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Abstract This article studies on Cauchy’s function f (z) and

its integral, (2πi)J[ f (z)] ≡
∮

C
f (t)dt/(t − z) taken along a

closed simple contour C, in regard to their comprehensive
properties over the entire z = x + iy plane consisted of the
simply connected open domain D+ bounded by C and the
open domain D− outside C. (1) With f (z) assumed to be Cn

(n < ∞-times continuously differentiable) ∀z ∈ D+ and in a
neighborhood of C, f (z) and its derivatives f (n)(z) are proved
uniformly continuous in the closed domainD+ = [D+ + C].
(2) Cauchy’s integral formulas and their derivatives ∀z ∈ D+
(or ∀z ∈ D−) are proved to converge uniformly in D+ (or in
D− = [D− +C]), respectively, thereby rendering the integral
formulas valid over the entire z-plane. (3) The same claims
(as for f (z) and J[ f (z)]) are shown extended to hold for the
complement function F(z), defined to be Cn∀z ∈ D− and
about C. (4) The uniform convergence theorems for f (z) and
F(z) shown for arbitrary contour C are adapted to find special
domains in the upper or lower half z-planes and those inside
and outside the unit circle |z| = 1 such that the four general-
ized Hilbert-type integral transforms are proved. (5) Further,
the singularity distribution of f (z) in D− is elucidated by
considering the direct problem exemplified with several typ-
ical singularities prescribed in D−. (6) A comparative study
is made between generalized integral formulas and Plemelj’s
formulas on their differing basic properties. (7) Physical sig-
nificances of these formulas are illustrated with applications
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to nonlinear airfoil theory. (8) Finally, an unsolved inverse
problem to determine all the singularities of Cauchy function
f (z) in domainD−, based on the continuous numerical value
of f (z)∀z ∈ D+ = [D+ + C], is presented for resolution as a
conjecture.

Keywords Uniform continuity of Cauchy’s function · Uni-
form convergence of Cauchy’s integral formula ·Generalized
Hilbert-type integral transforms · Functional properties and
singularity distributions

1 Introduction

This article is a special final version of Wu(2007) [1]. In
the classical studies of water waves propagating in perma-
nent form on water of finite or infinite depth in the physical
z = x + iy plane, the complex potential f = φ + iψ was first
adopted by Stokes (1880) [2] as the independent variable for
the advantage of its boundary location being known. The in-
finite strip of f for a solitary wave or a semi-infinite strip of
f for a periodic wave train on deep water can be mapped
conformally onto a unit disc (|ζ | ≤ 1) in the ζ = ξ + iη
plane. For waves of a rounded crest, the complex velocity
w(z(ζ)) = d f /dz is an analytic function, regular (or holo-
morphic, i.e. one-valued and continuously differentiable) in
the closed flow domain. As the solitary, or a simple peri-
odic wave (of amplitude a and wave number k) grows to
become the highest with a corner crest of interior angle of
120◦, w(z(ζ)) then has a primary (Stokes’s) and secondary
(Grant’s) algebraic branch singularities at the crest on the
flow boundary |ζ | = 1, whereas w(z(ζ)) remains regular in
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the open interior domain |ζ | < 1. This will be taken as the
direct problem of permanent water waves.

A foremost query is to question: “Where do the branch
singularities go as the highest wave becomes rounded at the
crest by a slight reduction in height?” “Do the singularities
retain their type, with only changes in strength and location
to an interior point in the open domainD−{∀ζ ∈ |ζ | > 1} out-
side the unit disc of the flow domain? or even with changes
in types of singularities?” In fact, for waves that are reg-
ular in the closed flow domain D+{∀ζ ∈ |ζ | ≤ 1}, w(z(ζ))
must have singularities distributed in the open domain D−,
for otherwise, by Liouville’s Theorem, w(z(ζ)) would have
to be a constant in the entire ζ-plane, which is the trivial case
of a wave of vanishing amplitude.

To determine the singularities of w(z(ζ)) in domainD−
outside the flow field based on solutions obtained in numer-
ics, to be called the inverse problem in short, is of fundamen-
tal importance to gaining sound physical and mathematical
expositions to a growing list of intriguing and even perplex-
ing properties of these waves as exhibited in their solutions.
In particular, this need has been motivated by a recent series
of studies. First, the perturbation expansion method intro-
duced by Stokes (1847) [2] for studies on the nonlinear and
dispersive effects in water waves by means of series solution
in powers of certain small parameters, and followed by var-
ious authors in the active history of solitary waves, is still
to be concluded on the convergence, or not, of such power
series expansion, as reviewed by Wu et al. [3], who have
brought the one-parameter power series for solitary waves
(of height a and wave-number k in water of depth h) to the
eighteenth order, finding the series to become asymptotic,
reaching a minimum error at order n = 12 if parametric in
α = a/h, and at order n = 17 if in ε = k2h2.

In this premise, Wu et al. [4] have developed a uni-
fied intrinsic functional expansion theory for exact evalua-
tion on the Euler model for solitary waves of arbitrary spe-
cific height α = a/h. This theory adopts an expansion
in terms of a set of intrinsic component functions deter-
mined from analysis of the flow field about the wave crest,
its outskirts, and its mid-spans, with the unknown coeffi-
cients determined by minimizing the mean-square-error of
the Bernoulli constant (= 0). For the highest wave with a
corner crest of 120◦, taking 15 unknown coefficients of the
series expansion optimally selected has yielded results in-
cluding α = a/h = 0.833 199 0 for the height, the Froude
number F = c/

√
gh = 1.290 890 4 for the wave speed c,

accurate to six decimals. Comparable accuracies have been
attained [4] uniformly for solitary waves of all heights down
to the so-called dwarf long waves defined for waves of am-
plitude α = a/h < 10−2, including tsunamis commonly as-
sessed as of amplitude α = O(10−3−10−4) in the open ocean.
This subject is still an open field in view of the findings [4]
that the relative errors of the solution spread out many water-
depths farther off, the lower the wave. It can be expected that
these challenging issues could be overcome once the singu-

larity distributions of the solution variable outside the flow
field be determined by a general theoretical method. It may
further expose the mechanisms underlying wave instabilities,
or bifurcation of any steady-state solution found. All such
pursuits could benefit by the inverse problem resolved. This
is the principal objective of the present study.

2 The Cauchy function with Cauchy’s integral theorem
and integral formulas

For the general purpose, we first re-cite the two coupled
Cauchy’s integral formulas, known as the founding stones of
the theory of functions of a complex variable z = x + iy,

J[ f (z)] ≡ 1
2πi

∮
C

f (t)
t − z

dt = f (z),

(z ∈ D+— open domain inside C, |z| < 1), (1a)

J[ f (z)] ≡ 1
2πi

∮
C

f (t)
t − z

dt = 0,

(z ∈ D−— open domain outside C, |z| > 1), (1b)

where C is a closed contour, say a unit circle: |z| = |t| =
1∀t ∈ C traversing in +ive (counter-clockwise) sense as the
standard reference, and here f (z) is defined as the Cauchy
function. This and the following two Theorems can be found
in Titchmarsh (1949) [5] and other literature to which we re-
fer.
Definition 1. The Cauchy function. If f (z) is analytic and
regular in a simply-connected open domain D+ bounded by
contour C and if d f /dz is continuous on C, f (z) is a Cauchy
function. Domain D+ plus contour C plus the open domain
D− outside C (including z = ∞), i.e. [D+ +C +D−], consti-
tutes the entire z-plane. With the Cauchy function there are
several related classical theorems.
Theorem 1. The Cauchy-Riemann equations. If f (z) is an-
alytic, meaning it is continuously differentiable ∀z ∈ domain
D, f (z) = u(x, y) + iv(x, y) has its conjugate functions u(x, y)
and v(x, y) satisfy inD the relations

∂u
∂x
=
∂v
∂y
,

∂u
∂y
= −∂v

∂x
,

(the Cauchy-Riemann equations). (2)

Theorem 2. Cauchy’s integral theorem. If f (z) is analytic
and regular (finite and one-valued) in a simply-connected
domainD+ inside and on contour C, then the integral,∫ z

z0

f (z)dz = F(z) − F(z0), (dF(z)/dz = f (z)), (3a)

depends only on the end points z0 and z, but not on the path
between them inD+, hence equivalently,

I[ f (z)] ≡
∮

C
f (z)dz = 0. (3b)

In fact, Eq. (3b) follows from Eq. (2) since f (z)dz =
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(udx − vdy) + i(vdx + udy), both terms being integrable.

Returning to Eq. (1), Eq. (1b) directly follows from
Eq. (3b), for g(t, z) = f (t)/(t − z) is regular ∀t ∈ C and
∀z ∈ D−, and Eq. (1a) follows from the residue theorem.

Here, the Cauchy integral, denoted by J[ f (z)], also to
be called the Cauchy functional (bearing an integral operator
connotation), possesses its value equal to f (z)∀z ∈ D+ inside
C and vanishes identically ∀z ∈ D− outside C, all in terms of
its values f (t) on C. But the most obvious gap between Eqs.
(1a) and (1b) is the conspicuous lack of a value for J[ f (z)]
when z falls right on contour C. To have all the properties
of f (z) thoroughly expounded, the primary objective of the
present study is to fill this long-standing gap and have the
two integral formulas cover the entire z = x + iy plane.

To proceed, we first extend the original assumption in-
voked on the Cauchy function f (z).

3 Generalization under new assumption

We first introduce a new assumption that f (z) ∈ Cn(n < ∞)
∀z ∈ D+ and in a neighborhood striding across contour C.

Next, we conduct a limiting procedure to let a point z+ ∈ D+
in Eq. (1a) and a point z− ∈ D− in Eq. (1b) each tend from
the D± side, respectively, to a common generic point z0 ∈ C
by following two principles:

(1) Contour C is deformed into C± with a small semicircle
C±ε of radius ε centered at z0 ∈ C and indented onto the D∓
side to let point z±(∈ D±) reach z0 without crossing C±, re-
spectively.

