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The elastic properties and the vibration characterization are important for the stability of materials and devices, especially
for nanomaterials with potential and broad application. Nanomaterials show different properties from the corresponding bulk
materials; the valid theoretical model about the size effect of the elastic modulus and the vibration frequency is significant to
guide the application of nanomaterials. In this paper, a unified analytical model about the size-dependent elastic modulus and
vibration frequency of nanocrystalline metals, ceramics and semiconductors is established based on the inherent lattice strain and
the binding energy change of nanocrystals compared with the bulk crystals, and the intrinsic correlation between the elasticity and
the vibration properties is discussed. The theoretical predictions for Cu, Ag, Si thin films, nanoparticles, and TiO2 nanoparticles
agree with the experimental results, the computational simulations, and the other theoretical models.

1. Introduction

Nanomaterials, including nanoparticles, nanowires, nan-
otubes, and nanoscale thin films, have been found to
show different physical, chemical, and mechanical properties
from the corresponding bulk materials [1–16], such as the
phonon frequency blue shift of nano-semiconductors and
nanometals [2–7], the elastic modulus increase of thin films
and nanoparticles [8–14], the melting temperature, and the
thermal conductivity decrease of nanocrystals [15, 16]; these
peculiar properties bring potential and broad application
in microelectronics, optics, sensor, and so forth. While the
elasticity and the vibration characterization of nanomaterials
directly determines the stability and the reliability of the
devices; therefore, to understand the size effect of elasticity
and vibration properties and their theoretical mechanism
is important. The theoretical explanations for the size
effect of the elastic modulus are related with the surface
effect by introducing the surface energy contribution in
the continuum mechanics [11] or by the computational
simulations reflecting the surface stress [8, 9] or surface
relaxation influence [13, 17]. The size effect of the phonon
frequency is attributed to the phonon confinement [3], the
surface pressure [18], or the interfacial vibration effects [19],

and so forth, Although various theoretical interpretations
were, respectively, proposed for the elastic modulus and
the phonon frequency change of nanomaterials [2–6, 8–
11, 13, 14, 17–19], a unified theory about the size-dependent
elastic modulus and phonon frequency, with all parameters
having clear physical meaning, is lacking, which is helpful
to understand the physical mechanism and the inherent
correlation of the elasticity and the vibration properties, and
helpful to guide the application of nanomaterials.

It is known that the Young’s modulus Y and the phonon
vibration frequency ν are both related with the force constant
k [20, 21]

Y = k

h
, v = CK1/2, (1)

where h is the atomic distance in equilibrium or the bond
length, and C is a constant. The force constant k =
d2u(r)/dr2

(r=h), where u(r) denotes the interatomic potential,
which is a function of the atomic distance r; therefore,
the Young’s modulus and the vibration frequency are both
inherently related with the atomic interaction energy and
the atomic distance. Recently, an analytic thermodynamic
equation for the surface stress and the size-dependent lattice
strain of nanocrystals has been established [22]. In terms
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of this equation, the bond length change of nanocrystals
compared with the bulk crystals can be determined. Thus, it
is also possible to develop an analytic thermodynamic equa-
tion for the size-dependent elastic modulus and vibration
frequency combining with the consideration of the binding
energy change, which will be useful for the estimation
of elasticity and the vibration properties of nanomaterials
and for understanding the effect of the thermodynamic
parameters on the elasticity and the vibration properties.

In this paper, a quantitative unified model without
any free parameter for the size-dependent elastic modulus
and vibration frequency of single crystal thin films and
nanocrystals with grain boundaries is established based
on the size-dependent bond length and bond energy. The
predictions of the model for the enhancement of the elastic
modulus and the vibration frequency of Cu, Ag, Si thin
films, nanoparticles, and TiO2 nanoparticles agree with the
results of the molecular dynamics (MD) simulations, the
continuum mechanics calculations, and the experimental
measurements of different authors.

