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Abstract This is a series of studies on Wu’s conjec-
ture and on its resolution to be presented herein. Both
are devoted to expound all the comprehensive properties
of Cauchy’s function f (z) (z = x + iy) and its integral

J[ f (z)] ≡ (2πi)−1

∮
C

f (t)(t − z)−1dt taken along the unit cir-

cle as contour C, inside which (the open domain D+) f (z) is
regular but has singularities distributed in open domain D−
outside C. Resolution is given to the inverse problem that
the singularities of f (z) can be determined in analytical form
in terms of the values f (t) of f (z) numerically prescribed on
C (|t| = 1), as so enunciated by Wu’s conjecture. The case
of a single singularity is solved using complex algebra and
analysis to acquire the solution structure for a standard refer-
ence. Multiple singularities are resolved by reducing them to
a single one by elimination in principle, for which purpose a
general asymptotic method is developed here for resolution
to the conjecture by induction, and essential singularities are
treated with employing the generalized Hilbert transforms.
These new methods are applicable to relevant problems in
mathematics, engineering and technology in analogy with
resolving the inverse problem presented here.

Keywords Cauchy function · Singularity distribution ·Wu’s
conjecture · Resolution by induction

1 Introduction

The articles of Wu [1] on Wu’s conjecture and its resolution
by Wu [2] are revised for new publication. This series of
studies are based on Cauchy’s theorem and integral formula
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J[ f (z)] ≡ 1
2πi

∮
C

f (t)
t − z

dt = f (z),

(z ∈ D+ — open domain inside C), (1a)

J[ f (z)] ≡ 1
2πi

∮
C

f (t)
t − z

dt = 0,

(z ∈ D− — open domain outside C), (1b)

where Cauchy’s function f (z) is assumed to be analytic,
regular ∀z ∈ D+ and continuous for z = t on contour C
(|t| = 1) taken in the positive (counter-clockwise) sense.
Here, Eq. (1b) follows from Cauchy’s integral theorem that∮

C
g(t)dt = 0 if g(t) is regular within and on contour C (as

is g(t) = f (t)/(t − z)∀z ∈ D−), whereas Eq. (1a) is known
as Cauchy’s integral formula, or called Cauchy’s functional
relation, holding for z in open domain D+ (but literally not
including z on boundary contour C).

The task of determining the value of Cauchy’s integral
J[ f (z)] for z situated right on C has been accomplished by
Wu [1] with adopting a generalized condition that

f (z) be Cn ∀z ∈ D+ and in a neighborhood NC

striding across contour C (n being arbitrary), (2)

where the corresponding function f (z) is called the general-
ized Cauchy’s function. This new condition enables the con-
tour C to be indented exclusively about a generic point z0 on
C into an infinitesimal semi-circle C±ε onto the D∓-side, of
radius ε about z0 (see Wu [1], Fig. 1) so that a point z ∈ D±
can reach z0 without crossing the so deformed contour C,
whilst with its remainder part C −C±ε kept intact. In the limit
as z → z0 and ε → 0, f (z) (∀z ∈ D+) → f +(z0), an unde-
termined limit, f (z) (∀z ∈ D−) → 0 by Eq. (1b), whereas
the integral over C −C±ε assumes its Cauchy principal value.
The final two limit equations thus yield three key relations
(cf. Wu [1], Eq. (6)) as
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(I) : f +(z) = f (z);

(II) : f −(z) = 0;

(III) : f (z) =
1
πi
P
∮

C

f (t)
t − z

dt, z ∈ C,

(3)

in which symbol P denotes the Cauchy principal value of
the integral whilst the suffix of z0 is omitted for all z on C.
Here, relation (I), f +(z) = f (z), proves the uniform conti-
nuity of f (z) in the closed domain D+ = [D+ + C], relation
(II) is conjoint to (I), and relation (III) relates f (z) for each
z ∈ C in terms of all the other values of f (t) over C. Con-
sequently, this further establishes the theorem that Cauchy’s
integral J[ f (z)] is uniformly convergent in the closed domain
D+ = [D+ + C] as all so proved [2].

The key relations (I)-(III) in Eq. (3) have bounteous
prospects for applications and developments. They have
been adapted by Wu [1] to derive, hence prove, the Hilbert-
type integral transform formulas between the conjugate func-
tions u and v of analytic function f (z) = u(x, y) + iv(x, y)
to hold for domains of four geometric forms in particular,
namely one that circumventing the upper-half (or lower-half)
of the z-plane, and another inside (or outside) the unit circle
|z| = 1.

The relations (I)-(III) have also enabled Wu [2] to show
that a unique relation exists between the numerical values
of an analytic function f (t) ∀|t| = 1 over contour C and all
the singularities of f (z) ∀z ∈ D− outside C, which is illus-
trated by direct problems having the singularities prescribed
(∀z ∈ D−) to make its inverse problem appear more clarified
in significance and structure.

This study is motivated by Wu’s [1] conjecture on the
inverse problem enunciated as follows.

The inverse problem.
The inverse problem is to adopt the values of f (t) prescribed
only in numerics ∀t on contour C for a function f (z) which
is regular inside C to determine analytically all the exact sin-
gularity distributions of f (z) ∀z ∈ D− outside C, whatever
the singularity distribution.