(2) The value of Cauchy’s integral remains intact in the limit
as ε → 0 and z± → z0 without crossing either C+ by z+ or
C− by z−.

Definition 2. Generalized Cauchy function. The Cauchy
function as just specified under the new assumption will be
called the generalized Cauchy function for identifying its
discreet distinction.

3.1 Uniform continuity of the generalized Cauchy func-
tion f (z)

First, we let point z± ∈ D± tend, respectively, to a generic
point z0 on C just as specified by Principle (1), and hence
Principle (2) is fulfilled (as z± reach z0 ∈ C without crossing
C±) while Cp = C − C±ε remains intact (see Fig. 1). Fur-
ther, with the contour so deformed, Principle (2) is clearly
observed. Hence

I±(z0) ≡
∮

C±

f (t)
t − z0

dt

=

{ ∫
C±ε
+

∫
Cp

} f (t)
t − z0

dt

= I±ε (z0) + Ip(z0), (ε > 0),

I±ε (z0) = f (z0)
∫

C±ε

dt
t − z0

+ J(z0)→ ±πi f (z0),

J(z0) =
∫

C±ε

f (t) − f (z0)
t − z0

dt → 0, (ε → 0),

(4)

where the limit for I±ε (z0) comes with t moving in the ± sense
on C±ε , whilst that for J(z0) results from the argument that for
given ε > 0, ∃δ(ε, z0) � |( f (t) − f (z0))/(t − z0) − f ′(z0)| < δ,
∀|t−z0| < ε, hence |J(z0)| < (| f ′(z0)|+δ)�ε(C±ε being of length
�ε = πε) → 0 as ε → 0. In addition, as ε → 0, the integral
over Cp assumes Cauchy’s principal value defined by

Ip(z0) =
∫

Cp

f (t)
t − z0

dt → lim
ε→0

∫ z0−ε

z0+ε

f (t)dt
t − z0

= P
∮

C

f (t)dt
t − z0

, (z0 on C), (5)

with z0 ± ε both lying on C, and with the symbol P signify-
ing Cauchy’s principal value often omitted by convention as
understood.

Fig. 1 A Cauchy integral
∮

C
f (t)dt/(t − z) around a simple closed

contour C enclosing domain D+ and excluding domain D− has its
contour deformed into C± with only a small semicircle C±ε indented
onto theD∓ side, centered at z0 ∈ C so as to let point z± ∈ D± tend,
respectively, to z0 ∈ C without crossing C±

Finally, as z+ → z0 and ε → 0, Eq. (1a) yields
J[ f (z0)] = (I+ε + Ip)/(2πi)→ f +(z0), a limiting value of f (z),
yet to be determined. And as z− → z0, ε → 0, Eq. (1b) gives
J[ f (z0)] = (I−ε + Ip)/(2πi) → 0, since J[ f (z0)] of Eq. (1b)
remains zero by Principle (2). Thus, Eq. (1) become

f +(z0) = lim
z+→z0

1
2πi

∮
C

f (t)
t − z+

dt

=
1
2

f (z0) +
1

2πi
P
∮

C

f (t)
t − z0

dt, (z0 on C), (6a)
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0 = lim
z−→z0

1
2πi

∮
C

f (t)
t − z−

dt

= −1
2

f (z0) +
1

2πi
P
∮

C

f (t)
t − z0

dt, (z0 on C), (6b)

of which the sum and difference determine two relations of
vital importance as

(I) : f +(z) = f (z);

(II) : f (z) =
1
πi
P
∮

C

f (t)
t − z

dt,
(z on C), (6c)

in which the suffix of z0 is omitted for all z on C. Here, the
first relation (I), f +(z) = f (z), shows that the limit f +(z) of
f (z) reached from the D+ side is equal to the original f (z)
prescribed ∀z ∈ C; it therefore proves the uniform continu-
ity of f (z) in the closed domain D+ = [D+ + C]. Relation
(II) gives the value to f (z) for any z ∈ C in terms of its values
f (t) over C. The integral representing f (z) for z ∈ C in Re-
lation (II) is noted to differ from that of f (z) for z � C in Eq.
(1a) by a factor of 2, with the new integral assuming its prin-
cipal value. This completes the proof of the above two key
relations in Eq. (6) by finding formula (6a), (6b) as the limit
values of J[ f (z)] of both Eq. (1a) and Eq. (1b), respectively.
By Eq. (6c), we therefore have proved.

Theorem 3. Uniform continuity of generalized Cauchy func-
tion f (z) in closed domain D+. If f (z) satisfies Cauchy’s
integral formula (1a) in open domain D+ bounded by con-
tour C and also Eq. (1b) in open domain D− outside C,
then f (z) is uniformly continuous within the closed domain
D+ = [D+ + C].

3.2 Uniform convergence of the integral formulas and re-
sulting integral properties

From Theorem 3 there readily follow other important conse-
quences:

Theorem 4. Uniform convergence of the integral formulas.
The integral formulas (1) for J[ f (z)]∀z ∈ D+ (or ∀z ∈ D−)
converge uniformly in closed domain D+ (or D−), respec-
tively.

Proof: Rewrite Eq. (1) as

g(z) ≡ J[ f (z)] − f (z) = 0, (z ∈ D+),

G(z) ≡ J[ f (z)] = 0, (z ∈ D−).
(7a)

In Eq. (7a), let z± ∈ D± tend, respectively, to a generic point
z0 ∈ C, with contour C indented into C± as just delineated
(see Fig. 1), thus yielding Eq. (6) for the values of the inte-
gral J[ f (z)] in the limit. These two limiting equations, upon
using the two relations in Eq. (6c), then both become

g(z0) = G(z0)

= −1
2

f (z0) +
1

2πi
P
∮

C

f (t)
t − z0

dt = 0, (z0 ∈ C). (7b)

Therefore, Eqs. (7a) and (7b) state that for z0 ∈ C,

g(z) = J[ f (z)] − f (z) = g(z0) = 0, (z ∈ D+);

G(z) ≡ J[ f (z)] = G(z0) = 0, (z ∈ D−),
(8)

which clearly proves the uniform convergence of g(z) in
closed domain D+ and the uniform convergence of G(z) in
closed domainD− = [D− + C−], as was to prove.

3.3 Derivatives of Cauchy’s integral formulas

It is classical [5] that Cauchy’s integral J[ f (z)] has deriva-
tives Jn[ f (z)] of all orders, founded on the same basis as that
for Eq. (1), given by

Jn[ f (z)] ≡ dn

dzn
J[ f (z)] =

n!
2πi

∮
C

f (t)dt
(t − z)n+1

= f (n)(z),

(z ∈ D+; n = 1, 2, · · · ), (9a)

Jn[ f (z)] ≡ dn

dzn
J[ f (z)] =

n!
2πi

∮
C

f (t)dt
(t − z)n+1

= 0,

(z ∈ D−; n = 1, 2, · · · ). (9b)

Now, we can also attain Eq. (9) by differentiation under the
integral sign of Eq. (1), by virtue of Theorem 4.

Further, integrating the integral in Eq. (9) by parts
m(≤ n) times yields

J(n,m)[ f (z)] ≡ (n − m)!
2πi

∮
C

f (m)(t)dt
(t − z)n−m+1

= f (n)(z),

(z ∈ D+; m = 0, 1, · · · , n), (10a)

J(n,m)[ f (z)] ≡ (n − m)!
2πi

∮
C

f (m)(t)dt
(t − z)n−m+1

= 0,

(z ∈ D−; n = 1, 2, · · · ), (10b)

in which every integrated term in each step vanishes under
the new assumption. These J(n,m)[ f (z)] are m equivalent in-
tegral forms for f (n)(z). In particular, for m = n, J(n,n)[ f (z)] ≡
Jn[ f (z)], we obtain

Jn[ f (z)] =
1

2πi

∮
C

f (n)(t)
t − z

dt = f (n)(z),

(z ∈ D+; n = 1, 2, · · · ), (11a)

Jn[ f (z)] =
1

2πi

∮
C

f (n)(t)
t − z

dt = 0,

(z ∈ D−; n = 1, 2, · · · ). (11b)

This new result for the generalized function f (z) is very valu-
able, for writing h(z) = f (n)(z) renders Eq. (11) identical in
form with Eq. (1), and can therefore be uniformly treated all
together. Whence,

Theorem 5. Uniform continuity of the derivatives f (n)(z) in
closed domain D+. If f (z) satisfies Eq. (1a) in open domain
D+ and also Eq. (1b) in open domain D−, and if f (n)(z) is
continuous on C as assumed, then f (n)(z) is uniformly con-
tinuous within the closed domainD+ = [D+ +C], with
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f (n)+(z) = f (n)(z);

f (n)(z) =
1
πi
P
∮

C

f (n)(t)
t − z

dt,
(z on C; n = 1, 2, · · · ). (12)

In fact, this follows in complete analogy with Eq. (6) since
Eq. (11) for Jn[ f (z)] are identical in form with Eq. (1) for
J[ f (z)]. By the same analogy with Eq. (8) in Theorem 4, we
also have the important consequence.

Theorem 6. Uniform convergence of formulas of Jn[ f (z)].
The integral formulas of Jn[ f (z)]∀z ∈ D+ (or ∀z ∈ D−) con-
verge uniformly in closed domain D+ (or D−), respectively,
for n = 0, 1, · · · ,
gn(z) = Jn[ f (z)] − f (n)(z) = gn(z0) = 0, (z ∈ D+);

Gn(z) = Jn[ f (z)] = Gn(z0) = 0, (z ∈ D−).
(13)

For further studies in the sequel, we chart out the fol-
lowing course.