2. Model

According to the theory of the solid state physics, the
interatomic potential of an ideal crystal can be expressed as
u(r) = [pq/(p−q)]e[(h/r)p/p−(h/r)q/q], where e is the atomic
binding energy or the bond energy, and the coefficients p and
q depend on the shapes of the potential curves (when p = 12
and q = 6, the potential is the Lennard-Jones (L-J) potential)
[33]. Therefore, k = d 2u(r)/dr 2

(r =h) = pqe/h 2 and combining
with (1),

Y = C′e
h3

, v = C′′e1/2

h
, (2)

where C′ = pq and C′′= C(pq)1/2 are constants for a crystal,
that is, the elastic modulus and the phonon vibration
frequency are both dependent on the bond length h and the
bond energy e of the crystal. Note that for metals, ceramics
and semiconductors, the EAM (embedded-atom method)
potential, the Morse potential, and the Tersoff potential are
more appropriate, respectively, but the intrinsic relations
among the force constant, the elastic modulus, the frequency,
the bond energy, and the bond length are the same as those in
the simple L-J potential as shown in (2). Let Y(D) and v(D)
denote the size-dependent Young’s modulus and vibration
frequency of nanomaterials, whereD is the thickness of single
crystal thin films or the diameter of nanoparticles or the
grains, assuming that (2) is still applicable to nanomaterials,
Y(D) = C′e(D)/h(D)3, v(D) = C′′e(D)1/2/h(D), where e(D)
and h(D) are the corresponding size-dependent average
bond energy and bond length of nanomaterials, respectively.
Then the ratio Y(D)/Y and v(D)/v can be written as

Y(D)
Y

=
[

h

h(D)

]3[e(D)
e

]
,

v(D)
v

=
[

h

h(D)

][
e(D)
e

]1/2

.

(3)

In (3), the size-dependent bond length h/h(D) is related
with the inherent lattice strain ε = [h(D)−h]/h of nanocrys-
tals. According to the Laplace-Young equation [34], the

hydrostatic pressure acting on a small solid sphere particle
immersed in the liquid P = 4σ/D, with the isotropic
surface stress σ and the diameter D, will induce an elastic
strain ε in the particle. Under the small strain, ε = �D/D
= �A/(2A) = �V/(3V) with the area A and the volume
V of the particle. Combining with the definition of the
compressibility κ = − � V/(VP), P = −3Bε, where B = 1/κ
is the bulk modulus; therefore, ε = −4κσ/(3D). According
to the thermodynamic definition of the surface stress [22],
σ = ∂G/∂A = ∂(γA)/∂A = γ + A∂γ/∂A ≈ γ + A � γ/ΔA,
where G is the surface/interface excess Gibbs free energy,
γ is the surface/interface energy, � A/A = −8κσ/(3D),
� γ = γ − γb with the bulk surface/interface energy γb,
thus, γ = γb − (σ − γ)8κσ/(3D). Considering the size
dependence of the surface/interface energy, γ = γb(1−D0/D),
where D0 is a minimum critical size, and D0 = 2h, 3h
for thin films and particles, respectively [22]. Therefore,
the intrinsic surface stress σ = ±[(3γbD0)/(8κ)]1/2, where
the positive sign denotes the tension stress, the negative
denotes the compression stress, γb = 2hSvHm/(3VcR) is
the bulk solid-liquid interface energy [23], Sv denotes the
vibrational part of the melting entropy Sm, Hm is the melting
enthalpy, Vc is the molar volume of crystals, and R is
the ideal gas constant. Thus, ε = ±(2/3D)

√
κD0hSvHm/(VcR)

for free-standing single crystal particles and thin films,
similarly, ε = −2κσ/(3D) = ±(1/3D)

√
κD0hSvHm/(VcR) for

nanocrystalline materials with grain boundaries considering
the smaller strain of solid-solid interfaces [23]. Therefore,

h

h(D)
= 1

1± ( f /3D)√κD0hSvHm/(VcR)
, (4)

where f = 1, 2 for nanocrystals with grain boundaries and
single crystal thin films, respectively, the negative denotes
the lattice contraction, and the positive denotes the lattice
expansion. Note that κ in (4) is assumed to be size-
independent as the first-order approximation, which does
not lead to a big error on the Y(D)/Y value in (3) since
ε� 1 [22]. According to (4), the D-dependent average bond
length of nanocrystals can be obtained by some available
thermodynamic parameters such as the vibration entropy
and the melting enthalpy.

