and the power spectrum (FFT) of the moment of force in
Fig. 6. The five dominant frequencies in Fig. 6 are 0.05, 0.20,
0.25, 0.45, and 0.50. The frequency of 0.25 corresponds to the
averaged angular velocity of 0.53 ((3x)/(2p)). Some efforts are
made on the origin of frequency 0.2. We first perform some simu-
lations on a stationary cylinder at different angles to the oncoming
flow and confirm that the vortex shedding frequency around a
rotating triangular cylinder is most probably in the range of 0.2–
0.25 (see Fig. 7) Then it is reasonable to assume that 0.2 is the
asynchronous frequency of the vortex shedding and 0.25 is the
“lock-in” frequency in the interaction between vortex shedding
and autorotation. The frequency of 0.5 is simply a multiple of one
basic frequency (2� 0:25). The frequency of 0.45 is an addition
of the two basic ones (0.20þ 0.25). The frequency of 0.05 is the
difference between two basic ones (0.25–0.20).

The interaction of autorotation and vortex shedding also gener-
ates different flow structures at different phase. Six snapshots of
vorticity contours are shown in Fig. 8. The vortical structure that is
found in this figure resembles the regular Karman vortex street in
the wake of a stationary bluff body. However, some differences do
exist. First, because of the interaction between the rotating edges
and the shedding vortices, the counterclockwise vortices (those in
red colors) are strengthened while the clockwise vortices (those in
blue colors) are weakened. As a result of this imbalance in
strength, the vortex street slightly tilts up in the near wake and no
longer aligns itself horizontally with the oncoming stream in the
near wake. A similar oblique vortex street is observed in the flow
past a rotating circular cylinder [40]. Second, vortices are not sim-
ply convected downstream. Complicated interactions such as vor-
tex splitting, merging, and pairing/grouping can be clearly seen in
the figure.

4.2 Two Tandem Cylinders at L/D 5 2.0. The time history
of the angular velocities is plotted in Fig. 9. From this figure, it is
seen that instead of autorotation, both cylinders exhibit oscillatory
rotation about their axles (swinging in both directions). The front
and rear cylinders are found to oscillate at the same frequency but
in antiphase. The amplitudes of fluctuation in angular velocity are
rather small (of order 10�2) for both cylinders and the amplitude
of the rear one is four times larger than that of the front one. Both
the phase portraits (Fig. 10) and the power spectra of moments of
force (Fig. 11) indicate the existence of a period-1 solution with
the frequency of 0.14. A snapshot of vorticity contours is shown
in Fig. 12. It is seen from this figure that the vortex shedding
behind the front cylinder is completely suppressed due to the
closeness of the two. The shear layers that are generated from the
two sides of the front cylinder impinge on the rear one. A vortex

Fig. 8 Snapshots of vorticity contours during the autorotation
of a single cylinder. The vortical structure resembles the regular
Karman vortex street in the wake of a stationary bluff body. But,
the vortex street slightly tilts up in the near wake. The distances
between the vortices are not uniform because of the interaction
of the autorotation and vortex shedding. (a)–(f) corresponds to
t 5 155, 160, 165, 170, 175, and 180 in Fig. 4, respectively. The
slowdown of the rotation at t 5 166 generates a gap in the con-
tours of vorticity in (e). This gap separates the vortices into two
groups.

Fig. 9 Time history of the angular velocities of the two tandem
cylinders in the case of L/D 5 2.0. Solid line represents the front
cylinder and dashed line represents the rear cylinder. Instead of
autorotation, both cylinders exhibit oscillatory rotation about
their axles. The front and rear cylinders oscillate at the same
frequency but in antiphase. The amplitude of the rear one is
about four times larger than that of the front one.
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street only exists behind the rear cylinder and no apparent vortex
shedding is found in the gap. This vortex street resembles that
behind a single but elongated bluff body (e.g., a rectangle with the
dimension of 3D by D). In the gap between the two cylinders, the

flow is quite complicated due to the interaction of the four shear
layers from the two cylinders. Presumably, both the frequency
lock-in phenomenon and the threefold frequency of 0.42 (at the
tiny peaks in Fig. 11) are related to the strong body-fluid-body
interaction at this spacing ratio. It is interesting to point out that
the point-to-point configuration (./) is the only attainable state af-
ter the memory of the initial condition is lost. The reason why the
point-to-point configuration is stable but the others are not is
unclear and further investigation is needed.

