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In this paper, we study the linear stability of a plane Couette flow of a power-law
fluid. The influence of shear-thinning effect on the stability is investigated using the
classical eigenvalue analysis, the energy method and the non-modal stability theory.
For the plane Couette flow, there is no stratification of viscosity. Thus, for the stability
problem the stress tensor is anisotropic aligned with the strain rate perturbation. The
results of the eigenvalue analysis and the energy method show that the shear-thinning
effect is destabilizing. We focus on the effect of non-Newtonian viscosity on the
transition from laminar flow towards turbulence in the framework of non-modal
stability theory. Response to external excitations and initial conditions has been
studied by examining the ε-pseudospectrum and the transient energy growth. For
both Newtonian and non-Newtonian fluids, it is found that there can be a rather
large transient growth even though the linear operator of the Couette flow has no
unstable eigenvalue. The results show that shear-thinning significantly increases the
amplitude of response to external excitations and initial conditions.
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1. Introduction
Shear flows of Newtonian and non-Newtonian fluids are very common in industrial

applications as well as in natural processes. In many flow applications, preventing
a transition from laminar flow to turbulence is highly desirable. Non-Newtonian
viscosity significantly influences the stability of shear flows (Ranganathan &
Govindarajan 2001; Malik & Hooper 2005; Eldabe, EI-Sabbagh & EI-Sayed 2007).
Thus, changing the non-Newtonian viscosity of fluids in shear flows is an effective
way to control the behaviours in the transition from laminar flow to turbulence. In
applications, the change of viscosity of a non-Newtonian fluid can be achieved by the
addition of ‘shear-thinning/shear-thickening’ substances, by heating or cooling the
walls, or by employing a stratification of viscosity in the direction normal to the wall.

1.1. Modal and non-modal stability

Stability and transition to turbulence in shear flows have been studied extensively
over the years. Traditionally, a first step in investigating transition is the normal-mode
analysis. For this approach, it is assumed that each mode has an exponential time
dependence; thus, the base flow is considered to be unstable if an eigenvalue is found
in the unstable complex half-plane. In early years, computing the Orr–Sommerfeld
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(OS) equation was a difficult problem; thus, many early works on hydrodynamic
problems relied on simplifying assumptions and sophisticated asymptotic techniques
(Davey & Drazin 1969; Davey & Nguyen 1971). Thomas (1953) used a finite difference
scheme to calculate the eigenvalues of the OS equation of plane Poiseuille flow.
Orszag (1971) proposed an accurate numerical method, i.e. the Chebyshev spectral
method, to solve the same problem as Thomas (1953), which has extended to stability
problems for a wide variety of flows including plane Couette flow and pipe Poiseuille
flow.

The eigenvalue analysis has successfully predicted the instability behaviours for
some fluid systems, such as Rayleigh–Bénard convection and Taylor–Couette flow.
However, for other instability problems, particularly the instability in shear flows,
this approach fails to match most experimental results. For example, eigenvalue
analysis shows that the plane Couette flow and pipe Poiseuille flow are always
stable to small disturbances for all Reynolds numbers (Re). However, transition to
turbulence is observed for the plane Couette flow at Re ≈ 360 (Tillmark & Alfredsson
1992) or 370 (Malerud, Måløy & Goldburg 1995), and for pipe Poiseuille flow at
Re ≈ 2000 (Wygnanski & Champagne 1973; Wygnanski, Sokolov & Friedman 1975).
Experiments show that the route to turbulence is highly dependent on the initial
conditions and on the continuous forcing that background noise can provide. Such
discrepancies between the modal analysis and experiments have been recognized by
some authors, and the limiting nature of eigenvalue approach has led to the emergence
of a novel way, i.e. the non-modal stability theory.