For its general solution, the existence is asserted in
terms of the following conjecture (cf. Wu [1]):

The conjecture. Solution to this inverse problem is conjec-
tured to exist, which may not be unique.

Solutions to the inverse problem in multi-forms can be
exemplified by the classical potential flow past a unit sphere
with a solution consisted of a source-sink pair properly dis-
tributed over the front and rear hemisphere, or by a similar
(but stronger) distribution over an interior confocal sphere,
and ultimately by a dipole at the center. Resolution to this
inverse problem is of vital importance. Urgent needs for the
inverse problem to be resolved have ever been so accentu-
ated and long-standing. Just for one cause, it dates back to
the pioneering work of Sir George Gabriel Stokes [3] who
developed the perturbation expansion theory in 1847, used
for the very first time to study the nonlinear effects in wa-
ter waves, followed by all inspired mathematicians dedicated

to the same cause, yet still striving for a conclusion on the
convergence of the power series expansion. This is among
a growing list of such pursuits for resolution of the inverse
problem, as given in an expository review by Wu [1].

On the other hand, the issue on the exterior singularities
has also been apprehended as a challenging subject of vital
importance. Grant [4] considered the highest periodic water
wave (with Stokes’s 120◦ corner crest), formulated with the
physical coordinates as a function z = x + iy = z( f ) in the
lower half of the complex potential f = φ + iψ plane contin-
ued analytically to the entire f -plane. He showed by analysis
that the primary singularity of order 2/3, with f 2/3 in z( f ) at
f = 0 of the Stokes crest is not a regular singularity as previ-
ously assumed, since it is joined by a secondary singularity
with an irrational power of f , an essential discovery which
is necessary for valid description of the wave. Grant con-
tended that for lower waves, there exist several singularities
of order 1/2 � D+ which coalesce at the wave crest to be-
come the highest wave singular of order 2/3. This has been
supported by the computational studies of Schwartz [5] who
examined the singularity using the Padé approximation and
Domb–Sykes plots, finding that the singularity varies con-
tinuously with the wave height from order 1/2 to 1/3 (for
the complex velocity d f /dz), and drawing a conjecture that
the change involves coalescence of several singularities of
order 1/2. However, Tanveer [6] examined the number of
singularities, based on the argument principle, finding that
there is just one singularity outside the flow field. Neverthe-
less, the basic mechanisms underlying singularities coalesc-
ing still remain to be fully expounded.

The foregoing two issues add to accentuate the value in
resolving the conjecture on the inverse problem, which is the
primary objective of this study. In outline, we classify func-
tion f (z), being regular in domain D+ within contour C, to
have (i) a single; (ii) double; or (iii) multiple singularities of
the algebraic type, namely f (z) = M(1− z/z1)k, lying at z1 in
domain D− outside C, with their base parameters (M, k, z1)
being solved as the inverse problem in terms of the values of
f (z) prescribed only in numerics on C. The problems (i) and
(ii) are treated first, using complex algebra and analysis to
expose the solution structure for useful reference. In Sect. 3,
singularities appearing in complex conjugate pairs have their
arguments determined for radial search of their locations and
nature. In Sect. 4, two or more singularities of various kinds
are analyzed by reducing them to one by singularity elimina-
tion in principle. In Sect. 5, a general method is developed
for resolution to the conjecture by induction. In Sect. 6, the
conjecture is resolved for the complement function regular in
D−. And the essential singularities are expounded in Sect. 7
with discussions in Sect. 8 for conclusion.

2 Generalized Cauchy’s function with a single point sin-
gularity

First, we consider the primary case when f (z) (regular within
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and on contour C) has only a single point singularity (of
number Ns = 1) which can be represented generically as

f (z) = M(1 − z/z1)k, |z1| > 1, (4)

where k ∈ R, assumed real, so that it is a zero (or a pole) for k
being a positive (or negative) integer, or an algebraic branch
connecting z1 and z = ∞with a cut for k not being an integer,
each lying at a point z1 (|z1| > 1) outside contour C which is
taken to be the unit circle |z| = 1 for simplicity throughout.
The base parameters (M, k, z1) of the sole singularity are to
be determined in terms of the values f (t) of f (z) prescribed
only numerically for t = eiθ(−π < θ ≤ π) ∈ C, say

f (t) = f (eiθ) = f̃ (θ) =
N∑

n=0

cneinθ,

cn =
1

2π

∫ π

−π
e−inθ f̃ (θ)dθ,

(5)

with f̃ (θ) and N prescribed to a desired accuracy in numerics
to satisfy condition equation (2). Numerically, f̃ (θ) and the
complex coefficients cn are clearly equivalent, for they are
merely a quadrature apart.

To proceed, we expand f (z) of Eq. (4) into a power
series in z, giving

f (z) = M
N∑

n=0

γn

(
− z

z1

)n
,

γn(k) =

⎛⎜⎜⎜⎜⎜⎝
k

n

⎞⎟⎟⎟⎟⎟⎠ = k(k − 1) · · · (k − n + 1)
n!

=
Γ(k + 1)

Γ(k − n + 1)n!
,

(6)

where Γ(k) is the Gamma function, Γ(k + 1) = kΓ(k),
Γ(n + 1) = n!, here γ0 = 1, γ1 = k, γ2 = k(k − 1)/2.

