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For the determination of surface tension of liquid droplets by molecular dynamics simulations, the most time-

consuming part is the calculation of pressure tensor in the transition layer, which makes it difficult to enhance the

precision of the computation. A new method for the calculation of surface tension of liquid droplets to reduce the

calculation quantity of pressure tensor in transition layer to the minimum is proposed in this paper. Two thousand

particles are taken as example to show how to carry out our scheme.
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1. Introduction

The study of the surface tension of liquids is of
great interest to both fundamental and practice,[1]

which is increased further especially by the develop-
ment of nanotechnology. Under nano-scale, the Tol-
man effect that the surface tension of a liquid droplet
changes with the curvature of the surface,[2] is of sig-
nificance, and so the methods for calculating the sur-
face tension of liquid droplets with different sizes have
attracted much research effort.[1−5]

For the determination of surface tension of liquid
droplets by Molecular Dynamics Simulation (MDS),
the most time-consuming part, i.e. the most diffi-
cult part to enhance the precision is the calculation
of pressure tensor in the surface layer i.e. transition
layer.[6] In order to avoid the calculation of pressure
tensor in the transition layer, some other kinds of cal-
culation methods were presented in the literatures. A
methodology in terms of probability distributions was
proposed long time ago by Binder[7] and has received
renewed interest recently.[8−10] This method is partic-
ularly useful in the vicinity of the critical point. How-
ever, the need of sampling all states between the ho-
mogeneous bulk phase and the phase coexisting states
(slab geometry) makes it fairly time consuming away
from the critical point. The method based on the

capillary Hamiltonian approximation[8,11,12] is useful
to the liquid-vapour interface away from the criti-
cal point. Two perturbative approaches have been
proposed. One is based on the perturbation of the
two-phase system, by increasing or decreasing the in-
terface a finite amount. For curved interfaces, this
method resembles the philosophy of Scaled Particle
Theory.[13−15] The other is the test area method of
Gloor et al.[16,17] MacDowell and Bryk[6] proposed a
method which has features of both the Binder method
and the perturbative approaches employed by Bresme,
Quirke and Gloor et al. Another route is density func-
tional theory. Several density functionals and related
self-consistent field theories for polymeric fluids have
been proposed in the literatures.[18−21]

All of the methods mentioned above belong to
approximation theory. In the present paper we pro-
pose an accurate method based on rigorous theory. If
only the value of surface tension at one radius and one
temperature is given, by using our numerical method
presented here, we can determine the surface tension
of the same substance at any radius and any temper-
ature with no need to calculate the pressure tensor in
transition layer. Of course, the given value of surface
tension at one radius and one temperature must come
from MDS by using the calculation of pressure tensor
in the transition layer. However, in our method we can
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obtain all the values of surface tensions for all radii and
all temperatures at which the liquid droplets can exist,
while the calculation of pressure tensor in transition
layer is restricted to one radius and one temperature.
Thus we do decrease the calculation quantity of pres-
sure tensor in transition layer to the minimum.

Section 2 is devoted to the theoretical basis of our
scheme. In Section 3, serving as an illustration, the
simulation of 2000 particles has been carried out. The
results and some discussions are given in Section 4 and
finally, conclusions are drawn in Section 5.

2. Theoretical basis of our scheme

For the equimolar surface of a spherical liquid
droplet we have

ne = 0 (1)

and
Fe = Ee − TSe = σeAe, (2)

where T is the temperature of the system, the sub-
script e denotes the quantity on the equimolar sur-
face, ne is the number of molecules per unit area of
the equimolar surface, Ee, Fe, Se, σe and Ae denote
the surface energy, surface free energy, surface entropy,
surface tension and the area of the equimolar surface,
respectively. Then, Eq. (2) gives

dFe = σedAe + Aedσe. (3)

Considering the curvature change, we have[1]

dFe = −SedT + σedAe + Ae

[
dσ

dR

]

e

dRe, (4)

where R denotes the radius of dividing surface, the
derivative [dσ/dR] is denoted as a notional derivative
that is a measure of how the surface tension changes
with a change of the position of the dividing surface
with the physical state of the system unchanged, Re

denotes the radius of the equimolar surface and is de-
termined by the equation

N = ρl
4π

3
R3

e + ρv

(
V − 4π

3
R3

e

)
, (5)

where N , V , ρl and ρv are the total number of
molecules, total volume of the system, density of the
interior of the liquid and that of the interior of the
vapour, respectively.