We will only briefly outline the non-modal theory here and refer the reader to
the work by Schmid (2007) and the references therein for further discussion. In the
normal-mode analysis, the instability behaviour is inferred from the spectrum of the
governing linear operator. However, the spectrum only describes the asymptotic fate
of the perturbations and fails to capture short-term characteristics. The main point
of departure of the non-modal theory from the traditional eigenvalue analysis is the
fact that even if all of the eigenvalues of a linear system are distinct and lie well
inside the stable half-plane, inputs to that system may be amplified by substantially
larger factors if the linear operator is non-normal. In the non-modal theory, stability
is redefined in a broader sense as the response behaviour of the governing equations
to general input variables in the form of initial conditions, external forcing and
internal uncertainties (Schmid 2007). Trefethen et al. (1993) addressed the general
concept of the non-modal stability theory and studied the transient energy growth
and the response to external excitations for the plane Poiseuille flow and plane
Couette flow. For more mathematics of behaviour of non-normal linear operators,
the reader may refer to the book by Trefethen & Embree (2005). The non-modal
theory provided new physical insights into the stability of shear flows; so the transient
growth mechanism of non-normal systems has attracted more attentions in the field
of hydrodynamic stability. Reddy & Henningson (1993) have investigated the energy
growth of plane Poiseuille and Couette flows in the framework of the non-modal
theory. A similar analysis of the transient behaviour of pipe Poiseuille flow has been
presented by Schmid & Henningson (1994). An overview of recent works on the
non-modal stability of shear flows can be found in the review article by Schmid
(2007).

1.2. Streaks and bypass transition

In experiments, streamwise streaks, i.e. narrow regions where the streamwise velocity
is larger or smaller than the average, are very commonly observed in plane shear
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flows (Kline et al. 1967; Kiton, Nakabyashi & Nishimura 2005). These alternating
longitudinal high- and low-velocity streaks are independent of the two-dimensional
Tollmien–Schlichting (TS) waves. We do not intend here to give a full review of
earlier experimental studies. Relevant experimental results on streaky structures in
shear flows can be found in the works of Matsubara & Alfredsson (2001) and
Hwang & Cossu (2010) and the references therein.

For in viscid shear flows, Ellingsen & Palm (1975) showed that the streamwise
velocity component can increase linearly with time for disturbances with no streamwise
variation, producing alternating low- and high-velocity streaks in the streamwise
velocity component. In laminar shear flows, it is known that streaks have the potential
to be largely amplified from streamwise vortices through the ‘lift-up’ effect (Landahl
1975, 1980). This mechanism works by efficiently extracting momentum from the
mean flow and transferring it to the perturbation. Mathematically speaking, the non-
modal theory offers an explanation for why these streamwise streaks are so common:
even though these structures are not eigenmodes of the linearized flow problem, they
are pseudomodes (Trefethen et al. 1993). Reddy & Henningson (1993) computed the
optimally amplified disturbances in channel flows using a singular value analysis. It
is found that initial states with largest transient energy growth in subcritical flows
lead to flow structures related to streamwise vortices and streaks that resemble the
structures observed in experimental realisations of turbulent flows.

It has been observed that a linearly stable shear flow can exhibit very large
energy growth of three-dimensional disturbances. This implies that the nature of the
disturbances which appear in shear flows is also incompletely explained by traditional
linear stability theory. The reason for the discrepancy between traditional linear
stability theory and the experiments has been sought in the framework of nonlinear
theories. One example is the secondary instability of TS wave. However, the secondary
instability of the TS wave does not seem to completely describe natural transition
in plane channel flows (Reddy et al. 1998). These discrepancies between traditional
linear and nonlinear theories and experiments have been recognized, and the limiting
nature of these approaches has led to intense re-examination of traditional stability
theories. An alternative approach is to look directly at the initial value problem, which
has attracted the attention of researchers studying transition to turbulence in viscous
shear flows. Transition that does not follow the traditional route of exponential
instability has been known as ‘bypass transition’ (Schmid & Henningson 2001).
It is a possible mechanism which appears to reconcile the traditional theory and
experimental observations in shear flows. This mechanism is primarily due to linear
amplification of disturbances energized by the background mean shear (Butler &
Farrell 1992; Trefethen et al. 1993). It occurs in the absence of nonlinear effect and
bypasses the primary/secondary instability.