A new complement function F(z) is introduced to be
Cn∀z ∈ D− outside C and about C, and shown to share all the
claims for f (z) in complete analogy. In Sect. 5, the uniform
continuity found for generalized function f (z) in domainD+
and also the complement function F(z) inD− = [D−+C] are
jointly adapted and applied to special domains in the upper-,
or lower-half z-plane and those inside or outside the unit cir-
cle |z| = 1 to have the generalized Hilbert transforms proved
for these cases.

The central point is stressed that the generalized func-
tion f (z) itself can have such singularity distributions in D−
as dictated only by its numerical values f (t)∀t ∈ C. Possible
behavior of function f (z) in D− is illustrated in Sect. 7 as
a direct problem (to which our inverse problem is its in-
verse) with singularities exemplified by poles, algebraic and
logarithmic branches directly prescribed inD−.

This study is extended in Sect. 7 and Sect. 8 to in-
clude Plemelj’s formulas for a line integral of a regular func-
tion along a Jordan arc without a double point (not closed
as a contour) for applications to nonlinear wing theory. It is
concluded in Sect. 9 with expository discussions for further
studies. Especially, the inverse problem to determine ana-
lytically the singularity distribution of function f (z) in open
domain D− outside contour C in terms of its numerical val-
ues on C is presented for resolution as a conjecture.

3.4 Extension to domains of other forms

The original simply-connected open domainD+ bounded by
arbitrary contour C can be extended to domains of other geo-
metric forms. For simplicity, contour C will still assume the
unit circle in this section.

Complement function. Interchanging the roles ofD± gives
rise to the complement function, denoted by F(z), defined in
complete analogy with function f (z), i.e. being Cn∀z ∈ D−
and in a neighborhood striding across contour C, includ-

ing z = ∞ such that F(z) = O(|z|−m)(m ≥ 2) as |z| → ∞.
The analogous integral of F(z), denoted by J−[F(z)], will be
called the complement functional.

Complement function F(z) satisfies the integral theo-
rem 3 ∀z ∈ D− and its integral formulas

J−[F(z)] ≡ 1
2πi

∮
C−

F(t)
t − z

dt

=
−1
2πi

∮
C

F(t)
t − z

dt = F(z), (z ∈ D−), (14a)

J−[F(z)] ≡ 1
2πi

∮
C−

F(t)
t − z

dt

=
−1
2πi

∮
C

F(t)
t − z

dt = 0, (z ∈ D+), (14b)

in which the negative sign for the integral around C is due to
the positive sense of C− being clockwise, opposite in sense to
C. This can also be derived by applying the inverse confor-
mal map z = 1/ζ, t = 1/τ about the unit circle of C, mapping
C onto C∗ (also taken counter-clockwise, with D− mapped
ontoD+∗ inside C∗ andD+ ontoD−∗ outside C∗) so that

(2πi)J−[F(z)] =
∮

C∗
F
(1
τ

)
ζdτ

(τ − ζ)τ

=

∮
C∗

F
(1
τ

)( 1
τ − ζ −

1
τ

)
dτ =

∮
C∗

F(1/τ)
τ − ζ dτ,

in which
∮

C∗ F(1/τ)dτ/τ = 2πiF(∞) = 0 due to |F(z)| <
O(|z|−2) as |z| → ∞, resulting, by Eq. (1), in Eq. (14), and
J−[F(z)]→ 0 as |z| → ∞. In this analogy, we obtain

Theorem 7. Integral formulas for complement function
F(z). The functional J−[F(z)] and its derivatives J−n [F(z)]
of a complement function F(z) satisfy the integral formulas
(∀n = 0, 1, · · · )

J−n [F(z)] ≡ 1
2πi

∮
C−

F(n)(t)
t − z

dt

=
−1
2πi

∮
C

F(n)(t)
t − z

dt = F(n)(z), (z ∈ D−), (15a)

J−n [F(z)] ≡ 1
2πi

∮
C−

F(n)(t)
t − z

dt

=
−1
2πi

∮
C

F(n)(t)
t − z

dt = 0, (z ∈ D+). (15b)

In sum, we note that the values of Jn[ f (z)] and J−n [F(z)]
are now given in the entire z-plane for all n = 0, 1, · · · in en-
tirety, including ∀z ∈ C, since by analogy with Eqs. (6a)–
(6c), we also have:

Theorem 8. Uniform continuity of complement function F(z)
and its derivatives F(n)(z) in closed domainD− and uniform
convergence of their integral formulas. If F(z) satisfies Eq.
(14a) ∀z ∈ D−, and Eq. (14b) ∀z ∈ D+, then F(z) and its
derivatives F(n)(z) are uniformly continuous inD−, and their
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integral formulas are uniformly convergent in analogy to that
for f (z),

F(n)−(z) = F(n)(z);

F(n)(z) =
1
πi
P
∮

C−

F(n)(t)
t − z

dt

=
−1
πi
P
∮

C

F(n)(t)
t − z

dt,

(z on C), (16)

for n = 0, 1, · · · , where F(n)−(z) is the limit of F(n)(z) as z
reaches C from theD− side.

Regarding uniform continuity and uniform conver-
gence, Theorems 3 and 4 for f (z) and Theorem 8 for F(z) are
of fundamental importance because to them all the general
theorems on uniform continuity and uniform convergence
known in calculus then hold. The six limiting equations in
Eqs. (6c), (12) and (16) thus set the foundation established
here for further developments, some to follow next.

3.5 Integrals of the integral formulas

In this respect, we have

Theorem 9. Integral theorem of functionals Jn[ f (z)] and
J−n [F(z)]. The contour integrals of Jn[ f (z)] defined by Eq.
(11) and that of J−n [F(z)] by Eq. (15) along contour C all
vanish,∮

C
Jn[ f (z)]dz =

∮
C

f (n)(z)dz = 0,

∮
C

J−n [F(z)]dz =
∮

C
F(n)(z)dz = 0,

(n = 0, 1, · · · ). (17)

In fact, the first follows from the integral formula (3), the
uniform convergence relation (8) and the uniform continuity
of f (n)(z) within closed domain D+, and the second relation
by analogy.

Aside from functionals Jn[ f (z)] and J−n [F(z)], there are
also functionals Kn[ f (z)] and K−n [F(z)], for n = 0, 1, · · · ,
with z strictly located on contour C, i.e.

Kn[ f (z)] ≡ 1
πi
P
∮

C

f (n)(t)
t − z

dt = f (n)(z),

K−n [F(z)] ≡ −1
πi
P
∮

C

F(n)(t)
t − z

dt = F(n)(z),

(z ∈ C). (18a)

Theorem 10. Integral theorem of Kn[ f (z)] and K−n [F(z)].
The contour integrals of functionals Kn[ f (z)] and K−n [F(z)]
of Eq. (18a) along contour C all vanish, for n = 0, 1, · · · ,∮

C
Kn[ f (z)]dz =

∮
C

f (n)(z)dz = 0,

∮
C

K−n [F(z)]dz =
∮

C
F(n)(z)dz = 0,

(z ∈ C). (18b)

This can be shown by analogy with Eq. (17), or by a direct
proof with z strictly located on contour C.

4 Mean value of regular functions

Formulas (1) and (11) provide a mean value of f (z) and
f (n)(z) for a circular contour in particular. The discussions
here will be addressed only on f (z), for the corresponding
results for complement function F(z) can be implied by anal-
ogy.

Theorem 11. Mean-value theorem. If each of f (n)(z) ex-
ists and is continuous inside and on a circular contour C,
t − z = reiθ (of arbitrary radius r), formulas (1a) and (11a)
become

f (n)(z) =
1

2π

∫ 2π

0
f (n)(z + reiθ)dθ, (n = 0, 1, 2, · · · ), (19)

asserting that the value of a regular function f (n)(z) at the
center of a circle C is equal to the mean of its values on C.
As r → 0, Eq. (19), being homogeneous in f (n), becomes an
identity.

In general, let | f (m)(t)| ≤ Mm(R, z) be the upper bound
on |t − z| = R, then by Eq. (10a),

| f (n)(z)| ≤ (n − m)!R−(n−m)Mm(R, z),

(R = |t − z|,m = 0, 1, · · ·n; n = 0, 1, 2, · · · ). (20)

To explore dependence of Mm(R, z) on R = |t− z| and z, let us
first consider a class of function f (z) that possesses a Taylor
series f (z) = Σn=0cnzn, convergent absolutely inside a circle
|z| = R lying within D+. Let | f (z)| ≤ M = max|z|=R| f (z)| for
|z| ≤ R, then

|cn|Rn ≤ M(R), (Cauchy’s inequality), (21)

which in turn provides for | f (n)(0)|, in virtue of f (n)(0) = n!cn,
with the upper bounds

| f (n)(0)| ≤ n!R−nM(R), (n = 0, 1, 2, · · · ). (22)

As a proof for formulas (21) and (22), we deduce from Eq.
(9a), for |t| = R, the relation

| f (n)(0)| ≤ n!
2π

∮
C

M
Rn+1
|dt| = n!R−nM(R),

in agreement with relation (20) for z = 0 and m = 0. An
immediate consequence of relation (22) is the following.

Theorem 12. Liouville’s theorem. If f (z) is analytic and
bounded for all finite z, it is a constant.

In fact, if | f (z)| ≤ M for all z, | f (n)(0)| → 0 as
R = |z| → ∞ by relation (22) for all n ≥ 1, leaving only
the n = 0 term to give f (z) = c0, a constant. By an extension
in scope, we have

Theorem 13. Polynomial theorem. If f (m)(z) is analytic and
| f (m)(z)| ≤ Mm(const. > 0)∀z, f (z) is a polynomial of degree
m.