4.3 Two Tandem Cylinders at L/D 5 3.0. In the case of
L/D¼ 3.0, regular periodical autorotation is observed on both cyl-
inders. The average angular velocity of the font cylinder is
approximately the same as that in the single cylinder case while
the rear cylinder rotates at a lower speed (see Figs. 13 and 4). Sup-
posedly, this is caused by the fact that the velocity of oncoming
flow to the rear cylinder is smaller than that to the front one in a
local and average sense. Figure 14 shows the phase portraits of
the two cylinders at L/D¼ 3.0. From this figure we can see that
the trajectories in the phase portraits are significantly different
from the case of L/D¼ 2.0. Instead of a simple loop, the trajecto-
ries are indicative of multiperiod solution which shares some simi-
larities with those of the single cylinder case. Figure 15 shows the
power spectra of the moments of force on the cylinders. In con-
trast with the case of L/D¼ 2.0, the spectra in the L/D¼ 3.0 case
possess more peak frequencies. Compared to the single cylinder
case, the spectra in this case are less noisy. The frequencies of the
highest peaks are 0.24 and 0.16 for the front and rear cylinder,
respectively. These two frequencies correspond to the autorotating
frequencies ((3x)/(2p)). It is observed from the simulation that

Fig. 10 Phase portraits (angular acceleration versus angular
velocity) of the two tandem cylinders in the case of L/D 5 2.0;
(a) front cylinder; (b) rear cylinder. Both the oscillating of the
front and rear cylinders are periodic. The open circles indicate
the equilibrium positions for the point-to-point configuration.

Fig. 11 Power spectra of the moments of force of the two cylin-
ders in the case of L/D 5 2.0; (a) front cylinder; (b) rear cylinder.
The dominant oscillating frequency is 0.14 for either cylinder.

Fig. 12 The instantaneous vorticity contours for the two tan-
dem cylinders in the case of L/D 5 2.0. The vortex shedding
behind the front cylinder is suppressed due to the closeness of
the two. A vortex street only exists behind the rear cylinder.

Fig. 13 Time history of the angular velocities of the two
tandem cylinders in the case of L/D 5 3.0. Solid line represents
the front cylinder and dashed line represents the rear cylinder.
Both the front and rear cylinders experience multiperiodic
autorotation. The average angular velocity of the font cylinder
is approximately the same as that of the single cylinder, and the
rear cylinder rotates at a lower speed.
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the vortex shedding on each cylinder is also synchronized to its
own autorotation. A very interesting finding is that the frequencies
of the second highest peaks are 0.16 and 0.24 for the front and
rear cylinder, respectively. That is to say, the frequency of the sec-

ond highest peak on each cylinder is locked to the frequency of
the highest peak on the other cylinder. Clearly this is a manifesta-
tion of strong interaction between the two cylinders at this spacing
ratio. Another peak frequency of 0.08 can also be found on both
cylinders. This frequency corresponds to the difference between
the frequencies of the first two highest peaks (i.e., 0.24� 0.16).
Other peak frequencies on each cylinder correspond to more com-
plicated wake interaction. It should be pointed out that more peak
frequencies of the rear cylinder are excited compared to the front
one. This can be explained by the fact that more complicated

Fig. 14 Phase portraits (angular acceleration versus angular
velocity) of the two tandem cylinders in the case of L/D 5 3.0;
(a) front cylinder; (b) rear cylinder. Both the autorotations of the
front and rear cylinders are multiperiodic.

Fig. 15 Power spectra of the moments of force of the two cylin-
ders in the case of L/D 5 3.0; (a) front cylinder; (b) rear cylinder.
Both the autorotations of the front and rear cylinder are of mul-
tifrequency. The frequencies of the highest peaks are 0.24 and
0.16 for the front and rear cylinder, respectively.