Next, matching series equation (6) evaluated with z =
eiθ ∈ C termwise with series equation (5) readily links the
numerical coefficients cn with the algebraic ones γn, giving

f (eiθ) = M
∑
n=0

γn(−eiθ/z1)n,

c0 = Mγ0 = M,

cn = Mγn(−z1)−n.

(7a)

The two series equations (5) and (6) have the ratio of con-
secutive coefficients as, for n = 0, 1, · · · ,
Rn(k, z1) =

cn+1

cn
= −γn+1

γn

1
z1
=

n − k
n + 1

1
z1
, (7b)

which shows that series equation (6) converges for |z/z1| < 1
within the circle of convergence of radius ρ = |z1| on which
the point singularity lies at z = z1. Further, taking the ratio
Rn+1/Rn ≡ Dn(k) gives

Dn(k) =
Rn+1

Rn
=

(
1 − k + 1

n + 2

)(
1 − k + 1

n + 1

)−1

,

n = 1, 2, · · · , (7c)

in which the unknown location z1 is eliminated. From Eq. (7)
the base parameters readily result as

k = n +
(
1 − n + 2

n + 1
Dn

)−1

(≡ k(n)),

z1 =
n − k

(n + 1)Rn
(≡ z1(n)),

M = c0,

(8)

all being given in terms of the complex coefficients cn (n =
0, 1, · · · ) in numerics. Hence

Theorem 1. Primary resolution to the conjecture. If
(i) function f (z) is regular in domain D+ bounded by unit
circle C(z = eiθ); (ii) f (z) has a single point singularity
f (z) = M(1 − z/z1)k (k ∈ R, |z1| > 1), lying outside C; (iii)
f (z) is numerically prescribed on C by series equation (5)
with complex coefficients {cn, n = 0, 1, · · · }, then this inverse
problem has the solution (M, k, z1) given by Eq. (8).

In principle, if Eq. (8) is exact in numerics and if in-
deed Ns = 1 for only one singularity, then solution equation
(8) should produce fixed values to (M, k, z1) by sufficient or-
ders of n, and independent of n aside from what maybe due
to any round-off errors in determining the cn’s. This implies
that solution equation (8) can result from the leading four co-
efficients, c0 to c3, with cn(n ≥ 4) for attesting Ns = 1 and
accuracies.

Example 1. Illustration. We let series equation (5) be pre-
scribed for a specific case with

c0 = 3, c1 = 1.999 895, c2 = 1.333 415,

c3 = 0.889 123, c4 = 0.592 593, c5 = 0.395 062,

for the five leading terms of Eq. (5) taken here for solution
and verification. We then find, by Eq. (8)

R1 = c2/c1 = 0.666 743, R2 = 0.666 801,

R3 = 0.666 492, R4 = 0.666 669,

D1 = R2/R1 = 0.999 912, D2 = 0.999 535,

D3 = 1.000 26,

and by Eq. (8), k(n) can be determined for n = 1, 2, 3 as

k(1) = −0.999 823,

k(2) = −1.002 791,

k(3) = −0.996 851.

As a result, it seems pertinent to have these k(n)’s repre-
sented by their rounded value of k̆ = −1, with such a uni-
formly small errors as exhibited. Similarly, we may let each
of z1(n) = 1/Rn assume the rounded value of z̆1 = 1.5 with
supporting small errors. We therefore obtain the final solu-
tion as

k̆ = −1, z̆1 = 1.5, M̆ = c0 = 3,
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in resolving the conjecture here to produce f (z) = 2(1.5−z)−1

as a sole simple pole.

Example 2. Error estimate. We have just seen that Ns = 1 is
well attested for this case, with a confirming feature of con-
sistency in verifying the sole singularity, unknown a priori.
For error estimate, we assign a small error εn to each cn to
give the rounded coefficients c̆n and

R̆n = c̆n+1/c̆n = (cn+1 + εn+1)/(cn + εn),

−→ k̆(n) = k + κ(εn, εn+1, εn+2), (9)

so that κ, the error to k, being by Eq. (7c) an algebraic func-
tion of three specific ε’s, vanishes with the ε’s instead of
being nonlinearly magnified. A similar conclusion can be
drawn for (z1, M). We therefore can draw from the rounded
coefficients c̆n’s their specific errors as

c̆n = cn + εn, −→ ε1 = 1.05 × 10−4,

ε2 = −8.2 × 10−5, ε3 = 2.35 × 10−4, · · · ,
with similar error estimates for |D̆n − Dn|, � D̆n − Dn →
0 ∀εn → 0. Here we point out that the final solution can be
used to re-generate the Fourier coefficients for an ultimate
verification of the errors.

Example 3. Logarithmic singularity. For a sole logarithmic
singularity generically given by

f
(z) = M lg(1 − z/z1) = −
N∑

n=1

M
n

( z
z1

)n

−→ cn = −M
n

z−n
1 , Rn =

cn+1

cn
=

n
n + 1

z−1
1 , (10)

for n = 1, 2, · · · , suggesting, by comparison with Eq. (7b),
that k = 0, thus implying that if k of Eq. (8) should result
in k = 0, then whether f (z) is a logarithmic function can be
ascertained accordingly.

Thus, we see that the primary cases of Eqs. (4) and
(10) can well exemplify all the others in this group. Being
primary, they are the base to which more general cases can
be reduced or referenced.