1.3. Non-Newtonian effect on stability of shear flow

The non-Newtonian fluids include polymer solutions, polymer melts, soap solutions,
suspensions, emulsions and some biological fluids (Bird, Stewart & Lightfoot 2002).
The physical mechanisms of non-Newtonian fluids are complex; here, we focus on
polymeric liquids. Because polymeric liquids contain high-molecular-weight molecules
with many internal degrees of freedom, polymer solutions and molten polymers have
behaviours qualitatively different from that of Newtonian fluids. One of the most
important characteristics of macromolecular fluids is the non-Newtonian viscosity, i.e.
the fact that the viscosity µ changes with the shear rate γ̇ . In many industrial problems,
the relation between log µ and log γ̇ can be described by a well-known constitutive
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equation, i.e. the ‘power-law’ model µ =mγ̇ n−1 (Bird, Armstrong & Hassager 1977).
Various forms, such as the Carreau model, of the generalized Newtonian fluid can be
found in the book by Bird et al. (1977).

The power-law model has been widely used in engineering and theoretical works.
Typical power-law fluids include some colloids, milk, gelatine, blood and liquid
cement. Bird et al. (1977) discussed the application of the power-law model in
polymeric liquids. When the power-law exponent n= 1, the fluid is Newtonian. For
n< 1, the fluid is said to be ‘pseudoplastic’ or ‘shear-thinning’ and for n> 1 the fluid
is called ‘dilatant ’ or ‘shear-thickening’. Shear-thinning fluids are usually solutions of
large polymeric molecules in a solvent with smaller molecules, and values of n are
in the range of 0.15–0.6 in general. Most macromolecular fluids are shear-thinning,
and shear-thickening fluids are rarely encountered. The parameter m is in units of
Pa sn. Typical parameters for aqueous solutions are given in Bird et al. (2002). At
the temperature changing from 293 to 333K, the magnitude of m is in the range of
10−1–102.

Although the generalized Newtonian fluid is of great value in engineering problems,
its use is strictly limited to steady-state shearing flows. For unsteady non-Newtonian
flows, the elastic response of the fluid becomes important. The Maxwell model or the
Jeffreys model is widely used to describe linear viscoelastic fluids (Bird et al. 1977).
The Oldroyd models can be used to describe nonlinear viscoelastic fluids (Bird et al.
1977).

Non-Newtonian effect of different types of fluids on the stability of complex shear
flows has been extensively studied for recent decades. Ranganathan & Govindarajan
(2001) have investigated the stability of channel flow by locating the viscosity-stratified
fluid layer. Roberts & Kumar (2006) have studied the stability of creeping Couette
flow of a power-law fluid past a deformable solid. Nouar & Frigaard (2009) have
studied the stability of plane Couette-Poiseuille flow of a shear-thinning fluid using
the Carreau–Yasuda model. Pinarbasi & Imal (2005) have investigated the effect of
viscous heating on the linear stability of Poiseuille flow of a Carreau fluid with a
temperature-dependent viscosity described by an Arrhenius law. Eldabe et al. (2007)
examined the effect of shear-thinning and shear-thickening on the stability of the plane
Couette flow with viscous heating for a power-law fluid that obeys the Arrhenius law.
However, these works just mentioned are in the framework of traditional normal-
mode analysis. Thus, the results in these works only provide us the asymptotic
behaviours of eigenmodes.

In order to control non-Newtonian flows, it is crucial to know how non-Newtonian
effect influences the transient behaviour of disturbances from laminar flow to
turbulence. Recently, some authors have extended the scope of non-modal stability for
non-Newtonian fluids. Bergström (2003) has investigated the transient growth of small
disturbances in a pipe flow of a Jeffrey fluid. Nouar et al. (2007) have considered the
modal and non-modal stabilities of plane Bingham–Poiseuille flow of a viscoplastic
fluid. Hoda, Jovanović & Kumar (2008, 2009) have examined the frequency response
in streamwise-constant channel flows of Oldroyd-B fluids from an input–output of
view. The authors have analysed in detail the ensemble-average energy density and the
componentwise frequency response to spatiotemporal body forces. These two studies
by Hoda et al. (2008, 2009) have extended the previous studies (Jovanović 2004;
Jovanović & Bamieh 2005), where similar analyses have been done for Newtonian
fluids. Works just mentioned presented the effect of viscoelasticity or viscoplasticity on
the non-modal stability. However, a careful look at previous works shows that studies
on effect of non-Newtonian viscosity on the non-modal transient behaviour are very
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Figure 1. Geometry and coordinate system for a plane Couette flow of a power-law fluid.