Fig. 16 The instantaneous vorticity contours for the two tan-
dem cylinders in the case of L/D 5 3.0. The vortex shedding
from the front cylinder is fully recovered and a vortex exists in
the gap between the two cylinders. A vortex street exists behind
the rear cylinder.

Fig. 17 Time history of the angular velocities of the two tan-
dem cylinders at (a) L/D 5 4.0; (b) L/D 5 5.0. Solid line repre-
sents the front cylinder and dashed line represents the rear
cylinder. The autorotations of the triangular cylinders for L/
D 5 4.0 and L/D 5 5.0 are similar. For both cases, the triangular
cylinders rotate irregularly. While the front cylinder rotates
counterclockwise constantly, the rear cylinder alternates its
rotating directions from time to time: it rotates counterclock-
wise for some time, pauses, and switches its direction and
rotates clockwise for some time.
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wake interaction usually occurs behind the rear cylinder. This
interaction can easily affect the moment of force on the rear cylin-
der while its influence on the front one is relatively weaker.

A snapshot of vorticity contours is shown in Fig. 16. At this
spacing ratio the vortex shedding from the front cylinder is fully
recovered and a pair of alternating vortices of the opposite sign
can be seen in the gap. This is consistent with the fact that the
spacing between the two cylinders is approximately twice the di-

ameter D (which is roughly the size of one vortex). From the sim-
ulation it is observed that the counterclockwise vortex that sheds
from the lower corner of the front cylinder will merge with a vor-
tex of the same sign from the rear cylinder or merge with the shear
layer generated on the lower corner of the rear cylinder. These
two distinct patterns of merging occur alternately when the vortex
from the front cylinder passes by the rear cylinder. This phenom-
enon can be explained by the fact that the shedding frequencies of
two cylinders are different. The clockwise vortices at the upper
corner of the front cylinder behave quite differently from those

Fig. 18 Phase portraits (angular velocity versus angular veloc-
ity) of the two tandem cylinders. (a) Front cylinder, L/D 5 4.0; (b)
rear cylinder, L/D 5 4.0; (c) front cylinder, L/D 5 5.0; (d) rear cyl-
inder, L/D 5 5.0. For both cases, the autorotations of the front
and rear cylinders are irregular. No periodicity can be identified
on the phase portraits.

Fig. 19 Power spectra of moments of force of the two cylin-
ders. (a) Front cylinder, L/D 5 4.0; (b) rear cylinder, L/D 5 4.0; (c)
front cylinder, L/D 5 5.0; (d) rear cylinder, L/D 5 5.0. For both
cases, the frequency of the highest peak is 0.25 for the front cyl-
inder and 0.18 for the rear one. The autorotations of the rear cyl-
inder become very noisy, and more frequencies are excited
comparing with that of the front ones.
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counterclockwise ones at the lower corners. These vortices are
found to impinge on the rear cylinder and are almost entirely
absorbed into the shear layer of the rear cylinder. Merging of these
vortices with the vortices of the same sign from the upper corner
of the rear cylinder is not seen. At this spacing ratio, the vortical
pattern in the far wake is also quite different from the previous
case. The width of the wake is much larger because the vortices
are arranged into two parallel lines rather than a single line.

4.4 Two Tandem Cylinders at L/D 5 4.0 and L/D 5 5.0.
When the spacing ratio is further increased to 4.0 or 5.0, a different
scenario shows up. At these two spacing ratios, the flow field and
vortical structure are qualitatively very similar. Thus the following
descriptions may apply to both cases if not explicitly stated. At
these spacing ratios, while the front cylinder rotates counterclock-
wise constantly, the rear cylinder alternates its rotating directions
from time to time: it rotates counterclockwise for some time,
pauses and switches its direction and rotates clockwise for some
time. It appears that its counterclockwise spin lasts longer than the
clockwise spin. It is interesting to notice that although the rear cyl-
inder rotates in an irregular fashion, the averaged angular velocity
of the front one has not changed much from that of the single cyl-
inder case (see Figs. 17 and 4). The phase portraits and power
spectra of moments of force are shown in Figs. 18 and 19, respec-
tively. The trajectories in the phase portraits are significantly dif-
ferent from the previous case. The intertwining curves which
appear in the phase portraits of both cylinders represent more com-
plicated and irregular motions. From the spectra of moments of
force, it is found that the frequency of the highest peak is 0.25 for
the front cylinder and 0.18 for the rear one. Compared with case of
L/D¼ 3.0, more peak frequencies are now excited on both cylin-
ders, especially the rear one. The spectrum of the rear cylinder