Substituting equation (3) into (4) we get

dσe(T,Re)

=
−Se(T,Re)

Ae
dT +

[
dσ(T,R)

dR

]

e

dRe, (6)

where σe(T, Re) can also be expressed by σ(T, Re).
Equation (6) determines the way how the differential
of surface tension dσe(T,Re) depends on the two vari-
ables (T , Re) and their differentials (dT , dRe).

In Eq. (6), the surface tension σe(T,Re) is a func-
tion of two self variables (T, Re), and so the differential
dσe(T, Re) expressed by Eq. (6) is a total differential.
Therefore the integral

∫ (T1,Re1)

(T0,Re0)

dσe(T, Re)

=
∫ (T1,Re1)

(T0,Re0)

{−Se(T, Re)
Ae

dT +
[

dσ(T,R)
dR

]

e

dRe

}

must be determined by the origin point and end point,
and be independent of the path.

Below we discuss two different paths, i.e. restric-
tive conditions in the TRe plane

Re = Re(T ) (7)

and

T = T0 (8)

respectively, where Re(T ) and T0 may be appointed
arbitrarily.

2.1.Under the restrictive conditions

Re = Re(T )

Obviously, for any given restrictive relation Re =
Re(T ), there must be an infinite set of liquid droplets
satisfying this relation. For this set of liquid
droplets, the surface tension σe and entropy Se de-
pend only on one variable T and can be expressed
as σe(T ) = σe(T, Re(T )) = σ(T,Re(T )) and Se(T ) =
Se(T,Re(T )), respectively. Therefore Eq. (6) becomes
the monadic differential form

dσe(T,Re(T ))

=
−Se(T,Re(T ))

Ae
dT +

[
dσ(T, R)

dR

]

e

(
dRe(T )

dT

)
dT,

which gives

dσe(T,Re(T ))
dT

=
−Se(T, Re(T ))

Ae
+

[
dσ(T,R)

dR

]

e

(
dRe(T )

dT

)
. (9)

From equations (2) and (9), we obtain
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dσe(T,Re(T ))
dT

=
σe(T,Re(T ))

T
− εe(T, Re(T ))

T
+

[
dσ(T,R)

dR

]

e

dRe(T )
dT

, (10)

where εe is the energy per unit area of the equimolar surface. Equation (10) with the general Laplace equation[1]

∆p = pl − pv =
2σe

Re
+

[
dσ

dR

]

e

(11)

gives

dσe(T, Re(T ))
dT

+
(

T
dRe(T )

dT

2
Re

− 1
)

σe(T,Re(T ))
T

= ∆p(T,Re(T ))
dRe(T )

dT
− εe(T,Re(T ))

T
, (12)

where pl and pv denote the pressures in the interior of the liquid and in the interior of the vapour respectively.
If for a liquid, we give a function Re(T ) arbitrarily and know the functions εe(T ) = εe(T,Re(T )) and

∆p(T ) = ∆p(T,Re(T )), then Eq. (12) is a first-order ordinary differential equation for function σe(T ) =
σe(T,Re(T )). The solution of Eq. (12) is

σe(T ) = σe (T,Re(T ))

= e−
∫ T

T0

(
T ′ dRe

dT ′
2

Re
−1

)
dT ′
T ′

(∫ T

T0

(
∆p

dRe

dT ′
− εe

T ′

)
e

∫ T ′
T0

(
T
′′ dRe

dT
′′ 2

Re
−1

)
dT
′′

T ′ dT ′ + σe (T0, Re(T0))

)

=
T

3R2
e (T )


R3

e (T ′)
∆p(T ′)

T ′

∣∣∣∣
T

T0

−
∫ T

T0

R3
e (T ′)

T ′
d∆p

dT ′
−∆p(T ′)

T ′2
dT ′




− T

R2
e (T )

∫ T

T0

εe(T ′)R2
e (T ′)

T ′2
dT ′ + σe (T0, Re(T0))

TR2
e (T0)

T0R2
e (T )

. (13)