limited. To our knowledge, two recent papers (Chikkadi, Sameen & Govindarajan
2005; Nouar, Bottaro & Brancher 2007) have examined the influence of shear-thinning
effect on the transient growth of a plane Poisueille flow. Chikkadi et al. (2005) have
studied two typical cases of channel flow. One is the plane Poiseuille flow of a Carreau
fluid, while the other is two miscible fluids of equal densities but different viscosities.
Rather unexpectedly, the authors found that a stratification of viscosity alone does
not affect transient growth; moreover, the transient growth is only slightly influenced
by the shear-thinning effect. The result seems quite important to the requirement of
preventing transition to turbulent. However, we should note that the result is only
valid for neglecting the viscosity perturbations. Nouar et al. (2007) have revisited the
stability of shear-thinning fluids. The authors have accounted for a non-vanishing
viscosity disturbance and obtained significantly different results to that reported by
Chikkadi et al. (2005). We defer further discussions on the physics of the viscosity
disturbance to a later section in which the mathematical description is established.
Motivated by recent works mentioned above (Chikkadi et al. 2005; Nouar et al. 2007),
an open question should be asked, does shear-thinning effect significantly influence
the transient behaviour for other type of shear flows.

In the present work, we aim to study the non-modal instability in a plane Couette
flow of a power-law fluid. The purpose is to provide physical insights into the effect
of shear-thinning on the non-modal behaviours, including response to excitations and
transient energy growth of initial conditions. This type of flow allows us to isolate the
influence of the anisotropy of the stress tensor associated with the perturbation. In
other situations, like in the plane Poiseuille flow, three effects arise from the rheology
of the fluid: (i) modification of the velocity gradient, (ii) viscosity stratification and
(iii) anisotropy of the stress tensor. In a global way, it is not easy to separate the
different influences.

The paper is organized as follows. In § 2, mathematical formulation of the physical
model is presented. The numerical method for solving the eigenvalue problem is
presented in § 3. In §§ 4 and 5, we present the results and discussions. Finally, in § 6,
we summarize the results and present the conclusions.

2. Mathematical formulation
Figure 1 illustrates the physical model of the present study. Consider a flow of a

power-law fluid bounded by two infinite parallel plates moving in opposite directions
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with velocities ±U at z = ±d . The parallel base flow ū(z) = [ū(z), 0, 0] only depends
on z. The equations governing the evolution of fluid flow are the Navier–Stokes
equations. For an incompressible non-Newtonian fluid, the equations are expressed
as

∇ · u = 0 (2.1)

∂u
∂t

+ u · ∇u = − 1

ρ
∇p +

1

ρ
∇ · τ (2.2)

where ρ is the density, p is the pressure, τ is the stress tensor and u =[u, v, w]T

is the velocity vector. u, v and w are the velocity components in the streamwise x,
spanwise y and normal to wall z directions, respectively.

For incompressible non-Newtonian fluids, the expression for the stress tensor is
given by the generalized Newtonian model:

τ = µγ̇ , with µ = µ(γ̇ ). (2.3)

Here, the symbol γ̇ = ∇u + (∇u)T is the rate of strain tensor and µ(γ̇ ) is the non-
Newtonian viscosity. The magnitude of the rate of strain tensor is

γ̇ =
√

1
2
(γ̇ : γ̇ ). (2.4)

In the present study, we choose the two-parameter power-law expression for µ(γ̇ ),

µ = mγ̇ n−1, (2.5)

in which m and n are the constants characterizing the fluid.
The evolution equations for the disturbances can be derived by considering a

basic state (ū, p̄) and the perturbed state (u, p) = (ū + u′, p̄ + p′). For both states, the
Navier–Stokes equations are satisfied.