becomes very noisy and many peaks are congested in certain range
of frequency and it is very hard to identify them one by one.
Presumably the complexity of the spectra is caused by the compli-
cated vortex interactions behind the rear cylinder.

Two snapshots of vorticity contours are shown in Figs. 20 and
21, for the case of L/D¼ 4.0 and L/D¼ 0.5, respectively. It is
observed from these figures that in the gap between the two cylin-
ders, at most three (four) vortices can be found at the spacing ratio
of 4.0 (5.0). At these two spacing ratios, neither the rotation nor
the vortex shedding of the two cylinders is synchronized. As a
result, the wake interaction pattern becomes very irregular and the
vortex arrangement behind the two cylinders is quite different
from all previous cases. From the simulation, very complicatedFig. 20 The instantaneous vorticity contours for the two tan-

dem cylinders in the case of L/D 5 4.0. The vortex layer shed-
ding from the front cylinder rolls up and forms a vortex street in
the gap between the two cylinders. The wake structures behind
the rear cylinder are irregular because of the interaction of the
two cylinders.

Fig. 21 The instantaneous vorticity contours for the two tan-
dem cylinders in the case of L/D 5 5.0. The front cylinder forms
a vortex street in the gap between the two cylinders. The wake
behind the rear cylinder is an interaction of the vortices shed-
ding from the two cylinders. The flow structures are similar to
the L/D 5 4.0 case.

Fig. 22 The estimator as a function of the number of time
steps for the data from the time series of moments of force in
the case of L/D 5 5.0: (a) front cylinder; (b) rear cylinders. [The
solid lines show the results for embedding dimension m 5 4, 5,
and 6 at five different initial distances and the dashed lines are
the reference lines with the slope of ln(1.3) and ln(1.4), respec-
tively.] (c) The estimator as a function of the number of time
steps for the data from the logistic map. [The solid lines show
the results for embedding dimension m 5 2 and 3 at five differ-
ent initial distances. The dashed line is the reference line with
the slope of ln(2.0).]
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merging procedure is observed for both the clockwise and coun-
terclockwise vortices that shed from the front cylinder.

At these two spacing ratios the time series of angular velocity,
phase portraits, and power spectra all suggest that the system has
become aperiodic or irregular. To rigorously verify the existence
of chaos, we choose to compute the Lyapunov exponent. A posi-
tive Lyapunov exponent is indicative of an exponential divergence
of nearby trajectories, i.e., chaos. The phase space reconstruction
method [42–44] is used to evaluate the maximal Lyapunov expo-
nent from the time series of moments of force on the cylinders.
Consider the representation of the time series data as a trajectory
in the embedding space, an estimator based on the logarithmic dis-
tance of initially nearby points on the trajectory can be computed.
Figure 22 shows the estimator as a function of the number of time
steps. Unfortunately, probably due to the existence of intermit-
tency, no explicit scaling range is obtained, so that a positive
Lyapunov exponent cannot be extracted. Therefore, we are not
able to confirm the existence of chaos in our system. The lack of a
scaling range is manifested by Fig. 22, in which the estimator
computed from the data of the logistic map (a well known exam-
ple of chaos) is also plotted for comparison.