First, by Liouville’s theorem, f (m)(z) is a constant,
hence by relation (20), | f (n)(0)| → 0 as R → ∞∀n ≥ m + 1,
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as was to prove. This theorem may be called the extended
Liouville’s theorem.

5 The generalized Hilbert transforms

We next pursue whether there exists an integral analog of
the Cauchy-Riemann differential relations (2) between the
conjugate functions u and v of an analytic function f (z) =
u(x, y) + iv(x, y). This leads to Hilbert’s integral transform
we now discuss.

5.1 The Hilbert transform

We first consider a class of analytic function f (z) which is
regular in the upper half z-plane for Im z ≥ 0, and vanishes
as |z| → ∞ uniformly in 0 ≤ arg z ≤ π; then by formula (1)
for this f (z) we take C along the upper semicircular contour
Cu = Cx(−R ≤ x ≤ R) + C+R(C+R : z = Reiθ,R = const.,
0 ≤ θ ≤ π), the integral on C+R → 0 as R → ∞, giving, by
formula (1),∮

Cu

f (z)
z − ζ dz =

∫ ∞
−∞

f (x)
x − ζ dx = 2πi f (ζ), (Im ζ > 0),

∮
Cu

f (z)
z − ζ dz =

∫ ∞
−∞

f (x)
x − ζ dx = 0, (Im ζ < 0).

The limit of this set of equations as ζ → ξ (a point on the
real ζ-axis), from above or from below, has been obtained
for arbitrary contour in relation (6c) which can be adapted to
the present geometry to give

f +(ξ) = f (ξ);

f (ξ) =
1
πi
P
∫ ∞
−∞

f (x)dx
x − ξ ,

(−∞ < ξ < ∞). (23)

This shows that by Theorem 3, f (z) is uniformly continuous
in the closed domain D+u : (0 ≤ |z| ≤ R < ∞, 0 ≤ arg z ≤ π,
or y ≥ 0). Hence substituting f (x) = u(x) + iv(x), f (ξ) =
u(ξ) + iv(ξ) in Eq. Eq. (23), with (u, v) ∈ C1(−∞ < x < ∞)
being understood, yields for the real and imaginary parts as

u(ξ) = H[v(x)] =
1
π
P
∫ ∞
−∞

v(x)dx
x − ξ ,

v(x) = H−1[u(ξ)] =
−1
π
P
∫ ∞
−∞

u(ξ)dξ
ξ − x

.

(24)

This pair of reciprocal integral relations, known as the
Hilbert transform, is due to David Hilbert (1862-1943), with
H denoting the transform and H−1 the inverse transform,
here based on Eq. (23) as their proof. In relations (24),
u(x) is said to be conjugate to v(x); the relationship is skew-
reciprocal, with v(x) conjugate to −u(x), reciprocal with
a minus sign. For a function regular for Im z ≥ 0, e.g.
f (z) = eiz, eix = cos x + i sin x, we have cos ξ = H[sin x],
and by inversion, sin (x) = H−1[cos ξ] = −H[cos ξ], in skew
reciprocity. Now, a symbolic substitutions of the two opera-

tor equations (24) gives

H−1H[v(x)] = v(x), HH−1[u(ξ)] = u(ξ),

−→ H−1H = HH−1 = 1, (unity operator).
(25)

This can be shown for specific u(x) or v(x) by consecu-
tive evaluations of the integrals as exemplified here, whereas
showing this for arbitrary u(x) or v(x) involves interchanging
the order of integrations involving product of two Cauchy
kernels. For the general case, it is essential to have

The Poincaré–Bertrand formula∫
L

dt′

t′ − x

∫
L

f (t, t′)
t − t′

dt =
∫

L
dt
∫

L

f (t, t′)dt′

(t′ − x)(t − t′)

−π2 f (x, x), (x ∈ L), (26)

where L is a regular Jordan arc, assumed finite (or infinite)
in length, with end-points at t = a and t = b and without
double point, the integration variable t moves from a to b,
and function f (t, t′) is assumed regular in a neighborhood of
the entire line L, while each of the integrals assumes its own
principal value, here with the symbol P omitted as under-
stood. For its proof we refer to a remark following Eq. (36)
(or Muskhelishvili [6]) while we can illustrate here its appli-
cation to relation (25).

Example 1. Consider the formula H−1H[v(x)] = v(x) for ar-
bitrary v(x) being operated by the Hilbert transform and its
inversion in succession so that

H−1H[v(x)] =
−1
π2

∫ ∞
−∞

dt′

t′ − x

∫ ∞
−∞

v(t)dt
t − t′

= v(x) +
1
π2

∫ ∞
−∞

v(t)dt
x − t

∫ ∞
−∞

( 1
t′ − x

− 1
t′ − t

)
dt′

= v(x),

where the second equality is due to the Poincaré-Bertrand

formula and the last integral vanishes sinceP
∫

dt′/(t′−x) =

0. Similarly, we can show that HH−1[u(x)] = u(x) to com-
plete a proof of relation (25).

Indeed, this also shows that when the two key relations
in relation (6c) holds for a function f (z) = u(x, y) + iv(x, y),
regular in a certain domain, to result in a skew-reciprocal pair
of integral transform equations between its conjugate func-
tions u and v (like that in the present case for the upper-half
z-plane and three more to follow), the transform relations ar-
rive automatically, without any need to prove u and v being
conjugate functions (as in Titchmarsh(1948) [7]), because
the proof is already imbedded in relation (6c). Also owing to
relation (25), we point out that if u(ξ) = H[v(x)] is regarded
as a singular integral equation for v(x) with u(ξ) given (being
Hilbert transformable), its solution is v(x) = H−1[u(ξ)], and
vice versa.

In this case, if the Hilbert transform u(ξ) = H[v(x)] of
a transformable v(x) has yielded the u(ξ) to form a complex
function f (x) = u(x)+ iv(x) for x real and have it analytically
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continued into f (z) over the entire z-plane, then, by implica-
tion of the analysis underlying Eq. (23), f (z) will be analytic
and regular in the upper half z-plane, and, by Theorem 3, be
uniformly continuous in the closed domainD+u , while neces-
sarily possessing, due to Liouville’s Theorem, some singu-
larities in the lower-half z-plane.

Example 2. Given v(x) = cos x, then by Eq. (24),
u(ξ) = H[cos x] = − sin ξ, so that f (x) = u(x) + iv(x) =
i(cos x + i sin x) = ieix, hence f (z) = ieiz, being regular for
y ≥ 0, but singular as y→ −∞.

5.2 The complementary Hilbert transform

On the contrary, if F(z) is regular in the lower half z-plane,
then we have F(z), regular in D−{z| Im z ≤ 0}, satisfying, by
Eq. (16), the relations

F−(ξ) = F(ξ);

F(ξ) =
−1
πi
P
∫ ∞
−∞

F(x)dx
x − ξ ,

(−∞ < ξ < ∞), (27)

where F−(ξ) is the limit of F(z) as a point z(Im z < 0) tends
from below to reach a point ξ on the real z-axis, so that re-
lation (27) differs from the corresponding relation (23) only
by a minus sign of the integral by virtue of Eq. (15). Thus,
substituting F(x) = U(x) + iV(x) and F(ξ) = U(ξ) + iV(ξ) in
relation (27) yields

U(ξ) = H[V(x)] =
−1
π
P
∫ ∞
−∞

V(x)dx
x − ξ ,

V(x) = H −1[U(ξ)] =
1
π
P
∫ ∞
−∞

U(ξ)dξ
ξ − x

,

(28a)

−→ H[V(x)] = −H[V(x)] = H−1[V(x)],

H −1[U(ξ)] = H[U(ξ)] = −H−1[U(ξ)].
(28b)

The pair of reciprocal integral relations in Eq. (28a), desig-
nated by H[·] and its inverse by H −1[·], may be called the
complementary Hilbert transform; it is related to the Hilbert
transform by Eq. (28b).

Example 3. Given v(x) = −(x2 + 1)−1, its Hilbert transform
is found, after some algebra, as

u(ξ) =
−1
π
P
∫ ∞
−∞

dx
(x2 + 1)(x − ξ)

=
ξ

ξ2 + 1
,

f (x) = u(x) + iv(x) =
1

x + i
→ f (z) =

1
z + i

,

which is regular in the upper half z-plane, but has a simple
pole at z = −i in the lower half z-plane. On the other hand,
the complementary transform of V(x) = −(x2 + 1)−1 gives,
by Eq. (28a),

U(ξ) = H[V(x)] = −H[V(x)] =
−ξ

ξ2 + 1

→ F(x) = U + iV =
−1

x − i

→ F(z) =
−1

z − i
,

which is regular in the lower half z-plane, but has a simple
pole at z = i in the upper half z-plane.

Thus, a given v(x) can generate an analytic function
f (z) (or F(z)) which is regular in the upper (or lower) half
z-plane by applying the Hilbert (or complementary Hilbert)
transform.

Example 4. For V(x) = cos x, we have, by Eq. (28),
U(ξ) = sin ξ, hence F(x) = i(cos x − i sin x) = ie−ix and
hence F(z) = ie−iz, which behaves opposite to f (z) = ieiz of
Example 2.