2.1. Basic state

In the basic state, the velocity and the magnitude of γ̇ are

ū =

(
Uz

d
, 0, 0

)
, ¯̇γ =

U

d
. (2.6)

The rates of strain tensor and stress tensor, respectively, are

¯̇γ =

⎛
⎜⎜⎜⎝

0 0
U

d
0 0 0

U

d
0 0

⎞
⎟⎟⎟⎠ and τ̄ =

⎛
⎜⎜⎜⎜⎝

0 0 m

(
U

d

)n

0 0 0

m

(
U

d

)n

0 0

⎞
⎟⎟⎟⎟⎠. (2.7)

For a plane Poiseuille flow, both the distributions of the basic velocity and the stress
tensor are the functions of z and are dependent on the index n. For a plane Couette
flow, the power-law fluid has the same basic velocity with the Newtonian fluid, i.e.
the velocity of the basic state is a linear function of z and is independent of the
index n. Moreover, the rate of strain tensor and the stress tensor of basic state are
constants.
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2.2. Linearized equations

Subtracting the equations for the basic and perturbed state, the linearized evolution
equations for disturbances can be written as

∇ · u′ = 0 (2.8)

∂u′

∂t
+ ū · ∇u′ + u′ · ∇ū = − 1

ρ
∇p′ +

1

ρ
∇ · τ ′ (2.9)

where τ ′ is the shear stress perturbation given by τ ′ = µ̄γ̇ ′ +µ′ ¯̇γ . In (2.9), ∇ · τ ′ can
be expressed as

∇ · τ ′ = ∇ · (µ̄γ̇ ′) + ∇ · (µ′ ¯̇γ ). (2.10)

The first term of the right-hand side of (2.10) is an analogy of the Newtonian fluid.
Since there is no stratification of viscosity, it can be shown that

∇ · (µ̄ · γ ′) = µ̄∇2u′. (2.11)

The second term of the right-hand side of (2.10) denotes the departure from
Newtonian behaviour. It can also be shown that

∇ · (µ′ ¯̇γ ) = (n − 1)µ̄

(
∂γ ′

xz

∂z
ex +

∂γ ′
xz

∂x
ez

)
, (2.12)

in which γ ′
xz = ∂w′/∂x + ∂u′/∂z. One can notice that this additional term corresponds

to an anisotropic shear stress perturbation. For a general shear flow, like the plane
Poiseuille flow, the rate of strain tensor varies in the z-direction. Consequences of
shear-thinning are the modification of the basic velocity, the stratification of viscosity
and the anisotropy of stress perturbation. In general, it is difficult to separate these
effects. In order to isolate some of these effects, the disturbance of viscosity could
only be artificially neglected (Nouar et al. 2007). For the plane Couette flow, there is
no stratification of viscosity, and the basic velocity is independent of n. This allows
us to isolate the influence of the anisotropy of the stress tensor associated with the
perturbation.

2.3. The Velocity–vorticity formulation

The controlling equations are non-dimensionalized with the length scale d , the velocity
scale U and the time scale d/U . We introduce the vorticity

η =
∂v

∂x
− ∂u

∂y
. (2.13)

Using the continuity equation and eliminating the pressure, we can arrive at the OS
and Squire equations. We introduce the Fourier mode

[w(x, y, z, t), η(x, y, z, t)] = [w(z, t), η(z, t)] exp(iαx + iβy), (2.14)

in which α and β are the streamwise and the spanwise wavenumbers, respectively.
The governing equations are expressed as(

∂

∂t
+ iαū

)
(D2 − k2)w − iα

d2ū

dz2
w =

1

Re
(D2 − k2)2w +

n − 1

Re

α2

k2
(D2 + k2)2w

+
n − 1

Re

αβ

k2
(D2 + k2)Dη (2.15)
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(
∂

∂t
+ iαū

)
η = iβ

dū

dz
w +

1

Re
(D2 − k2)η +

n − 1

Re

αβ

k2
(D2 + k2)Dw +

n − 1

Re

β2

k2
D2η.