5 Conclusions

We have performed a series of numerical simulations to study
the interaction of two tandem rotatable triangular cylinders that
are placed in a laminar viscous flow. The focus of this study is the
effects of spacing ratio on the dynamic behavior and vortical
structure of the two-cylinder-fluid system. With the increase of
spacing ratio between the two cylinders, three different states of
motion of the cylinders are found. When the two cylinders are in
close proximity (L/D¼ 2.0), vortex shedding from the front one is
completely suppressed. Thus only a single vortex street is formed
behind the rear cylinder. As to the dynamic behavior, both cylin-
ders exhibit low-amplitude oscillation (swinging about a ./ equi-
librium position). The oscillatory rotations of the two cylinders
are highly synchronized. At an intermediate spacing (L/D¼ 3.0),
the vortex shedding behind the front cylinder is recovered. Both
cylinders exhibit multiperiod autorotation. The vortex shedding of
each cylinder is synchronized to the autorotation of the other cyl-
inder. With the increase of spacing (L/D¼ 4.0 or 5.0), the interac-
tion between the two cylinders is weakened and more irregularity
(randomness) can be seen from the dynamic behaviors (e.g., the
rear one alternates its rotating direction from time to time).

There are three important dimensionless parameters which con-
trol the dynamics of the two-cylinder-fluid system: the Reynolds
number Re of the flow, the dimensionless moment of inertia of the
cylinders ~I, and the cylinder spacing ratio L/D. In the present work,
emphasis is placed on the effect of spacing ratio. It would be of in-
terest to find out how the other two dimensionless parameters
would influence the transition among these three states. However
this is a very time-consuming task and we have to postpone it to the
future. Furthermore, in the present study the sizes and mechanical
properties of the two cylinders are exactly the same. We speculate
that more dynamic modes may appear if we study the case of two
cylinders with different sizes or mechanical properties. Of course,
other arrangements of the two cylinders, such as side-by-side or
staggered, can lead to more dynamic behaviors that are not
observed here.

This two-cylinder-fluid system may also be thought of as a sim-
ple model for two adjacent solid particles moving in a viscous
fluid. The findings in our paper may serve as a starting point for
the understanding of the complicated interactions among rotatable
particles in multiphase flows.
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Nomenclature
~CM ¼ dimensionless moment exerted on the cylinder
D ¼ diameter of the circumcircle of the triangular cylinder

I¼ moment of inertia of the cylinder
~I ¼ dimensionless moment of inertia of the cylinder
L ¼ distance between the circumcenters of the two cylinders
p ¼ pressure of the fluid

Re ¼ Reynolds number
U ¼ inlet flow velocity
m ¼ embedding dimensions in the reconstruction of phase space
w ¼ thickness of the cylinder
n ¼ out-normal vector on the surface of the cylinder
r ¼ position vector on the surface of the cylinder
u ¼ velocity vector of the fluid
z ¼ unit vector pointing out of the paper
� ¼ kinematic viscosity of the fluid
h ¼ rotating angle of the cylinder

qf ¼ density of the fluid
qs ¼ density of the cylinder
�x ¼ averaged angular velocity

Appendix A: Effects of Grid Size, Time Step Size, and

Domain Size on Solution

This section describes the tests on the independence of the time
step, grid size, and computational domain.

A computational domain of 37D–40D by 50D is used in the
simulations of two tandem cylinders (shown in Fig. 2). The com-
putational domain for the single cylinder is 35D by 50D, with
10D from the inlet and 25D from the outlet. The triangular cylin-
der is meshed with 105 line elements. The boundary-layer mesh
with the first layer thickness of 0.01D and a growth factor of 1.05
is used near the surface of the cylinder (see Fig. 3). A time step of
dt ¼ 0:005 is used in all the computations.

A smaller time step of dt ¼ 0:0025 and two larger time step of
dt ¼ 0:01 are also used in the simulations of a single cylinder to
test the independence of the time step. The variations of angular
velocity for the three cases are shown in Fig. 23. While the large
time step dt ¼ 0:01 causes a phase and amplitude difference, the
difference between the dt ¼ 0:005 case and dt ¼ 0:0025 case is
negligible. The time step dt ¼ 0:005 is used in the present
simulation.