Using formula (13) we can calculate function σe (T ) =
σe (T,Re(T )) in any given interval (T0, T1;T0 6= T1)
for a given single component liquid and a given func-
tion Re (T ) in interval (T0, T1), if the value σe (T0)
is known, and functions ∆p (T ) and εe (T ) in inter-
val (T0, T1) are also known. In fact, the σe (T0) can
be obtained through experimental measurement or by
calculation with the MDS results of pressure tensors
in the transition layer, shown in Subsection 1.3. be-
low; the function ∆p (T ) can be calculated by MDS in
the interiors of the liquid droplet and the vapour; and
the function

εe (T )

=
1

4πRe

(
E − 4π

3
R3

eεl −
(

V − 4π

3
R3

e

)
εv

)
(14)

can be calculated by MDS with Eq. (5), where E, εl

and εv are the total energy, energy densities of the in-
terior of the liquid and the vapour, respectively. And
so we need not use the pressure tensor in surface layer.
Besides, to calculate E, εl and εv in Eq. (14), we must

use the energy of a molecule

Em =
m

2
v2 +

U

2
. (15)

where m, v, U are molecular mass, molecular speed

and inter-molecule potential respectively.

If we want to calculate σe (T2, Re2) from

σe (T0, Re0) by Eq. (13), in which T0, T2, Re0 and

Re2 are appointed arbitrarily, first we should make

a arbitrary function Re (T ) satisfying the conditions

Re (T2) = Re2 and Re (T0) = Re0, then to calculate

it according to the above method. Therefore the re-

strictive condition is only a tool to transfer the Eq. (6)

of two self-variables to Eq. (9) of single self-variable.

Due to the arbitrariness of the function Re (T ), there

is no obstacle for us to use this method to calcu-

late σe (T,Re) for any pair of (T, Re) from a known

σe (T0, Re0), if only there does exist a liquid droplet

at (T,Re).
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2.2.Under the restrictive conditions

T = T0

T = T0 is a special condition, which can not be
expressed by the type of restrictive condition Re (T ).
For any given temperature T0, the restrictive relation
T = T0 in TRe plane corresponds to a infinite set
of liquid droplets satisfying this isothermal condition.
For this set of liquid droplets, the surface tension σe

and surface entropy Se depend only on one variable
Re and can be expressed as σe(Re) = σe(T0, Re) and
Se(Re) = Se(T0, Re), respectively. Therefore Eq. (5)
becomes the monadic differential form

[
dσ

dR

]

e

dRe = dσe (T0, Re) . (16)

Combination of Eq. (16) and general Laplace equation
(11) gives

dσe (Re, T0)
dRe

+
2
Re

σe(Re, T0) = ∆p (Re, T0) . (17)

Under the condition

σ(Re0, T0) = σ0, (18)

the solution of Eq. (17) is

σe(Re, T0)

= σ(Re, T0)
1

R2
e

[
R2

e0σ0 +
∫ Re

Re0

R2∆pdR

]
. (19)

2.3.A method for calculation of initial

value σe0 = σ (T0, Re0) by MDS

Now we show how to obtain an initial value σe0 =
σ (T0, Re0) by MDS for lack of experiment data. For
a surface of tension with radius Rs, we have Laplace
equation

Rs =
2σs

pl − pv
. (20)

And[22]

σ3
s = −1

8
(pl − pv)

3
∫ R∞

0

r3 dpN (r)
dr

dr, (21)

where R∞ is a r value of any point in the interior of
the vapour and pN (r) is the normal pressure

pN (r) = pK (r) + pU (r) , (22)

where pU (r) is configurational normal pressure, and
pK (r) is kinetic pressure

pK (r) = kBTn (r) (23)

with kB and n(r) being Boltzmann constant and the
density of the number of molecules, respectively.