5.3 The circular Hilbert transform

We next consider a function f (z) which is regular in open do-
main D+c of a unit disc: |z| < 1 and continuous on |z| = 1 for
the contour C which contains both points z = eiθ and t = eıφ

to give, by the general formula (6c), for (−π ≤ θ ≤ π),

f (eiθ) =
1
π
P
∫ π

−π
f (eıφ)

eiφdφ
eiφ − eiθ

=
1

2π
P
∫ π

−π

(
1 − icot

θ − φ
2

)
f (eıφ)dφ, (29a)

u(θ) =
P
2π

∫ π

−π

(
u(φ) + v(φ) cot

φ − θ
2

)
dφ,

v(φ) =
P
2π

∫ π

−π

(
v(θ) − u(θ) cot

θ − φ
2

)
dθ,

(29b)

which results from separating the real and imaginary parts in
Eq. (29a) with f (eiθ) ≡ f̂ (θ) = u(θ) + iv(θ). This pair of inte-
gral transform relations are self-consistent, and can be used
as is. Finally, we have

Theorem 14. Circular integral transform. If f (z) is regular
in |z| ≤ 1, and if f (0) = 0, then

f (0) =
∫ π

−π
f (eiθ)dθ =

∫ π

−π
{u(θ) + iv(θ)}dθ = 0, (30a)

u(θ) = Ĥ[v(φ)] =
1

2π

∫ π

−π
v(φ) cot

φ − θ
2

dφ,

v(φ) = Ĥ−1[u(θ)] =
−1
2π

∫ π

−π
u(θ) cot

θ − φ
2

dθ.

(30b)

Here, Eq. (30a) is implied by the mean-value theorem (19),
hence Eq. (29b) reduces (by suppressing the value f (0), if
f (0) � 0) to the ultimate form Eq. (30b). In fact, Eq. (29) and
Eq. (30) can serve to resolve discrepancies between some
similar yet differing published results, all called Hilbert’s
reciprocity formula for the cotangent-kernel (e.g. Magnus &
Oberhettinger [8], Muskhelishvili [6]). This pair of Eq. (30b)
will be called the circular Hilbert transform.
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5.4 The complementary circular transform

In analogy with the Hilbert and its complementary trans-
forms, we can also deduce the transform for the class of func-
tion F(z) which is regular in domainD−c {∀z : |z| ≥ 1(F(z)→
0 as z → ∞)}. For F(z), we simply take Eq. (30) with a
change in sign of the integrals, as implied by Eqs. (15)–(16),
giving for F(eiθ) ≡ F̌(θ) = U(θ) + iV(θ) the transform equa-
tions as

U(θ) = Ȟ[V(φ)] =
−1
2π

∫ π

−π
V(φ) cot

φ − θ
2

dφ,

V(φ) = Ȟ−1[U(θ)] =
1

2π

∫ π

−π
U(θ) cot

θ − φ
2

dθ,

(31)

while Ĥ[·] and Ȟ[·] are analogous with Ĥ[·] in Eq. (30a)
standing for H[·] in Eq. (24) and with Ȟ[·] in Eq. (31) for
H[·] in Eq. (28). The above pair of relations will be called
the complementary circular transform.

Example 5. As a simple example, we take v(φ) = sin φ, then
its circular transform, by Eq. (30), is

u(θ) =
1

2π
P
∫ π

−π
sin(ψ + θ)

1 + cosψ
sinψ

dψ = cos θ,

giving f (eiθ) = u(θ) + iv(θ) = eiθ, and hence its analytically
continued function f (z) = reiθ = z, which is regular in D+c ,
with f (0) = 0, but is singular at infinity in D−c . On the other
hand, for V(φ) = sin φ, we take the complementary circu-
lar transform equation (31), then U(θ) = −u(θ) = − cos θ,
giving F(eiθ) = U(θ) + iV(θ) = −e−iθ, and therefore F(z) =
−(reiθ)−1 = −z−1, which is regular insideD−c : (|z| ≥ 1), with
a simple zero at z = ∞, but has a simple pole at z = 0 inD+c ,
as is implied by Theorem 8 or Liouville’s Theorem.

5.5 The Parseval relations for the generalized Hilbert
transforms

If u(x) and v(x) of Eq. (24) are both square integrable, and
similarly for their complementary counterpart, U(x),V(x) of
Eq. (28), and further for the pairs u(θ), v(θ) of Eq. (30) and
U(θ),V(θ) of Eq. (31), they satisfy the Parseval relations∫ ∞
−∞

u2(x)dx =
∫ ∞
−∞

v2(x)dx,

∫ ∞
−∞

U2(x)dx =
∫ ∞
−∞

V2(x)dx,

(32a)

∫ π

−π
u2(θ)dθ =

∫ π

−π
v2(φ)dφ,

∫ π

−π
U2(θ)dθ =

∫ π

−π
V2(φ)dφ.

(32b)

Proof: For the first Parseval relation, we have u(x) = H[v(t)],
v(t) = H−1[u(x)], then, by Eq. (24)∫ ∞
−∞

u2(x)dx =
1
π

∫ ∞
−∞

u(x)dx
∫ ∞
−∞

v(t)dt
t − x

=
−1
π

∫ ∞
−∞

v(t)dt
∫ ∞
−∞

u(x)dx
x − t

=

∫ ∞
−∞

v2(t)dt,

by interchanging the order of integration. Similarly, the other
Parseval relations can be proved.

Here, we point out that these four generalized integral
transforms all stem from the keystone relations (6c) which
can be attributed to have provided the foundation on which
these integral transforms are given their proof.

6 Behavior of Cauchy function f (z) in the complemen-
tary domainD−

We have seen exemplified in Examples 2-5 that while a
Cauchy function f (z) is regular in a closed domain D+, it
invariably has one or more singularities in its complemen-
tary domain D−. In general, if f (z) is a Cauchy function,
regular inside and on contour C, then f (z) is implied by Li-
ouville’s theorem to possess a singularity distribution in D−
outside C, including z = ∞, unless f (t) ≡ A(const.)∀t ∈ C.
Our primary objective here is to exhibit the exact relation-
ship between the singularities of f (z) in D− and their values
f (t)∀t ∈ C by illustrating some typical direct problems.

In the direct problem, the singularities of f (z) are first
prescribed explicitly in D− outside C in order to examine
their corresponding integral formulas on C, which in this sec-
tion will be a unit circle |z| = 1 for simplicity. Let one such
singularity be located at z1 outside C, which duly induces a
corresponding singularity at z = ∞, e.g. a pole (or a zero) at
z1 inducing a zero (or a pole) of the same order at z = ∞; an
algebraic or a logarithmic branch point at z1 being associated
with the same branch at z = ∞, all to be accounted for. With
all the singularities of f (z) explicitly distributed in D−, its
values on C are trivially f (z) = f (t)∀|t| = 1. Inversely, any
f (t) given analytically on C gives the singularity in f (z). In
general practice, f (t) is known only numerically on C.

Example 6. In Eq. (1a), given f (t) = (t − a)−1(|a| > 1), a
simple pole situated at t = a outside C, hence, by Eq. (1a),
J[ f (z)] = f (z) = (z − a)−1, which is regular for |z| ≤ 1 ∈ D+,
whereas for |z| > 1,

2πiJ[ f (z)] =
∮

C
g(t, z)dt = IC = 0,

(g(t, z) = (t − a)−1(t − z)−1, |a| > 1, |z| > 1),

2πiJ[ f (z)] = I∞ − IS =

{ ∮
C∞
−
∮

CS

}
g(t, z)dt

=
1

z − a

∮
CS

( 1
t − a

− 1
t − z

)
dt = 0,

where integral IC is on contour C(|t| = 1), I∞ on C∞ encir-
cling t = ∞, and IS enclosing both poles of g(t, z) (all in
the positive sense), and they are related by Eq. (3b) with
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I∞ = IC + IS , since g(t, z) is regular in the domain bounded
by C∞,C and CS . Separately, IC = 0 by Eq. (3b) (g(t, z)
being regular ∀|t| ≤ 1, |a| > 1, |z| > 1), I∞ = 0 since
g(t, z) = (t−2 + O(|t|−3)) with residue res. = 0 at z = ∞, and
IS = 0 since the residues of its integrand at t = a(res. = 1)
and at t = z(res. = −1) cancel. Whence J[ f (z)] = 0 for
|z| > 1 is shown both by applying Eq. (3b) and alternatively
by three direct integrations.

Example 7. As a variation, let the complement function in
Eq. (14a) be F(t) = t−n(n = 1, 2, · · · ) which is a pole of or-
der n at t = 0 and is regular for |t| ≥ 1, then for |z| ≥ 1 we

have J−[F(z)] = IC− = (2πi)−1

∮
C−

t−n/(t − z)dt = z−n by

Eq. (14a), or by direct evaluation, I∞ = IS + IC = 0 (due to
its zero residue at t = ∞), hence IC− = −IC = IS = z−n (the
residue at t = z, |z| > 1). For |z| < 1,

2πiJ−[F(z)] =
∮

C−
g(t, z)dt = IC− = 0,

(g(t, z) = t−n(t − z)−1, |z| < 1),

2πiJ−[F(z)] = IC− = −IC = −I∞ = 0,

where the first result for IC− = 0 (|z| < 1) is by Eq. (15b) of
Theorem 7, whereas the alternative second results from di-
rect integration by deforming the contour C to C∞, between
which g(t, z) is regular and g(t, z) = O(|t|−(n+1)) with zero
residue at t = ∞, hence giving both in agreement.

Example 8. In Eq. (1a), given f (t) = (t − 1/b)−1/2 (0 < b <
1), a branch made single-valued on a two-sheet Riemann sur-
face cut along the real t-axis from branch point at t = 1/b > 1
to t = +∞, hence by Eq. (1a), we have J[ f (z)] = (z−1/b)−1/2

which is regular for |z| ≤ 1 (1/b > 1), whereas for |z| > 1,

2πiJ[ f (z)] =
∮

C
g(t, z)dt = IC = 0,

(g(t, z) = (t − 1/b)−1/2(t − z)−1, |z| > 1),

2πiJ[ f (z)] =
∮

CI

g
(1
ξ
, z
)dξ
ξ2

=
2
√

b
z

{∫ b

0

dξ√
ξ(b − ξ)(1/z − ξ)

− πz√
1 − bz

}

= 0, (1 < |z| < 1/b),

where IC = 0 by Eq. (3b), ξ = 1/t is the inverse mapping,
with contour CI (|ξ| = 1) in the positive sense, the line inte-
gral from ξ = 0 to b comes from the contour integral around
the cut within CI , whilst the last term in the bracket comes
with the residue at ξ = 1/z (located within CI). We note that
the value IC = 0 (or equivalently,

∮
C∞

g(t, z)dt = 0) is nec-
essary and sufficient to have the line integral determined as
shown above. A similar result can be attained when point z
falls on the branch cut.