(2.16)

At z = ±1, the boundary conditions are

w = Dw = η = 0, (2.17)

where D = ∂/∂z and k2 = α2 + β2. The Reynolds number Re is defined as

Re =
ρUd

m

(
d

U

)n−1

. (2.18)

The OS equation and the Squire equation can be expressed in the vector form:

B
∂

∂t
Ψ = A Ψ, (2.19)

in which Ψ =(w, η)T and the matrices A and B are

B =

[
D2 − k2 0

0 1

]
, A =

[
LOS Ld

Lc LSq

]
. (2.20)

The operators LOS , LSq , Lc and Ld can be written as

LOS = −iαū(D2 − k2) + iα
d2ū

dz2
+

1

Re
(D2 − k2)2 +

n − 1

Re

α2

k2
(D2 + k2)2 (2.21)

LSq = −iαū +
1

Re
(D2 − k2) +

n − 1

Re

β2

k2
D2 (2.22)

Lc = iβ
dū

dz
+

n − 1

Re

αβ

k2
(D2 + k2)D (2.23)

Ld =
n − 1

Re

αβ

k2
(D2 + k2)D. (2.24)

At last, we obtain the linear initial value problem

∂

∂t
Ψ = −iL Ψ, (2.25)

in which L = iB−1A .

3. Numerical method
In the present paper, we will examine the linear stability, the response to

external excitations and initial conditions. We need to compute the eigenvalues and
eigenvectors of the operator L , the pseudospectrum and the numerical range, and
the energy growth function G(t).

We begin with the computation of eigenvalue and eigenvectors of L . A Chebyshev
collocation method is implemented to solve the eigenvalue problem. The variables w

and η are expanded as

w =

N∑
n=0

ŵnTn(z), η =

N∑
n=0

η̂nTn(z), (3.1)
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in which Tn denotes the nth Chebyshev polynomial. Using the Chebyshev series (3.1),
the governing equations can be written in the vector form

d

dt
Ψ̂ = −iL̂ Ψ̂ , (3.2)

in which Ψ̂ = [ŵ0, . . . , ŵN , η̂0, . . . , η̂N ]T and L̂ arises from the discretization of L .
This system of equations is required to solve for 2N + 2 unknowns. The numerical
method for the general eigenvalue problem in the form Ax = ωBx has been described
by Canuto et al. (1993) and Schmid & Henningson (2001). The OS equation is of
fourth order; so the equation is applied at N − 3 internal collocation points and at
each boundary the equations are replaced by two boundary conditions. The Squire
equation is of second order, and it is applied at N − 1 internal collocation points
with only one boundary condition applied at each boundary. The details of imposing
boundary conditions in the collocation method are described by Canuto et al. (1993).
When computing the spectrum, N = 80 ∼ 160 is enough to obtain satisfactory results.
By varying the number of polynomials, N , it is found that 80 polynomials usually
yield eight decimal places of accuracy, for the Re values we are working with. For
example, at α = 1, Re = 1000 with n= 1.0, the leading eigenvalue ω for N = 80, 90
and 100 is always 0.79751396 − 0.11790537i. In our computation, for low Reynolds
number and large value of n, we choose N =80. For high Reynolds number and small
value of n, because the vicinity of the intersection of the spectrum becomes highly
sensitive to perturbations, we need higher order expansions to compute the problem.
After we solve the eigenvalue problem, an eigenfunction expansion method can be
used to compute the transient energy growth and the response to external excitations.
For the details of the computational procedure for non-modal stability, the reader
may refer to the works by Reddy & Henningson (1993) and Schmid & Henningson
(2001).