2.1 The Domb–Sykes plot

Reflecting on the conspicuous structure of Rn(k, z1) exhibited
by Eq. (7b), the Domb–Sykes scheme gives the graphical
plot of η(ξ) = cn+1/cn versus ξ = 1/n according to

η(ξ) =
cn+1

cn
= R(ξ, k, z1), ξ =

1
n
, z1 ∈ R, (11)

in which z1 is taken to be real for simplicity (or can be at-
tained by a rotation of the coordinates, with arg z1 given
by that of cn+1/cn). This graph, called the Domb–Sykes
plot [7], can effectively provide the index k and location z1 in
R(ξ, k, z1) as ξ → 0 (n → ∞). In fact, writing R(ξ, k, z1) in
Eq. (7b) as

R(ξ, k, z1) =
1 − kξ
1 + ξ

1
z1

−→ R(0, k, z1) =
1
z1
,

∂

∂ξ
R(0, k, z1) = −1 + k

z1
.

(12)

This yields k and z1 by plotting a graph of R(ξ, k, z1) =
cn+1/cn versus ξ = 1/n with n = N,N + 1, · · · , ∀N � 1
to determine the slope and the η-intercept of η = cn+1/cn.
Similarly, the Domb–Sykes plot can serve as a powerful tool
over a broad scope involving multi-singularities, as shown in
Sect. 5.

3 Resolution for function with complex conjugate pair of
singularities

A case of special interest is for function f (z) having a com-
plex conjugate pair of singularities. In this case, the series for
f (z), in virtue of Schwarz’s symmetry, has its coefficients all
real. Here it is apt to first consider a f (z) having a conjugate
pair of logarithmic singularities at z1 = eiα and z1

f (z) = lg[(1 − e−iαz)(1 − eiαz)]−1/2 =

∞∑
n=1

anzn = s(z),

an =
1
n

cos nα,

(13)

s(z) being the series function defined by the series (∀|z| < 1)
versus the sum function f (z) for all z. In case when the series
function s(z) is the only data available for locating the singu-
larities of f (z) while f (z) is still undetermined, this particular
series in Eq. (13) actually can be useful, as follows.

3.1 Sign pattern criteria of series

For series equation (13), there are certain definite relations
between α (hence the arg z1) and the resulting sign pattern
displayed in the series. In this particular case, the sign of an

will depend on the sign of cos(nα) and will result in an inter-
lacing sign pattern with first N0 terms of positive an’s, then
N1 terms negative, and again N2 terms positive, · · · , so that

−π
2
< N0α <

π

2
,

π

2
< (N0 + N1)α <

3π
2
, · · · ,

(
j − 1

2

)
π < (N0 + · · · + Nj)α <

(
j +

1
2

)
π,

(14)

for j = 1, 2, · · · . In the limit, we actually have just delineated
a proof of a theorem by Li [8] in extending the pioneering
work on this subject by Van Dyke [9].

Theorem 2. Li’s Theorem on Location of a conjugate pair
of singularities in series. If the power series Σanzn, with
lim |an|1/n = 1, has in turn N0 terms positive, N1 terms neg-
ative, N2 terms positive, · · · , then the series has a conjugate
pair of singularities at z1 = eiα and z̄1 = e−iα, with

α = lim
j→∞ jπ

/( j∑
k=0

Nk

)
. (15)
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In particular, Eq. (15) reduces for f (z) = − lg(1 − z) =∑
n=1

zn/n to α = 0 with N1 = ∞. Likewise, for f (z) =

− lg(1 + z) =
∑
n=1

(−z)n/n, Eq. (15) gives α = π with

N1 = N2 = · · · = 1, hence jπ
/( j∑

k=1

Nk

)
= jπ/ j = π for

j ≥ 2, thus showing the singularity located at z = −1 just as
that for f (z) = − lg(1 + z). From these two basic cases, we
can also infer others that, e.g. α = π/N if the signs of an’s
interlace in N-tuples for N = 2n + 1 (n = 1, 2, · · · ).

Furthermore, Li’s Theorem can be generalized to hold
for products of multiple algebraic and logarithmic conjugate
functions. For instance, for f (z) = (z − z1)−k(z − z1)−k(z1 =

eiα), we have

g(z) = lg f (z) = −k lg[(1 − z1z)(1 − z1z)]

= 2k
∞∑

n=1

n−1zn cos nα.

With the product of the conjugate functions reduced to the
sum of their logarithms, the singularities of g(z) are therefore
resolved, just as above by Li’s Theorem, and these singular-
ities are of course also those of f (z) = exp[g(z)]. The same
logical argument holds for other types of such functions.

4 Resolution to the conjecture for f (z) having multiple
singularities

For more general cases, we consider next the case of Ns ≥ 2
for singularities of two kinds, one being those of equal or-
der and arbitrary locations whereas the other for those of ar-
bitrary orders and locations, to begin first with the case of
Ns = 2 for subsequent extension to multiple singularities.

4.1 Resolution for f (z) having two singularities of equal
order

We now consider f (z) having two singularities (Ns = 2) of
equal order given by

f (z) = M1(1 − z/z1)k + M2(1 − z/z2)k

=

∞∑
n=0

(M1z−n
1 + M2z−n

2 )γn(k)(−z)n, (16)

where γn(k) is given in Eq. (6). Similar to Eqs. (5)–(8),
matching series equation (16) for z = eiθ termwise with Eq.
(5) gives

(M1z−n
1 + M2z−n

2 )γn = (−1)ncn, n = 0, 1, · · · . (17)

These are the set of algebraic equations for solving
(M1, M2, k, z1, z2) and verification for this case.