Example 9. Finally, let us consider the special case with
f (t) ≡ 1 on |t| = 1, for which we have

J[ f (z)] =
1

2πi

∮
C

dt
t − z

= IC = 1, (|z| ≤ 1),

J[ f (z)] = I∞ − IS

=
1

2πi

∮
C∞

(1
t
+ O(|t|−2)

)
dt − 1

2πi

∮
CS

dt
t − z

= 1 − 1 = 0, (|z| > 1),

where integral I∞ is on C∞, IS is on contour S (|t| = 1) encir-
cling t = z(|z| > 1). Therefore, even with J[ f (z)] ≡ 1(|z| ≤ 1),
the functional J[ f (z)] still jumps down to J[ f (z)] ≡ 0(∀z :
|z| > 1), hence the integral formula (1b) invoking J[ f (z)] ≡ 0
for z ∈ D− is universally fulfilled. It is also evident that the
functional J[ f (z)] is not a function, for it is neither continu-
ous nor differentiable in a neighborhood striding across con-
tour C. The only exception for J[ f (z)] to be continuous over
the entire z-plane is when f (t) ≡ 0 on C.

7 The Plemelj formulas.

We now consider another general class of line integrals of
the form

f (z) =
1

2πi

∫
L

g(t)
t − z

dt, (z � L), (33)

where L is a regular Jordan arc, assumed finite (or infinite) in
length, with end-points at t = a and t = b and without dou-
ble point, and with the integration moving from a to b (see
Fig. 2), and g(t) is assumed regular in a neighborhood of the
entire line L. Evidently, f (z) is a regular function ∀z � L
and has a simple zero at infinity. It is also evident that f (z)
possesses derivatives to all orders, given by

f (n)(z) =
n!
2πi

∫
L

g(t)dt
(t − z)n+1

, (z � L, n = 1, 2, · · · ). (34)

Fig. 2 A Plemelj integral f (z) = (2πi)−1
∫

L
g(t)dt/(t − z) along an

open path L (from t = a to t = b) has its path L deformed into L±

with only an indented small semicircle L±ε (|t − z0 | = ε), on the ∓ive
side of L, centered at z0 ∈ L so as to let a point z on the ±ive side
(left/right side) of L tend to z0 ∈ L without crossing L±
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In the limit as point z tends to a point t = z0 on L from
the left (+ive), or from the right (−ive) side of L, we in-
dent L into L± = L±ε + Lp where L±ε is a semicircle of radius
|t − z0| = ε onto the (∓ive) side, leaving Lp = L± − L±ε intact,
so that point z reaches z0 ∈ L without crossing L±, while f (z)
tends to its limit f +(z), or f −(z), respectively, yet undeter-
mined. Carrying out the integration over L± paths in a way
similar to that for C± in Sect. 3, we obtain Plemelj’s formula

f ±(z) = ±1
2

g(z) +
1

2πi
P
∫

L

g(t)
t − z

dt,

(z ∈ L − Plemelj’s formula), (35a)

with z0 becoming generic z, the sign P (often omitted) signi-
fying its Cauchy principal value, hence

f +(z) − f −(z) = g(z), (z ∈ L), (35b)

f +(z) + f −(z) =
1
πi
P
∫

L

g(t)
t − z

dt, (z ∈ L). (35c)

Formulas (35a)–(35c) are called Plemelj’s formulas. Finally,
substituting Eq. (35b) in Eq. (33) yields

f (z) =
1

2πi

∫
L

g(t)
t − z

dt =
1

2πi

∫
L

f +(t) − f −(t)
t − z

dt, (36)

which shows that f (z) is determined by its jump [ f +(t) −
f −(t)] across the line L for all z in the plane, including the z’s
on L, on which Eq. (36) reduces to an identity by virtue of
Eqs. (35b)–(35c).

In applying Plemelj’s formulas to integrals involving
two Cauchy kernels, as exemplified in Example 1, it is es-
sential to make use of the Poincaré-Bertrand formula (26).
This formula can now be proved by letting a point z � L
tend to a point z0 ∈ L, while applying Plemelj’s formula
twice as needed. Plemelj’s formulas can be powerful in
treating various two-dimensional mathematical physics, in-
cluding problems with mixed boundary conditions on har-
monic and biharmonic functions, the Riemann-Hilbert prob-
lems and other types of problems encountered in science,
technology and applications.

8 Application and physical significance

Applications of the formulas obtained in this study can be
made to various scientific fields as well as for further math-
ematical advances. Here we first select a Riemann-Hilbert
problem of aerodynamic wing theory for an exact solution
to a two-dimensional flat plate airfoil. It involves dealing
with a pair of conjugate integrals, one of which is about a
finite Hilbert transform and its inversion [8], whilst the other
a Plemelj’s integral over an infinite line.

Thus we consider the 2-D irrotational flow of an in-
compressible and inviscid fluid past a flat plate airfoil held
fixed along −1 ≤ x ≤ 1, y = 0 in an inertial frame of ref-
erence at an incidence angle α with respect to a uniform

free stream of velocity U. Denoting the fluid velocity by
(U cosα+ u,U sinα+ v), (u, v) being the perturbation veloc-
ity, we have the basic equations (cf. Kármán & Burgers [9])
as

ux + vy = 0, (incompressibility), (37a)

uy − vx = 0, (irrotationality), (37b)

v = −U sinα, (−1 ≤ x ≤ 1, y = ±0);

u2 + v2 → 0, (as x2 + y2 → ∞),
(37c)

p
ρ
+

1
2
{(U cosα + u)2 + (U sinα + v)2} = 1

2
U2. (37d)

Here Eqs. (37a) and (37b) are the 2-D components of
∇ · u = 0 and ∇ × u = 0, respectively, u being the vector
(u, v, 0). With Eq. (37c) providing the boundary conditions,
a solution to (u, v) can be found from Eqs. (37a)–(37c), and
Eq. (37d) then gives the Bernoulli equation for pressure p in
the fluid of density ρ.

Noting that (u,−v) satisfy the Cauchy-Riemann equa-
tions (37a) and (37b), the complex velocity w = u− iv is then
an analytical function of z = x+iy. Since v(x, y) is prescribed
in Eq. (37c) as being even in y, then u(x, y) by Eqs. (37a) and
(37b) is odd in y. Since w(z) is analytic and regular in the
open domain of the flow field, hence u(x, 0) = 0 for |x| > 1
since u(x, y) is there continuous and odd in y, rendering this a
Riemann-Hilbert problem. It has a complementary solution,
which is wc = uc − ivc = i/H(z),H(z) =

√
z2 − 1, for on y =

0, H±(x) = ±i
√

1 − x2 (|x| < 1) and H±(x) = sgn x
√

x2 − 1
(|x| > 1), so that vc = 0 for |x| < 1, uc = 0 for |x| > 1, and
|wc| → 0 as |z| → ∞. Now introducing f (z) = w(z)H(z) gives

f +(x) − f −(x) = 2
√

1 − x2v(x),

(|x| < 1, v(x) = −U sinα),

f +(x) − f −(x) = 0, (|x| > 1).

(38a)

Hence, by Plemelj’s formula (36) (here with the path L span-
ning the entire x-axis), we have

w(z) =
1

πi
√

z2 − 1

∫ 1

−1

√
1 − t2

t − z
v(t)dt +

iB√
z2 − 1

, (38b)

B being an arbitrary real constant to qualify w(z) as a solution
with |w(z)| = O(|z|−1) as z → ∞ and w(z) being integrable at
the plate as required. Finally, B is determined by an addi-
tional physical condition, known as Kutta’s condition, re-
quiring Ref. [9] that w(z) be regular in a neighborhood of the
trailing edge at z = 1. Hence expanding this w(z) about z = 1
yields under Kutta’s condition the unique exact solution as

w(z) = − 1
πi

√
z − 1
z + 1

∫ 1

−1

√
1 + t
1 − t

v(t)
t − z

dt,

(0 ≤ |z| < ∞), (38c)

valid for arbitrary v(x). For the flat plate, v(x) = −U sinα by
Eqs. (37c), (38) reduces by using Eq. (35a) to
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u±(x) − iv±(x) = U sinα
(
±
√

1 − x
1 + x

+ i
)
,

(−1 < x ≤ 1), (39)

exhibiting that u has an equal and opposite jump across the
plate by a distribution having a square root singularity at the
leading edge at z = −1 and vanishing at the trailing edge at
z = 1. This jump distribution of u results in the so-called
circulation, Γ, around the plate (see, e.g. von Kármám &
Burgers [9]), given by the contour integral of u clockwise
(by convention) around the airfoil,

Γ =

∮
u(x,±0)dx = 2πU sinα.

Finally, expressed in three-dimensional vectors, U =
(U cosα,U sinα, 0),Γ = (0, 0,−Γ) (by the right-hand rule
with the contour integral for Γ), and L = (L1, L2, 0) for the
lift vector acting on the airfoil, we have lift L given by the
Kutta-Joukowski theorem [9] in vector cross product of U×Γ
as

L = ρU × Γ, L = |L| = 2πρU2 sinα, (40)

by which the lift L acts perpendicular to the free stream ve-
locity U, pointing upward if positive.

Regarding this problem and extension in scope, there
are several issues for expository study.