Integrating the right of Eq. (21) by parts gives

σ3
s

= −1
8

(pl − pv)
2

×
{

R3
∞pN (R∞)− 3

∫ R∞

0

r2pN (r) dr

}
. (24)

The Irving–Kirkwood definition for pressure ten-
sion has been accepted commonly as the correct
formula.[23]

In order to use MDS for the calculation of
Eqs. (24) and (20) with Irving–Kirkwood definition,
we use the symbols of Thompson[22] and have

pU (r) = S−1
∑

k

fk, (25)

where S = 4πr2 is the area of a spherical dividing
surface of radius r with its centre being mass centre
of the liquid, and the sum over k is over the normal
components fk of all the pair forces acting across the
surface.[22] For any given radius r between 0 and R∞,
the values of pU (r) and pK (r) can be calculated by
Eqs. (25) and (23) with MDS under given V , N and
T0, respectively. Substituting the values of pU (r) and
pK (r) into Eq. (22) gives pN (r). Thus we can obtain
numerical functions pN (r). Then we obtain the sur-
face tension of the surface of tension σs = σs0 by sub-
stituting the numerical functions pN (r) into Eq. (24)
and integrating it. Then substituting the values of
(pl − pv) given by MDS and σs0 into the Laplace equa-
tion (20) gives the radius of the surface of tension
Rs = Rs0. The radius of equimolar surface Re0 can
easily be determined by using Eq. (5) and MDS. Then
the relation[1]

σe0

σs0
= 1 +

(
Re0 −Rs0

Re0

)2 (Rs0 + 2Re0)
3Rs0

(26)

gives the σe0, which is just what we want σe0 =
σe (T0, Re0).

3. Computer simulation

Serving as an illustration of our scheme described
above, we take 2000 particles to carry out this scheme
for restrictive conditions Re = Re(T ).

The Lennard–Jones potential between particles
has the form

U (r) = 4ε

{(
d

r

)12

−
(

d

r

)6
}

, (27)
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where r, ε and d are the inter-particle distance, en-
ergy scale and length scale respectively. The parame-
ters are chosen as ε/kB = 93.16, d = 0.3405 nm and
rcut = 3.6 d, where rcut is the cutoff distance.

The system of N = 2000 particles investigated is
a spherical droplet being equilibrated with its vapour
enclosed in a cubic box with a size of x × y × z =
28.0d× 28.0d× 28.0d. The initial configuration is con-
structed by putting particles on a finite cubic lattice
located at the central part of the box. The mirror
boundary condition is used in all directions.

At the initial time the velocities of particles were
given according to the Maxwell–Boltzmann distribu-
tion of T0 = 66 K. NVT ensemble was used before
equilibration. To reach equilibrium we did up to
100000 runs with a time step of δt = 5 fs. For cal-
culating the mean value of any physical quantity g (t),
accumulative average g (i · δt) = (1/M)

∑M
i=1 g (i · δt)

was used, where the number M must be large enough
for the accumulative mean value to reach a constant
with acceptable small variation. In fact in our simula-
tions up to 1000000 runs with a time step of δt = 2 fs
were used to obtain the acceptable statistics.

The values of Re0 = Re (T0) and σe0 =
σe (T0, Re0) were calculated by MDS with the method
given in Subsection 1.3. In this respect, for the numer-
ical functions pU (r) and pK (r), we took fifty values of
r with equal spacing.

In this study our aim of the stimulation is only
to give a simple example for our method, therefore to
avoid the expensive costs of computational time for
adjustment of the particle number of the system ac-
cording to a given function Re (T ), we changed the
temperature T and kept the total number of par-
ticles of the system including liquid and vapour N

unchanged, so that the equimolar radius Re changed
with the temperature spontaneously. Thus we easily
obtained a numerical function Re (T ) given by MDS.
In fact, we heated the system gradually from 66 K to
86 K with an interval of 2 K.

The numerical function ∆p (T ) was calculated for
every 2 K by Eqs. (22), (23), (25) and MDS.

The numerical function εe (T ) was calculated by
Eqs. (14), (15), (27) and MDS.

The numerical function σe(T ) = σ (T, Re(T )) was
calculated by Eq. (13) with use of Re0 and σe0.

In this simulation, all the quantities were made
dimensionless in terms of the Lennard–Jones param-
eters, i.e., r∗ = r/d, T ∗ = kBT/ε, ρ∗ = ρd3, p∗ =
pd3/ε, δt∗ = δt

√
(ε/md2), by which 5fs is equal to

0.002319 dimensionless time and m is the molecular
mass of Argon.