The size dependence of the average bond energy is
related with the size effects of the cohesive energy of
crystals and the coordination number of atoms. Let the
coordination number of an atom in the bulk crystals be Z,
and the corresponding cohesive energy of one molar single
crystal E = (ZN0)e/2 for the bulk materials, where N0 is
Avogadro constant, that is, e = 2E/(Z N0). For thin films and
nanoparticles, the size-dependent cohesive energy E(D) =
[(Z−m)y+Z(1−y)] N0e(D)/2 considering the larger surface-
volume-ratio and the surfacial breaking bond effect, where
y = D0/D represents the ratio of the surface atoms number
to the volume atoms number, and m denotes the decrease
of the surfacial atomic coordination number compared with
Z, that is, e(D) = 2E(D)/[(Z−my) N0]. Therefore, e(D)/e =
[E(D)/E]/[1−ym/Z]. Approximately, E−E(D) = γ0A, where
γ0 is the surface or solid-solid interface energy for free-
standing thin films, or nanocrystals with grain boundaries,



Journal of Nanomaterials 3

0 10 20 30 40 50 60 70
0.9

1.05

1.2

1.35

1.5

Y
(D

)/
Y

an
d
v(
D

)/
v

D (nm)

Cu

Young’s modulus of (111) thin film

Biaxial modulus of (100) thin film

Frequency of nanoparticles

Our predictions
Our predictions
Our predictions

MD simulation [8]
Experimental results [7]

Cotinuum mechanics calculation [11]

Figure 1: Size-dependent elastic modulus and vibration frequency
of Cu thin films and nanocrystals. In (6), Sv ≈ Sm = Hm/Tm =
9.613 Jmol−1 K−1for metals [23], Tm is the melting temperature.
m = 3, 4, respectively, for (111) and (100) faces corresponding
to the computational simulation [8] and continuum mechanics
calculation [11] of thin films. For nanocrystalline Cu, the solid-solid
interface energy γ0 ≈ 2γb = 4hSvHm/(3VcR) = 0.724 Jm−2 [23],
for Cu thin films, γ0 is the surface energy. Other related parameters
are in Table 1.

and A is the surface/interface area, A = (2/D)Vc for thin films
and A = (3/D)Vc for nanocrystals with grain boundaries.
Thus, we have

e(D)
e

= 1− γ0A/E

1− (D0/D)(m/Z)
. (5)

According to (5), the D-dependent average bond energy
of nanocrystals can be obtained by the available thermo-
dynamic parameters such as the cohesive energy and the
surface/interface energy. Finally, substituting (4) and (5)
into (3), the size-dependent elastic modulus and vibration
frequency can be determined as follows:

Y(D)
Y

=
[

1
1± f /3D

√
κD0hSvHm/(VcR)

]3
1− γ0A/E

1−(D0/D)(m/Z)
,

v(D)
v

=
[
Y(D)
Y

]1/3[ 1− γ0A/E

1− (D0/D)(m/Z)

]3/2

.

(6)

3. Results and Discussion

Figure 1 shows the thickness-dependent Young’ modulus
and biaxial modulus of Cu thin films and the diameter-
dependent vibration frequency of Cu nanoparticles. Figure 2
shows the grain diameter-dependent bulk modulus and
vibration frequency of TiO2 nanocrystals. Figure 3 shows the
thickness-dependent biaxial modulus of Ag thin films and
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Figure 2: Size-dependent elastic modulus and vibration frequency
of TiO2 nanocrystals. In (6), h = a/

√
2 with the lattice constant

a = 0.458 nm [24]. Sv ≈ 0.4Sm = 0.4Hm/Tm = 12.576 Jmol−1 K−1

for semiconductors [25]. Vc = M/ρ with the molar mass M =
79.88 g mol−1and the density ρ = 3.84 g cm−3 [24], m = 7, γ0 ≈
2γb. Other parameters are in Table 1.

the diameter-dependent vibration frequency of Ag nanopar-
ticles. Figure 4 shows the thickness-dependent Young’ mod-
ulus of Si thin films and the diameter-dependent vibration
frequency of Si nanocrystals. The lines are our theoretical
predictions based on (6) and some available thermodynamic
parameters [24–32]; the symbols are the results of the
MD simulations [8, 9], the continuum mechanics and the
semicontinuum model calculations [11, 13], the phonon
dispersion calculation [5], and the experimental measure-
ments [2–4, 7, 12–14]. The agreement between our model’s
predictions and the experimental results, and the simulations
and the calculations of other groups can be found from
the figures. It can be seen that the elastic modulus of
nanomaterials in the size range of 1–50 nm increases about
1%–50%, and the frequency of nanomaterials in the size
range of 1–70 nm increases about 1%–30%; especially the
size effects of the modulus and the frequency are obvious
and should be considered in the size of smaller than about
20 nm and 10 nm, respectively, due to the larger change of
the bond length and the bond energy in the smaller scale.
The enhancement of the frequency is smaller than that of
the elastic modulus for the same nanosystems, which is
reasonable since Y(D)/Y = [v (D)/ v]2[h/h(D)] based on
(3) and the background of the lattice contraction, that is,
h/h(D) > 1 (The negative is taken in (6)). The lattice
constants of TiO2 nanoparticles [35] and some metallic
nanocrystals [22] have been observed to decrease compared
with the corresponding bulk crystals. The above relation is
also in agreement with the general knowledge of Y ∝ v2,
which implies that the elasticity change is originated from
the lattice vibration change of nanocrystals.
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Table 1: The related parameters in (4)–(6).