8.1 Physical significance and advances in applications

Mathematically, the above solution to the airfoil problem as
formulated is exact. It can serve as a standard reference for
assessing approximate approaches such as by linear theory
for small incidence angles. It can further set a methodology
useful for achieving exact solutions in extended scope. In
the latter aspect, we first note that physically, the square root
singularity of velocity at the leading edge (associated with
an even worse singular suction in pressure p by Eq. (37d))
should raise serious questions concerning not only for engi-
neering applications but further for experimental verification
of the range of validity of the theory. Such concerns have
actually stimulated innovative theoretical developments by
adding a distribution of flow-mass sources along the plate to
obtain, again in exact form, real airfoil profiles enclosing the
lifting flat plate and its singularity (lying inside the airfoil
now having a round nose at the leading edge and a cusped
trailing edge). This exact theory can then be subjected to spe-
cific engineering design and wind tunnel tests for validation
and adaptation by the industry. In return, the result is gratify-
ing that some airfoils with aptly designed round noses have
been found experimentally capable of sustaining the low suc-
tion pressure for incidence angle α up to around 18 degrees
before the airfoils stall, so to speak, with flow separation
due eventually to the fluid viscous effects. This approach to
determine accurate solutions to problems of fluid flow past
bodies of finite volume by placing flow singularities at an
ultimate focal point or plane (e.g. at the center of a circle

or sphere or at the focal ellipse of a tri-axial ellipsoid) is
now classical for mechanics and electrodynamics, followed
by more advanced methods for aerodynamics of thin airfoils
(e.g Lighthill [10]), for naval hydrodynamics of double-body
for ship hull design (e.g. Wu & Chwang [11]), for bihar-
monics of triaxial ellipsoids and in other cases. Returning
to the mathematics, the infinite suction pressure acting at the
pointed leading edge can indeed be integrated with rigor to
produce a so-called finite leading edge suction S pulling the
airfoil forward along the flat plate just so exactly as to make
the resultant lift L (as the vector sum of the singular leading-
edge suction force S and the pressure integral acting normal
to the plate) to act exactly normal to the free stream veloc-
ity U, as predicted by the Kutta-Joukowski theorem and well
supported by experiments. In this respect, having the exact
solution can provide a concrete foundation for further ad-
vanced developments.

8.2 Finite Hilbert transform and its inversion

When Cauchy integrals enter the analysis of physical prob-
lems, the primary query would be on the significance of the
Cauchy kernel (t−z)−1. In mathematical physics, Cauchy in-
tegrals are closely related to the potentials of single and dou-
ble layers distributed along a contour C or an open arc L, as
we can illustrate next. For this airfoil problem, there are actu-
ally alternative approaches for the solution. We have elected
above to regard it as a Riemann-Hilbert problem. But we can
also represent the flat plate in the free stream by a distribu-
tion of flow singularities fixed to the plate by the so-called
singularity method. For 2-D flows satisfying Eqs. (37a) and
(37b), there are basic elementary flow singularities known as
a point source of strength Q and a point vortex of strength Γ
held at the origin, say, inducing their flow velocities at a field
point z as

w(z) = u(x, y) − iv(x, y) =
Q + iΓ

2πz

−→ w(z) = u + iv =
Q − iΓ

2πr
eiθ, (41)

which, now expressed in the polar coordinates, z = x + iy =
reiθ, shows that source Q has only an outward radial veloc-
ity component ur = Q/2πr (arg w = θ =const.), and vortex
Γ has only a clockwise circumferential velocity component
uθ = −Γ/2πr (arg w = θ−π/2). In terms of these base singu-
larities, we can construct a surface distribution of sources of
density q and a vortex sheet of density γ per unit length along
a regular arc L, generating a complex velocity field w(z) as

w(z) =
1

2π

∫
L

q(t) + iγ(t)
z − t

dt, (42)

here with the Cauchy kernel physically signified. For the flat
plate airfoil held fixed in a free stream, we need only a sur-
face distribution of vortex sheet along the plate, giving its
complex velocity as
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w(z) =
1

2πi

∫ 1

−1

γ(t)
t − z

dt. (43)

From this we have, by Plemelj’s formula (35), that on the
±sides of the plate,

w±(x) = u±(x) − iv±(x)

= ±1
2
γ(x) +

1
2πi

∫ 1

−1

γ(t)
t − x

dt, (|x| < 1), (44a)

−→ u+(x) − u−(x) = γ(x), (|x| < 1), (44b)

v+(x) = v−(x) =
1

2π

∫ 1

−1

γ(t)
t − x

dt ≡ G[γ(t)],

(|x| < 1). (44c)

With the boundary conditions (37c) prescribing v(x),
Eq. (44c) actually is a singular integral equation for the vor-
ticity distribution γ(x), which mathematically can also be re-
garded as a finite Hilbert transform, with the integral opera-
tor G denoting the transform. Then its inversion can be given
by Eq. (44b), with u+ − u− = γ(x) taken from Eq. (38) with
its construction shown for arbitrary v±(x) = v(x), thereby
yielding the unique exact solution for a flat plate airfoil as

v(x) =
1

2π

∫ 1

−1

γ(t)
t − x

dt ≡ G[γ(t)]

−→ γ(x) = G−1[v(t)], (|x| < 1), (45a)

γ(x) = −2
π

√
1 − x
1 + x

∫ 1

−1

√
1 + t′

1 − t′
v(t′)
t′ − x

dt′

≡ G−1[v(t′)], (|x| < 1), (45b)

where the integral operator G defines the finite Hilbert trans-
form and the operator G−1 its inversion, signifying GG−1 =

G−1G = 1 (the unity operator). This can be verified by sub-
stituting Eq. (45b) into the integral equation (45a) with ap-
plying the Poincaré–Bertrand formula (26) as shown in Ex-
ample 1.

8.3 A fully nonlinear theory for a flexible wing traversing
an arbitrary trajectory

The foregoing primary development can afford a sound ba-
sis to develop a fully nonlinear theory for a two-dimensional
flexible wing moving with arbitrary unsteady variations in
wing profile and along arbitrary trajectory for modeling
bird/insect flight and fish swimming. Kinematically, the ir-
rotational flow of an incompressible and inviscid fluid is pro-
duced by a two-dimensional flexible lifting surface S b(t) of
negligible thickness, stretched straight at time t = 0 and
moving with time t > 0 through the fluid with time-varying
wing shape along an arbitrary trajectory. The motion is
prescribed by a coupled Lagrangian-Eulerian system with
the Lagrangian body coordinates (ξ, η) to identify a point
X(ξ, t), Y(ξ, t) on η = 0 covering the wing surface S b(t) and
the vortex sheet S w(t) shed from the wing, both of which can
be prescribed by a complex coordinate z = x+ iy (for the Eu-

ler description) fixed in an absolute inertial frame (with fluid
at rest far away), and with z = Z(ξ, t) prescribing the un-
steady body-wake motion function, parametrically in ξ (with
η = 0) as

Z(ξ, t) = X(ξ, t) + iY(ξ, t),

on S b(t) : (−1 < ξ < 1) + S w(t) : (1 < ξ < ξm), (46a)

with ξ = −1 at the leading and ξ = 1 at the trailing edge of
the wing. From the trailing edge a vortex sheet is being shed
under Kutta’a condition to form a prolonging wake S w, and
ξm identifies the path Z(ξm, t) of the starting vortex shed at
t = 0 to reach ξm = ξm(t) at time t. Starting from the initial
condition with Z(ξ, 0) = ξ(−1 < ξ < 1, η = 0), the point ξ on
S b(t) moves for t > 0 with a prescribed body motion function
Z(ξ, t) and a prescribed complex velocity W(ξ, t) = U − iV
(see Fig. 3a),

W(ξ, t) = U − iV = ∂Z/∂t = Xt − iYt,

(|ξ| < 1, t ≥ 0; Z = X − iY), (46b)

which has a tangential component, Us(ξ, t), and a normal
component, Un(ξ, t), given by

W∂Z/∂ξ = (XξXt + YξYt) − i(XξYt − YξXt) = Us − iUn, (46c)

on S (t) = S b(t) + S w(t), the flexible S b(t) being assumed in-
extensible (|∂Z/∂ξ| = 1). Thus, the normal velocity, Un(ξ, t),
is prescribed for |ξ| < 1 while the wake vortex, once shed, is
conserved as free vortex moving fixed, by Helmholtz’s The-
orem, with the local fluid velocity, which is a part of the
solution.

For the wing motion, S b moves with a shape function
Z(ξ, t) consisting of (a) rectilinear translation with velocity
∂Z0/∂t at incidence angle α(t), (b) rotation with angular ve-
locity Ω(t) = −dθ/dt, θ = arg(Z(1, t)−Z(−1, t)), and (c) flex-
ing with camber function Ẑ(ξ, t) prescribed by (see Fig. 3b)

Z(ξ, t) = Z0(t) + eiθẐ(ξ, t),

Ẑ(ξ, t) = X̂(ξ, t) + iŶ(ξ, t) = X̂(ξ, t) + iF(X̂(ξ, t), t),
(47)

where Ẑ(ξ, t) is the complex camber function given in the
body frame, with the origin set at Z0(t), corresponding
to X̂(0, t) = 0, Z0 = Z(0, t) − ieiθŶ(0, t), with Ŷ(ξ, t) =
F(X̂(ξ, t), t) being the real camber function, and with
|Z(1, t) − Z(−1, t)| = c(t) the chord length of the wing.

Now the problem is to determine the vorticity γ(ξ, t)
over S (t) = S b(t)+S w(t). For the solution, the simple and el-
egant physical concept crystallized by von Kármán and Sears
(1938) [12] has provided an ingenious restructuring of the
vorticity distribution over S (t) as follows

on S b(t) : γ(ξ, t) = γ0(ξ, t) + γ1(ξ, t), (−1 < ξ < 1),

on S w(t) : γ(ξ, t) = γw(ξ, t), (1 < ξ < ξm).