First, we eliminate the terms with M2 by operation for
[(k − n)/(n + 1)/z2]cn + cn+1, giving

M1(z−1
2 − z−1

1 )γn+1z−n
1 = (−1)nc̃n+1,

c̃n+1 =
k − n

(n + 1)z2
cn + cn+1.

(18a)

Next, M1 can be eliminated by taking the ratio c̃n+1/c̃n (n =
1, 2, · · · ), yielding

c̃n+1

c̃n
= −γn+1

γnz1
=

n − k
n + 1

1
z1
=

n
n + 1

Hn(k, z2),

Hn(k, z) =
(n + 1)Rnz − (n − k)

nz − (n − 1 − k)/Rn−1
,

(18b)

which can be written in symmetry between the two singular-
ities in equality as

Gn(k, z1) = Gn(k, z2),

Gn(k, z) = Hn(k, z)/z,
n = 1, 2, · · · . (18c)

Finally, expanding out Eq. (18b) yields the basic equation
for this case as

(n + 1)Rnz1z2 − (n − k)[(z1 + z2)

−(n − k − 1)/(nRn−1)] = 0, n = 1, 2, · · · , (19)

which also exhibits the symmetry between the two singular-
ities interchangeable in designation.

To resolve the three unknown parameters (k, z1, z2) in
Eq. (19), we can take four leading equations of (19) to elim-
inate (z1+z2) and z1z2 in two steps, yielding one equation for
k (n = 1, 2, · · · ) as

K(−1, k)
Rn−1

[ Rn+1

K(1, k)
− Rn+2

K(2, k)

]
+

K(1, k)
Rn+1

Rn

K(0, k)

+
K(0, k)

Rn

Rn+2

K(2, k)
= 2,

K( j, k) =
n + j − k
n + 1 + j

,

(20a)

which is a cubic equation for k (after dismissing the com-
plex conjugate roots by confirmation). With k so determined,
(z1z2) can be deduced by eliminating z1 + z2 from Eq. (19),
giving for n = 1, 2, · · · ,

z1z2 =

[ n − k
(n + 1)Rn

− n − k − 1
Rn−1

]/

[n + 1
n − k

Rn − n + 2
(n + 1) − k

Rn+1

]
(≡ A(n, k)), (20b)

for n = 1 say, with which (z1 + z2) (= 2B(n, k), say) then fol-
lows from Eq. (19) for n = 1. Finally, z1 and z2 are obtained
by combining z1z2 = A(n, k) and z1 + z2 = 2B(n, k) to give
the quadratic equation

z2
1 − 2Bz1 + A = 0 −→ z1 = B +

√
B2 − A,

z2 = B − √B2 − A.
(20c)

The solution is then completed with M1 and M2 found from
Eq. (18a) for n = 0 and verified for its feature of consistency
using Eq. (16) for n ≥ 5. Our resolution to the conjecture is



314 Th. Y. Wu

then accomplished for this case of f (z) having two singular-
ities of equal order. When there are more than two singular-
ities of equal order, this method can again provide a scheme
for solution by induction.

4.2 Resolution for f (z) having two individual singulari-
ties

For f (z) having two singularities of arbitrary orders and lo-
cations, we have

f (z) = M1(1 − z/z1)k1 + M2(1 − z/z2)k2

=

∞∑
n=0

[M1z−n
1 γn(k1) + M2z−n

2 γn(k2)](−z)n. (21)

Again, matching series equation (21) with series in Eq. (5)
yields for this case for n = 0, 1, · · · ,
M1z−n

1 γn(k1) + M2z−n
2 γn(k2) = (−1)ncn. (22a)

These are the set of equations for solving (Mi, ki, zi, i = 1, 2)
and for verifications. Elimination of M1 and M2 can be car-
ried out in close analogy with that for Eq. (16), yielding the
basic equation as

z1 − z2

(k2 − n + 1)z1 − (k1 − n + 1)z2

= 1 +
nz1

k1 − n + 1
· (k2 − n) + (n + 1)Rnz2

nz2 − (n − k2 − 1)/Rn−1
, (22b)

which reduces to Eq. (19) for k1 = k2 = k. Invoking the
symmetry that Eq. (22b) is invariant if (z1, k1) and (z2, k2)
are interchanged between the two independent singularities
yields

Gn(k1, z1) = Gn(k2, z2),

Gn(k, z) = Hn(k, z)/z,
n = 1, 2, · · · , (22c)

H(k, z) being given in Eq. (18b). Now, the four unknowns,
k1, k2, z1, z2 can be solved by taking four equations of (22b)
or (22c), for n = 1, 2, 3, 4, with the rest serving for verifying
the solution.

Example 4. Here we have the coefficients in numerics for
series equation (5) as

c1 = 4, c2 = 1.5, c3 = 0.583 333,

c4 = 0.236 111, c5 = 0.099 537, c6 = 0.043 596,

· · · , −→
R1 = 0.375, R2 = 0.388 889, R3 = 0.404 762,

R4 = 0.421 569, R5 = 0.437 985, · · · .
Not knowing the number of singularities, we first test for
Ns = 1. Then, like in Example 1, we find

k(1) = −1.074 074,

k(2) = −0.781 818,

k(3) = −0.572 727, · · · ,

where the lack of any consistency indicates this case being
not in the single singularity group.