h (nm) Hm (K Jmol−1) Tm (K) B (GPa) Vc (cm3 mol−1) γ0 (Jm−2) E (KJ mol−1) Z

Cu 0.2556 [26] 13.05 [27] 1357.6 [27] 137.8 [28] 7.1 [27] 1.952 [29] 336 [30] 12

TiO2 0.3239 66.88 [24] 2128 [24] 220 [31] 20.802 2.1 672.4 [24] 14

Ag 0.2194 [26] 11.3 [27] 1234 [27] 103.6 [28] 10.3 [27] 1.2 [29] 284 [30] 12

Si 0.3368 [26] 50.55 [27] 1685 [27] 235.4 [28] 12.1 [27] 1.568 [32] 446 [30] 16
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Figure 3: Size-dependent elastic modulus and vibration frequency
of Ag thin film and nanocrystals. In (6), Sv ≈ Hm/Tm =
9.157 Jmol−1K−1, m = 4. For nanocrystalline Ag, γ0 ≈ 2γb =
0.4 Jm−2, for Ag thin films, γ0 is the surface energy. Other related
parameters are in Table 1.

According to (3), when the average bond length con-
tracts and the bond energy increases with reducing size
of nanocrystals, the elastic modulus and the vibration
frequency enhance. The model indicates that the mod-
ulus enhancement and the phonon frequency blue shift
originate from several contributions: one is the intrinsic
surface tension stress and the average lattice contraction of
nanocrystals determined by (4), which causes the change
of the lattice vibration and the elastic properties compared
with the corresponding bulk counterparts; at the same time,
the average atomic binding strengthening, resulted from the
intrinsic small size effect (the cohesive energy change) and
the surface breaking bonds and the large surface ratio based
on (5), contributes to the elastic and vibration behavior
change. In fact, the physics of our model in some degree
conforms to the theory of the surface bond contraction and
the bond strengthening [21, 36]. On the other hand, our
model implies not only the surface effect but also the internal
contribution, for example, the bond length contraction and
the bond energy increase of the interior atoms originated
from the phonon confinement effect have both influence
on the elasticity and the vibration behavior of nanocrystals,
which is nonlinearly dependent on 1/D different from the
previous discussion [37].
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Figure 4: Size-dependent elastic modulus and vibration frequency
of Si thin film and nanocrystals. In (6), Sv = 6.72 Jmol−1 K−1 [25],
m = 6. For nanocrystalline Si, γ0 ≈ 2γb = 1.06 Jm−2, for Si
thin films, γ0 is the surface energy. Other related parameters are in
Table 1.

Note that the model prediction is based on the isotropic
assumption for nanoparticles. When the change trends of the
bond length and the bond energy are different in different
orientations, the elasticity and the vibration behavior will
exhibit diversity. For example, the modulus decrease and
the frequency red shift were observed for some nanosolids
[18, 38], which may be because of the bond length expansion
and the bond energy decrease. According to (3), even if the
bond length expands, as long as the bond energy enhances
enough to compensate for it, or the bond energy decreases
but the bond length contracts enough, the modulus increase
and the frequency blue shift may occur, vice versa. In that
case, the surface stress and the lattice strain state, the surface
atomic coordinate number and the surface/interface energy
will be different.

4. Conclusion

In conclusion, the elastic modulus and the vibration fre-
quency of metal, ceramic, and semiconductor nanocrystals
are dependent on the thickness of thin films and the diameter
of nanoparticles. This size effect is modeled by consid-
ering the size-dependent bond length and bond energy
related with the surface effect and the interior contribution.
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The model is expressed by some available thermodynamic
parameters, and the predictions for Cu, Ag, Si thin films,
nanoparticles, and TiO2 nanoparticles are in agreement with
the computational simulations, the continuum mechanics
calculations, and the experimental results.
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