4. Results and discussion

For the system of 2000 particles in a cubic box
with a size of 28.0d × 28.0d × 28.0d at T = T0 =
66 K, we obtain σ∗s = σ∗s0 = 0.7901, R∗s = R∗s0 =
7.8350, R∗e = R∗e0 = 8.2687, and σ∗e = σ∗e0 = 0.7925.
The normal component profile of pressure tensor used
to calculate σ∗s0 by Eq. (24) is shown in Fig. 1, and the
number density profile used to calculate R∗e0 is shown
in Fig. 2. The big fluctuation of p∗N near the centre
of the liquid in Fig. 1 attributes to the poor statistics
because of the low volume.

Fig. 1. Normal component of the IK pressure tensor at

T = 66 K.

Fig. 2. The density profile at T = 66 K. The dashed line

indicates the radius of equimolar surface.

The results of numerical functions R∗e (T ),
∆p∗(T ), ε∗e(T ) and σ∗e (T ) for N = 2000 are shown in
Table 1, and the calculated temperature dependence
of the surface tension σ∗e−T ∗ for N = 2000 is shown in
Fig. 3. From Table 1, we know that the R∗e decreases
with increasing temperature, which is caused by evap-
oration. As can be seen from Fig. 3, there is an over-
all decrease in the magnitude of the surface tension
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with increasing temperature, which is in good qual-
itative agreement with the predictions of thermody-
namical theories.[22] More exactly, σ∗e decreasing with
increasing temperature attributes not only to the tem-
perature change itself but also to the decrease of R∗e ,
which is called Tolman effect.[2] The behaviour of σ∗e
attributes to both of Tolman effect and temperature
effect.

Fig. 3. The plot of σ∗e −T ∗ for N = 2000.

Table 1. The MDS results of surface tension and related

intermediate results.

T T ∗ R∗e ∆p∗ ε∗e σ∗e
66 0.70846 8.2687 0.2011 –0.0209 0.7925

68 0.72993 8.2551 0.1950 0.0130 0.7891

70 0.75140 8.2367 0.1885 0.0400 0.7848

72 0.77286 8.2120 0.1800 0.0760 0.7785

74 0.79433 8.1857 0.1718 0.1099 0.7712

76 0.81580 8.1393 0.1610 0.1680 0.7596

78 0.83727 8.0910 0.1452 0.2226 0.7470

80 0.85874 8.0456 0.1230 0.2550 0.7348

82 0.88021 7.9875 0.1060 0.2920 0.7219

Besides, We note that the experimental surface
tension value of a planar liquid–argon surface at 90 K
(T ∗ = 0.97) is 13.45 mN/m[5] (σ∗∞ = 1.08), which is
bigger than our result σ∗∞ = 0.67 (for 90 K, R∗e = 7.79)

extrapolated by the data in Table 1. These are coin-
cident with Tolman formula[23]

σ∗(Re) =
σ∗∞

1 + (2δ∗/R∗e)
(28)

with δ∗ = 2.38, i.e. δ = 2.38d. We know that in
the Table 3 of Ref. [22], there are four computational
data of Tolman length δ∗: 1.11, 0.96, 2.7 and 4.04
for N = 2048 and T ∗ ≈ 0.70. Their average value is
δ∗ = 2.20, which is coincident with that in Eq.(28),
though the two temperatures are different. If we no-
tice that ‘Despite increasing theoretical attention, de-
bate continues on even the sign of Tolman’s length
for simple liquids different’[24] and ‘Recent MD sim-
ulations furthermore indicate that the Tolman length
sensitively depends on the interaction potential.’[24]

Our agreement is satisfactory.
All the analysis in this section shows that our the-

oretical scheme is a good or successful attempt and
worthy of studying.

5. Conclusions

For the determination of surface tension of liq-
uid droplets from molecular dynamics simulations, the
most time-consuming part, i.e. the most difficult part
to enhance the precision, is the calculation of pressure
tensors in the surface layer i.e. transition layer. To
overcome this difficulty, we have deduced a formula
that permits us to calculate the surface tensions by
MDS for all temperatures and all radii at which the
liquid droplets can exist from the surface tension of a
given temperature and a given radius. The advantage
of this method consists in decreasing the calculation
quantity of pressure tensors in transition layer to a
minimum. Two thousand particles are taken to show
how to carry out our scheme.
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