So next, we test out the group of two singularities for
this f (z). By substituting the above Rn’s in the four lead-
ing equations of (22b) to solve for (k1, k2, z1, z2), adopting
successive elimination or any other adequate algorithms, we
obtain, after some algebra, the final solution as

k1 = k2 = −1, z1 = 2, z2 = 3, M1 = −2, M2 = −9,

in which M1, M2 follow from Eq. (22a) for n = 0 and n = 1,
with the consistency exhibited as

G1(z1, k) = G1(z2, k) = −1
3
,

G2(z1, k) = G2(z2, k) = −1
2
,

G3(z1, k) = G3(z2, k) = −2
3
,

followed by G4(z1, k) = G4(z2, k) = −5/6, each with a rela-
tive error of 10−8, and likewise for n ≥ 5.

Example 5. As the two singularities in Example 4 turn out
to be of equal order, we can use the same coefficients cn for a
comparative study. Substituting the Rn’s of Example 4 in Eq.
(20a) yields k = −1, with the other two complex conjugate
roots dismissed by verification. With k = −1, Eq. (20b) for
n = 1 produces z1z2 = 6 and then Eq. (19) gives z1 + z2 = 5.
Therefore by Eq. (20c), we obtain the solution

k = −1, z1 = 2, z2 = 3,

just as in Example 4, but the algebra involved here is notice-
ably simpler than in Example 4.

When more than two singularities are encountered, this
case can be adapted to provide a mathematical scheme for
resolution by induction, i.e. by eliminating the magnitude of
one singularity at a time till all the magnitude variables are
eliminated for resolving the conjecture. However, the com-
putation along this approach is still not simple, hence a more
general approach is in order next.

5 Resolution to the conjecture involving multiple singu-
larities by induction

For this general case, we first consider f (z) having two sin-
gularities at z1 and z2, both real and positive (1 < z1 < z2),
lying outside the open domainD+ bounded by the unit circle
C, a special case which is apt for illustrating the underlying
basic principle more easily, and can be generalized to func-
tions having more singularities situated more freely.

To have the singularities of f (z) determined by induc-
tion, we first consider the direct problem.

5.1 The direct problem

The direct problem is to have the singularities all given in
closed analytical form as a basis for developing a general
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method to determine the singularities by induction so that
the method can readily be adapted to resolving the inverse
problem as asserted by the conjecture.

Thus, we take, parallel to Eq. (21), here with 1 < z1 <
z2,

f (z) = f1(z) + f2(z) =
2∑

j=1

Mj(1 − z/z j)
k j

=

∞∑
n=0

Σ jMjγn(k j)z
−n
j (−z)n =

∑
n

c̃nzn,

c̃n = (−1)nM1γn(k1)z−n
1

[
1 + m

γn(k2)
γn(k1)

λn
]
,

m = M2/M1, 0 < λ = z1/z2 < 1,

(23)

where c̃n derives its value from the analytic formulas given
for this direct problem to give

Rn =
c̃n+1

c̃n
=

1 − k1/n
1 + 1/n

· Qn

z1
,

Qn =
1 + m[γn+1(k2)/γn+1(k1)]λn+1

1 + m[γn(k2)/γn(k1)]λn
.

(24)

For 0 < λ < 1, λn → 0 and Qn → 1 as n → ∞. Hence, for
given λ < 1,∃N � ∀n ≥ N, |1 − Qn| < ε. Thus, as ε → 0,
Rn is reduced to that for the singularity which is closer to the
origin and can then be determined in this asymptotic limit
when the effects due to the singularity farther away fall off.

Domb–Sykes plot. Proceeding for this asymptotic solu-
tion, we make the Domb–Sykes plot by Eqs. (11) and (12)
of Rn(k1, z1,Qn(λ)) of Eq. (24) versus 1/n as a function
Rn(1/n) = Rn(ξ). The basic principle and the main features
of the solution can be illustrated below.

Example 6. Function f (z) having two logarithmic singulari-
ties. Of basic interest is that

f (z) = lg[(1 − z/z1)(1 − z/z2)2]

= lg(1 − z/z1) + 2 lg(1 − z/z2),

z1 = 1.1, z1 < z2. (25)

Here, we have f (z) = f1(z) + f2(z), k1 = k2 = 0,m = 2, z1 =

1.1, λ = z1/z2 (0 < λ < 1), hence

Rn =
n

n + 1
· Qn

z1
,

Qn =
1 + 2λn+1

1 + 2λn
,

n = 1, 2, · · · . (26)

This function Rn(1/n) = Rn(ξ) has been computed by em-
ploying Mathematica 7 for three values of λ = 0.125, 0.4,
0.8, over the range n = 1, 2, · · · , 100, with the resulting
R(1/n) plotted in three lines in sequence of points for each
n as shown in Fig. 1, with the “�” indicating the points for
λ = 0.125, the “�” for λ = 0.4, and the “•” for λ = 0.8.
Here, for n ≥ N � 20, the three lines of dotted points ap-
parently merge into one straight line, ending at 1/n = 0.01

(or n = 100). This line is further extrapolated and fitted by
R = (p0 + p1/n)/(1 + q1/n) to reach the R-axis intercept
at R(0) = 0.909 1, of slope R′(0)/R(0) = −1 which gives
k = 0, thus implying f1(z) logarithmic and further z1 being
located at z1 = 1/R(0) = 1.1, with almost no error. These are
the two important data found from the plot. It is of interest
to note that for n ≤ N � 20, the three dotted curves have
the “�” line (for z2 = 8z1) staying the closest to the asymp-
totic line, La : Ra = R(0) + R′(0)/n, whereas the “�” line
(for z2 = 2.5z1) and the “•” line (for z2 = 1.25z1) bifurcate
increasingly more from the straight La line with decreasing
radial distances of z2. This signifies that the interaction be-
tween two point singularities increases with decreasing dis-
tances apart. This is another key feature demonstrated by the
Domb–Sykes plot.