4. Asymptotic behaviour, condition for no energy growth
For the plane Couette flow, we are interested in the asymptotic long time behaviour

and the condition of no energy growth of the disturbances. When considering the
long time behaviour, the disturbances can be assumed to vary exponentially with
time, i.e. [w(z, t), η(z, t)] = [w̃(z), η̃(z)] exp(−iωt), in which ω is the complex frequency,
and the imaginary part of ω, denoted by ωi , is the temporal growth rate. For a linear
evolution equation dΨ /dt = −iL Ψ , the long time behaviour can be described by the
eigenvalues of the linear operator L . The linear stability analysis has shown that the
plane Couette flow of a Newtonian fluid is linearly stable for all Reynolds numbers
(Romanov 1973).

We begin with examining the effect of the power-law index, n, on the long time
behaviour of the flow. The growth rates of the least stable mode are presented for
spanwise-independent (β = 0) and streamwise-independent (α = 0) disturbances using
a representative range of parameters. In figures 2(a) and 2(b), the curves of growth
rate, ωi , versus the streamwise wavenumber α with various n, are plotted at Re = 1000
and Re = 3000 for spanwise-independent disturbances. For each curve in these two
figures, the largest growth rate occurs at the longwave limit of α → 0, and the growth
rate decreases with the increase of α. In the longwave range, the curves with various
n are almost undistinguishable. At larger wavenumber α for n � 1, it is apparent that
more shear-thinning fluids are less stable. As shown in figure 2(a) for a lower Reynolds
number of Re = 1000, the curves of n= 1.0 and 1.5 are almost undistinguishable at
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Figure 2. Temporal growth rates of spanwise-independent disturbances (β = 0) versus the
streamwise wavenumber α at (a) Re = 1000; (b) Re = 3000.
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Figure 3. Temporal growth rates of streamwise-independent disturbances (α = 0) versus the
spanwise wavenumber β at (a) Re = 1000; (b) Re = 3000.

most of wavenumbers. In figure 2(b) for a higher Reynolds number of Re = 3000,
the curve of n= 1.5 is slightly more stable than that of n= 1.0. It seems that, in the
medium or shortwave range, the temporal growth rates of the spanwise-independent
disturbances are significantly influenced by shear-thinning effect; however, they are
insensitive to shear-thickening effect in the longwave range.

The first rigorous proof of the linear stability of the plane Couette flow was given
by Romanov (1973). The author showed that all modes are always damped for all
values of the Reynolds number. In figure 2, the growth rates at all wavenumbers are
negative for power-law fluids. We have computed the eigenvalues at higher Reynolds
numbers and found no unstable mode. This suggests that, like the Newtonian case,
the plane Couette flow of a power-law fluid is always stable for all Reynolds numbers.

In figures 3(a) and 3(b), the curves of growth rate ωi of streamwise-independent
disturbances versus the spanwise wavenumber β are plotted at Re = 1000 and
Re = 3000. In these two figures, the temporal growth rate of each curve decreases
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Figure 4. Temporal growth rates of oblique disturbances in the α–β plane at Re = 1000
for (a) n= 1; (b) n= 0.2.

with the increase of the spanwise wavenumber β . With the increase of n, the temporal
growth rate significantly decreases at all wavenumbers. This result shows that the
shear-thinning/shear-thickening effect is destabilizing/stabilizing for the streamwise-
independent disturbances. This result is significantly different from that for the
spanwise-independent disturbances in figure 2, in which the shear-thickening effect
only slightly influences the temporal growth rate.

In order to know the effect of the index n on the temporal growth rate of oblique
disturbances, we plot in figure 4 the level lines of the growth rate in the α−β

plane for presentative parameters. As shown in figure 4, all the temporal growth
rates are negative in the α−β plane. This result indicates that all three-dimensional
disturbances are linearly stable at Re = 1000. As shown in figure 4(a) for n= 1, the
temporal growth rate decreases with the increase of α or β at each point in the α−β

plane. For the shear-thinning fluid of n= 0.2, as shown in figure 4(b), the structure of
the level lines is significantly different from that in figure 4(a) for n= 1. It is obvious
that each level line is contorted. At the kink points, when fixing α, the temporal
growth rate reaches the local minimum.