Here, γ0(ξ, t) is the vortex bound to S b in the wakeless
“quasi-steady” flow past S b based on steady airfoil theory to
carry out the original assigned Un(ξ, t), with time t frozen
during each time step to serve as a parameter. Vorticity
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γ1(ξ, t) is the additional bound vortex induced on S b by the
trailing wake vortex γw(ξ, t), yet unknown, such that γ1 and
γw make no change to Un over S b so that the original as-

signed normal velocity Un(ξ, t) prescribed on S b(t) is thus
ever reinstated at each step.

Fig. 3 The Lagrangian coordinates (ξ, η) describe arbitrary motion of a 2-D flexible wing moving along arbitrary trajectory η = 0 through
unbounded fluid at rest at infinity: wing moves with (a) translational velocity (∂Z0/∂t) at incidence angle α(t), (b) rotational angular velocity
Ω(t), and (c) unsteady camber function Ẑ(ξ, t)

Briefly, the initial quasi-steady vorticity γ0(ξ, 0+) opens
a time-marching procedure with t = t1 = Δt, t2 = 2Δt, · · · (Δt
taken aptly small). In the very first step, the shed vor-
ticity element γw(Δξ, t1) is related to γ1(ξ, t1) (−1 < ξ <
1), hence the solution at t = t1 is obtained by applying
Kelvin’s Theorem on conservation of the total circulations

(i.e. Γ0 + Γ1 + Γw =

∫ 1

−1
(γ0 + γ1)dξ + γw(1, t1)Δξ = 0,

Δξ = UΔt), then up-dated for each time step. This yields a
nonlinear integral equation for the wake vorticity γw as

Γ0(t) +
∫ ξm

1

{√
ξ + 1
ξ − 1

+ Nw(ξ, t) + Nb(ξ, t)
}
γw(ξ, t)dξ = 0,

(ξm = ξm(tk), k = 1, 2, · · · ), (48)

where Nb(ξ, t) and Nw(ξ, t) denote the nonlinear terms (per-
taining separately to S b and S w) (cf. Wu [13] Eq. (37)).
This is proclaimed as the general wake-vorticity theorem in
terms of this nonlinear integral equation, which is for wake
vorticity γw to satisfy exactly for the solution to be exact for a
flexible wing varying in arbitrary wing geometry and its tra-
jectory. In the linear limit, both Nw and Nb vanish, reducing
Eq. (48) to Wagner’s linear integral equation.

8.4 Comparison between theory and experiments

The nonlinear theory by Wu [13] has been applied by Stredie

(2005) [14] and Hou et al. (2007) [15] to carry out compu-
tations of various unsteady motions of a 2D airfoil to attain
results of high accuracy and special interest over a diversi-
fied broad scope. Of them two special computational stud-
ies are presented here for comparisons with two well noted
wind-tunnel experiments. The first is for an airfoil perform-
ing heaving oscillations at reduced frequency σ = ωc/U
(ω being the circular frequency, c the half-chord, U the free
stream velocity) for the one-parameter family solution para-
metric inσ and computed for σ = 2.0 and heaving amplitude
h = 0.038 as that used in the experiment by Lai (2002) [16].
The numerical results (for time step Δt = 0.001 to 2 630
steps) is shown in Fig. 4, with the central photo depicting
the observed wake vortices shed from the trailing edge sit-
uated near the left border, growing in size with their senses
indicated on the top, and with the corresponding numerical
result shown in equal scale right below with a single vortex
line as the centerline of the real physically diffusing vortex
wake. The qualitative and quantitative agreement between
theory and experiment is excellent. More specifically, the
distance between the centers of the second pair of vortices
is measured in the photo to be very nearly 0.4 chord, so is
exactly with the computed result. Figure 4b is a computed
result of the longitudinal fluid velocity, in excess of U, pro-
duced by the heaving wing at a point 0.41 chord downstream
from the trailing edge. The negative values (for fluid flowing
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upstream) in the first half period gives a preciously interest-
ing computed plot of the local velocity field during the shed-
ding of the very first starting vortex, then followed by peri-

odic fluctuations of the local wake velocity, which is largely
positive, thus implying a forward thrust exerted by the fluid
on the heaving wing.

a b

Fig. 4 a Heaving wing; Upper panel: rotational sense of eddies; Mid panel: experiment by Lai (2002); Lower panel: Wu’s numerical
results; b The flow velocity just downstream of a heaving wing, evaluated at 0.41 chord downstream of the trailing edge

The other case is for an airfoil performing pitching os-
cillations, about the quarter chord (or about the mid-cord
plus heaving) computed with those data used in the exper-
iment for the pitching amplitude of α = 2◦ with time step
Δt = 0.000 5 to 3 000 steps. Figure 5 shows the comparison
of the numerical results with the experiment accomplished
by Kooschefahani (1989) [17] in which the photo of the wake
vortices shed from the wing (moving from left to right) is
shown below the corresponding numerical result. The com-
parison is again excellent in precision. Both comparisons
stress the utmost importance in having the very first starting
vortex computed in the first time step in high accuracy, for a
small artificial error is found to lead to growing departure of

Fig. 5 A wing pitching about the 1/4-chord point and moving from
left to right; Upper panel: Wu’s numerical results; Lower panel: ex-
periment by Koochesfahani (1989)

the wake vortices, in both position and entire properties from
the accurate results. This also holds for more cases exam-
ined, including mixed heave and pitch, time-periodic bend-
ing of the wing plate for simulating membrane wing (like
that in bat flight), impulsive start in incidence and camber of
a Fourier flexible wing, etc., as shown by Hou et al. (2007)
[15]. The nonlinear unsteady theory of a 2D flexible wing
has been extended by Hou et al. (2006) [18] to 3D for fur-
ther computational studies, to which we refer for details.

9 Discussion and conclusion

The primary objective of the present study is first to extend
the coverage of Cauchy’s integral formulas (1a) and (1b) to
include the point z on contour C of the integral and render
it valid for the entire z-plane. With the generalized function
f (z) assumed Cn∀z ∈ D+ within C and about C, f (z) and
all its derivatives f (n)(z) are proved to be uniformly contin-
uous in the closed domain D+ = [D+ + C]. Consequently,
Cauchy’s integral formulas (for Jn[ f (z)], n = 0, 1, · · · ) ∀z ∈
D+ (or ∀z ∈ D−) are proved uniformly convergent in closed
domain ∀z ∈ D+ (or ∀z ∈ D− = [D− + C]). These results of
fundamental value can be ascribed to principle (1) in mak-
ing indentation of C possible and to principle (2) in assuring
the validity of the results, both under the new assumption to
produce the two key relations in relation (6c) that form the
foundation of the present study. These new formulas have
furnished a simple and sound base to establish the general-
ized Hilbert-type integral transforms in various domains of
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different geometry, which are adopted jointly with Plemelj’s
formulas in applications to engineering science, mathemat-
ical physics, and applied mathematics. In conclusion, there
remain several vital issues of great significance for exposi-
tion.

9.1 Overall behavior of the generalized function in the
entire z-plane

The foregoing deliberation on the overall properties of the
generalized function f (z) over the entire z-plane is com-
prehensively expounded by considering the direct problem.
This has led to exhibiting the constitution of the inverse prob-
lem as demonstrated by Examples 6-9. In general practice,
however, solutions to mathematical problems encountered in
science and technology are found possibly involving certain
analytical relations and conditions, e.g. the Bernoulli equa-
tion (37d) for the airfoil problem, which is also a pressure
condition used in studies on water waves with unknown sur-
face displacements. In such cases, prevailing analytic re-
lations can afford extended scope for functional analysis to
give further data bases than the simplified version of the di-
rect problem covered here.

9.2 Relationship between the Cauchy integral formulas
and Plemelj’s formulas

The sharp contrast between the overall behavior of Cauchy
function f (z) and its contour integral J[ f (z)] in Eq. (1) and
the Plemelj integral equation (33) of f (z) along a regular Jor-
dan arc L without a double point (not closed as a contour)
can be brought to focus as follows. Once when the two ends
of Plemelj’s integral path L are brought to coincide to form
a closed simple contour C enclosing an open domain D+
bounded by C and excluding an open domainD− outside C,
then immediately the jumps of the Cauchy functional J[ f (z)]
across contour C and the jumps of f ± across the Plemelj in-
tegral path L suffer a drastic change in values of the integrals
from one to the other. While the changes are valid mathe-
matically in exact rigor, it may still seem in need for special
attention. For instance, the two sets of infinite line integrals
in Eqs. (24) and (28) are actually the limits of two distinct
contours.

9.3 A conjecture on the inverse problem

Finally, we conclude this study with presenting an inverse
problem of great significance as follows. This inverse prob-
lem is motivated to determine analytically all the singular-
ity distributions of the generalized function f (z) in the open
domain D− outside contour C in terms of its continuous
values prescribed only numerically within and on C. The
need is vastly broad in scope and long in history. A long-
standing problem is relevant to drawing a conclusion on the
convergence, or not, of the power series solution (started by
Stokes [2] in 1847) for water waves in permanent form of all

heights. Similar interests in having the inverse problem re-
solved also have inspired studies on perturbation expansion
of solitary waves, e.g. by Wu et al. [4].

The inverse problem.

The inverse problem is to adopt the values of f (t) pre-
scribed only in numerics ∀t on contour C for a function f (z),
analytic and regular inside C, to determine analytically all
the exact singularity distributions of f (z)∀z ∈ D− outside C,
whatever the singularity distribution.

The conjecture. Solution to this inverse problem is conjec-
tured to exist.

Having a general methodology to this grand cause is of
vital importance, for in studies of physical phenomena, so-
lutions are usually found in numerics, so to have this inverse
problem resolved is essential to gaining in-depth comprehen-
sion of the phenomenon in pursuit.
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