Fig. 1 Domb–Sykes plot of Rn(1/n) for three values of singularity
radial-distance ratio λ = z1/z2, n = 1, 2, · · · , 100

At this point, we note that the number of singularities,
Ns = 2, and k = 0 being both known in this direct problem,
we can directly solve for the other singularity by taking the
first two R1,R2 to deduce from their formulas to attain m = 2
and the values of z2 for the three cases, and their magnitudes
M2 from c0 to complete the solution to this direct problem.

5.2 The inverse problem

Returning to resolve the conjecture, we now take up the in-
verse problem which has only the Fourier coefficients cn of
Eq. (5) prescribed in numerics, ordinarily by the solution
to a problem solved by numerical scheme, but here the cn’s
are taken to assume the value c̃n of the above direct problem
for a single case with λ = 0.4, say. With cn = c̃n known,
we plot the coefficient ratio Rn = cn+1/cn to attain in this
case again the same result as that shown in Fig. 1, giving
(k1 = 0, z1 = 1.1) for the first singularity f1(z) (lying nearest
to the unit circle C) as
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f1(z) = M1 lg(1 − z/z1) = c′0 −
∑
n=1

c′nzn,

c′0 = 0, c′n = M1z−n
1 /n, n ≥ 1, (27)

where c′0 = c0 = 0, M1 = 1 by deduction from c′n = cn

asymptotically, and hence f1(z) is all known.
To this end, it is vital to note that the dotted line (here

with “�”) being curved indicates that f (z) has more singu-
larities, possibly not just one more, to complete resolving
the inverse problem.

5.3 Resolving the inverse problem by induction

To continue, we rid f (z) of f1(z), giving

f2(z) = f (z) − f1(z) = Σ0c′′n zn,

c′′n = cn − c′n −→ R′′n = c′′n+1/c
′′
n ,

n = 1, 2, · · · . (28)

With c′′n now all known, we can carry out the Domb–Sykes
plot for R′′n (1/n) to determine the primary parameters (k2, z2)
for f2(z). In this particular case for f (z) of Eq. (25), we
find from the R′′n (1/n) plot that the entire dotted line is
straight, of slope dR′′/d(1/n) = −1, and the R′′-intercept at
1/z2 = 0.363 64 for z2 = 2.75 = 2.5z1, as the last singularity
of f (z), thus completing this inverse problem.

In general, for generic cases, the R′′(1/n) line may ap-
pear again curved, in which case we repeat the analogous
plot for R(3)(1/n) for f3(z), · · · , until R(
)(1/n) for f
(z) bear-
ing out a straight line in the plot for the very last singularity
f
(z) of f (z) to complete the inverse problem. This then con-
stitutes the general method of resolving the conjecture by
induction.

6 The complement conjecture for the complement func-
tion F(z)

The complement function, denoted by F(z), arising with the
roles of domain D+ and D− interchanged, is hence defined
as being regular of order Cn∀z ∈ D− and in a neighborhood
striding across contour C (cf. Wu [1]). Being so defined, it
starts with its integral theorem that

J−[F(z)] =
∮

C−
F(z)dz = −

∮
C

F(z)dz = 0, (29)

where contour C− is on the unit circle |z| = 1, taken in clock-
wise direction in its own positive sense. By analogy, the
complement function must have a singularity distribution in-
side contour C (unless F(z) = const. on C), for which fact
we have the analogous conjecture as follows.

The complement conjecture If the complement func-
tion F(z) has on contour C(∀t = eiθ) one of its conjugate
functions of F(eiθ) = Û(θ) + iV̂(θ), say V̂ numerically pre-
scribed, equal in value to v̂(θ) of f (eiθ) = û(θ) + iv̂(θ) given
numerically on C ( f (z) bing regular ∀z ∈ D+), then the new
conjecture asserts that the exact singularity distribution of
F(z) ∀z ∈ D+ exists inside C and can be determined analyt-

ically.
For resolution, we note that invoking V̂(θ) = v̂(θ) dic-

tates that on contour C(∀t = eiθ),

F(eiθ) = F̂(θ) = Û(θ) + iV̂(θ)

= − f (eiθ) = −û(θ) + iv̂(θ), (30a)

−→ Û(θ) = −û(θ), V̂(θ) = v̂(θ), −π < θ ≤ π, (30b)

where f (t) denotes the complex conjugate of f (t). This
therefore implies that on C (∀t = eiθ),

−F(t) = f (t) = f (e−iθ)

= MΣn=0(−z̄1)−nγn(k)e−inθ(= Σn=0c̄ne−inθ),

−π < θ ≤ π, (31a)

where the first step follows from Eq. (7a) whereas the second
from Eq. (5). This series is convergent and can be continued
analytically to all z = reiθ over the entire z-plane, thus giving

−F(z) = Σc̄n(reiθ)−n

= Σc̄nz−n = LΣn=0(−z̄1)−nγn(k)z−n

= M[1 − (zz̄1)−1]k, (31b)

where F(z) and f (z) have their imaginary parts equal on C.
This F(z) has a singularity (z − 1/z̄1)k at z = 1/z̄1 plus an-
other singularity z−k at z = 0 (in reflection to that at z = ∞
for f (z)) which can be made single-valued when k is not an
integer with a cut between z = 0 and z = 1/z̄1 lying within
C.