A finer mesh and a coarser mesh are also used in the simula-
tions of a single cylinder to test the independence of the grid size.
For the finer mesh case, the surface of the triangular cylinder is

Fig. 23 The test of time step independence for an autorotating
single cylinder. The large time step dt ¼ 0:01 causes a phase
and amplitude difference. The difference between the
dt ¼ 0:005 case and dt ¼ 0:0025 case is negligible. The time
step dt ¼ 0:005 is used in the present simulations.
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meshed with 210 line elements. The boundary-layer mesh with
the first layer thickness of 0.005D is used. For the coarser mesh
case, the surface of the triangular cylinder is meshed with 54 line
elements. The boundary-layer mesh with the first layer thickness
of 0.015D is used. The comparison of results is shown in Fig. 24.
The solution based on the present grid size converges to that on
the finer mesh.

A larger computational domain of 50D by 100D and a smaller
computational domain of 35D by 30D are also used in the simula-
tions of a single cylinder to test the independence of the computa-
tional domain. As shown in Fig. 25, the 35D by 50D computational
domain is large enough to reduce the blocking effect.

Appendix B: Effect of Initial Angular Velocity on

Solution

The effects of initial angular velocity to stir up the autorotation
are discussed in this section.

A large enough impulse is needed to obtain the autorotation.
Once the body picked up and stored sufficient angular momentum
from the impulse to overcome the adverse torque around the sta-
ble position, the autorotation occurs and the status of the autorota-
tion is independent of the initial impulse [5].

The computations in the present work begin with a fixed cylin-
der that is placed in a uniform flow. When the periodic Karman
vortex street is fully developed, the cylinder is then forced to

Fig. 24 The test of grid size independence for an autorotating
single cylinder. For the coarse mesh, the triangle is 54 meshed
with line element, the first layer thickness of the boundary-layer
mesh is 0.015D. The corresponding parameters for the present
mesh are 105 and 0.01, for the fine mesh 210 and 0.05. The
result on the present mesh is comparable to that on the finer
mesh.

Fig. 25 The test of computational domain independence for an
autorotating single cylinder. There are no difference between
the result on a 50D by 100D mesh and that on a 35D by 50D
mesh. The computational domain used in the present work is
35D by 50D.

Fig. 26 The independence test of the initial angular velocity.
Three different initial angular velocities are specified: x0 5 1.5,
x0 5 1.0, and x0 5 0.5. After the transient process the initial
effect disappears and the same quasi-periodic solutions are
obtained.

Fig. 27 The independence test of the initial angular velocity
for two tandem cylinders with L=D ¼ 2:0. (a) The initial angular
velocities for both cylinders are counterclockwise. (b) The
initial angular velocity for the front cylinder is counterclock-
wise, and the rear one is clockwise. (c) The initial angular veloc-
ities for both cylinders are zero. The oscillations of the two
cylinders are independent of the initial angular velocities.
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rotate impulsively with a prescribed angular velocity. After
imposing the boundary condition of constant angular velocity for
some time, the cylinder is set free. The time t ¼ 0 in this section
is taken as the instant when the cylinder is set free.

The independence of the initial angular velocities for the autor-
otation of a single cylinder is shown in Fig. 26.

For the present work, the initial angular velocity x0 ¼ 0:5 is
large enough to stir the autorotation. After the transient process,
the initial effect disappears and the same quasi-periodic solutions
are obtained.

Notice that only the counterclockwise initial angular velocity is
prescribed and the angular velocity is also counterclockwise when
the quasi-periodic solutions are obtained in the present work.
Indeed, due to the symmetry of the system, when the clockwise ini-
tial angular velocity is prescribed, the final autorotation becomes
clockwise.

For the two tandem cylinders, the relative initial rotating direc-
tion of the two cylinders must be considered. However, the autor-
otation is still independent of the initial angular velocities. As
shown in Fig. 27, the same oscillating status are obtained for the
tandem cylinders with L=D ¼ 2:0, despite that the initial angular
velocities are both counterclockwise in Fig. 27(a), and one coun-
terclockwise and one clockwise in Fig. 27(b). Finally, because
there is no autorotation in this L=D ¼ 2:0 case, the zero initial
angular velocities for the two cylinders also achieve the same so-
lution [Fig. 27(c)].

As shown in Fig. 28, the autorotations for the L=D ¼ 3:0 case
are also independent of the initial angular velocities.
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