Concluding on this extension, we note that with f (z)
and F(z) having their imaginary parts equal and real parts
opposite in sign, they further satisfy Cauchy’s integral for-
mulas (1) and, for F(z)

J−[F(z)] ≡ −1
2πi

∮
C

F(t)
t − z

dt = 0,

z ∈ D+ = D+ +C, (32a)

J−[F(z)] ≡ −1
2πi

∮
C

F(t)
t − z

dt = F(z),

z ∈ D− = D− +C. (32b)

These integral formulas have been shown to hold by their
correspondence theorems given in Wu [1].

7 Resolution to the conjecture involving essential singu-
larities

Here, we first cite two Hilbert-type integral transforms given
by Wu [1]. Applying the key relations in Eq. (3) to Cauchy
function f (z) = u(x, y) + iv(x, y), regular in the upper half
z-plane for Im z ≥ 0 (vanishing as |z| → ∞ uniformly in
0 ≤ arg z ≤ π), produces the Hilbert transform formula
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u(ξ) = H[v(x)] =
1
π
P
∫ ∞
−∞

v(x)
x − ξdx,

v(x) = H−1[u(ξ)] =
−1
π
P
∫ ∞
−∞

u(ξ)
ξ − x

dξ.

(33)

Similarly, applying Eq. (3) to complement function F(z) =
U(x, y)+ iV(x, y), regular in the lower half z-plane, produces
the complement Hilbert transform formula

U(ξ) = H[V(x)] =
−1
π
P
∫ ∞
−∞

V(x)
x − ξ dx,

V(x) = H
−1

[U(ξ)] =
1
π
P
∫ ∞
−∞

U(ξ)
ξ − x

dξ.

(34)

For v(x) = V(x) = sin x, we obtain by using Eqs. (33) and
(34) the two transforms as

u(ξ) =
1
π
P
∫ ∞
−∞

sin x
x − ξ dx = cos(ξ),

U(ξ) = −1
π
P
∫ ∞
−∞

sin x
x − ξdx = − cos(ξ).

(35)

The resultant f (x) = u(x)+ iv(x), F(x) = U(x)+ iV(x) can be
continued analytically to the entire z-plane, yielding

f (x) = eix F(x) = −e−ix

−→ f (z) = eiz, F(z) = −e−iz,

∀z ∈ 0 ≤ |z| < ∞.
(36)

Therefore, an equal value of one conjugate function, e.g.
v(x) = V(x) = sin x, produces an analytic function f (z) reg-
ular in D+ and F(z) regular in D−, whilst both having an
essential singularity in each of their complement domain, re-
spectively. This rather typical comparative study can well
exemplify more general ones, e.g. f (z) (or F(z)) being reg-

ular in |z| ≤ 1 (or |z| ≥ 1); f (z) =
∞∑

n=1

lg(1 − z2/n2) so

that g(z) = exp( f (z)) has an isolated essential singularity at
z = ∞.

8 Discussion and conclusion

In this study we have shown methods developed for reso-
lution to the conjecture on the inverse problem for function
f (z) to have arbitrary number of singularities lying outside its
domain of regularity. The principle of these methods takes
the approach, by and large, to reduce multiple singularities
to one for determining its nature, at least its argument, by
means of complex algebra and analysis. This approach also
includes the general method developed in Sect. 5 for reso-
lution to the conjecture by induction, which suits especially
well for singularities located at distinct radial distances so
that the one nearest to the origin can be dealt with by apply-
ing the Domb–Sykes plot for an asymptotic solution, with
the remaining singularities to be resolved likewise one at a
time. The success of these methods and the high accuracy of
the general results can be ascribed to the central role played

by the power series in complex form composed of orthogo-
nal terms. These methods can be employed for applications
and further development to all pertinent problems in mathe-
matics, engineering, and technology.

There may exist various areas of mathematics where
challenges still prevailing which can be investigated in anal-
ogy with resolution to Wu’s conjecture. The long and rich
history of the fully nonlinear theory of dispersive water
waves can serve as a splendid representative for other disci-
plines where challenging basic hindrances remain to be sur-
mounted. In all respects, new grasp of the exterior singulari-
ties outside the solution domain of the primary variables may
furnish crucial data base to ascertain the certitude of solution
validity and profound comprehension of the target phenom-
ena.

In concluding, it is reasonable to say that this is just a
beginning. New issues may arise to require answers. The ex-
terior singularities of holonomic functions may present a va-
riety of new interests, e.g. coalescence of singularities with
changes in parameters, productions of essential singularities,
etc. We may indeed expect to see more advances accumulat-
ing to enrich more of this new field.
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