To interpret the effect of n on the stability, it is helpful to examine the energy
budget of the OS equation. The OS equation is multiplied by w∗ and integrated in z

from −1 to 1; it is obtained that

ωi〈|Dw|2+α2|w|2〉 = α〈Dū(wrDwi−wiDwr )〉− 1

Re
〈µ̄(4α2|Dw|2+|D2w+α2w|)〉

+
1

Re
〈(µ̄ − µt )|D2w + α2w|2〉, (4.1)

where 〈·〉 =
∫ 1

−1
(.) dz, and

µt = µ(ū) +
dµ

dγ̇zx

(ū)γ̇zx(ū) (4.2)

is termed the tangent viscosity. For a power-law fluid, µ̄ − µt = (1 − n)¯̇γ
n−1

. The
second term on the right-hand side of (4.1) which arises from viscosity stratification
is negative and stabilizing. The third term on the right-hand side arises from viscosity
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perturbation. For shear-thinning fluids, this term is positive-definite. It reduces the
viscous dissipation, compared to the case with no viscosity perturbations, and plays
a destabilizing role. For a plane Couette flow, with the increase of shear-thinning, the
value of the third term increases. Nouar et al. (2007) showed that increasing shear-
thinning effect stabilizes the Poiseuille flow in the case of the time constant λ being
large. However, for the Couette flow the present results show that the shear-thinning
effect is destabilizing. Nouar et al. (2007) stated that the main factor determining
stability or instability of the flow is the exchange of energy between base flow and
perturbation, which is driven by the phase change between the two fluctuating velocity
components, caused by the viscosity stratification. When the viscosity fluctuation is
artificially forced to zero, a fictitious stabilization is observed. For the Poiseuille flow,
the variation of the index n will result in both viscosity stratification and viscosity
fluctuation. For the Poiseuille flow, the increase of shear-thinning has a dual effect on
the stability, i.e. the viscosity stratification is stabilizing and the viscosity fluctuation
is destabilizing. Nevertheless, the effect of viscosity stratification is dominant; so the
total effect of shear-thinning is stabilizing. For the Couette flow, the increase of shear-
thinning significantly increases the viscosity perturbation; however, it has no effect
on the viscosity stratification. So, for the Couette flow, the shear-thinning has only
destabilizing effect. For shear-thickening fluids, the third term on the right-hand side
of (4.1) is negative-definite. With the increase of shear-thickening, the system becomes
more stable.

In this subsection, we are also interested in the condition for which there is no
growth of the perturbation kinetic energy. Energy methods give conditions for no
energy growth. Using general properties of the inner product, we have

d‖Ψ‖2

dt
= 2 Im(L Ψ, Ψ ). (4.3)

There is no energy growth if and only if the eigenvalues of (L − L ∗)/2 lie in the
lower half-plane (Reddy & Henningson 1993). The energy method shows that there
is no energy growth if the Reynolds number is less than Reg . In order to determine
the critical energy Reynolds number Reg , two methods can be chosen. One way is to
compute the eigenvalues of (L − L ∗)/2, and the other is to solve the optimization
problem using a variational method. The details of the variational method can be
found in the works by Reddy & Henningson (1993), Schmid & Henningson (2001)
and Nouar et al. (2007).

We will examine the effect of n on the critical energy Reynolds number Reg , below
which the disturbance kinetic energy decays monotonically in time. Figures 5(a) and
5(b) present the critical energy Reynolds number versus the wavenumber for spanwise-
and streamwise-independent disturbances with various n. For the Newtonian case of
n=1, the critical value of Reynolds number for streamwise-independent disturbances
is Re ≈ 21 at the wavenumber of β ≈ 1.5. This result is quantitatively the same as that
of (Schmid & Henningson 2001, see figure 5.11). As shown in figures 5(a) and 5(b), the
influence of n on the critical value of the Reynolds number is qualitatively similar for
these two cases. With the increase of n, the plane Couette flow becomes more stable
and the corresponding critical wavenumber decreases. Comparing the curves with the
same value of n in figures 5(a) and 5(b), it is shown that the spanwise-independent
disturbances are more stable than the streamwise-independent ones.

The energy Reynolds numbers are far below the Reynolds numbers at which
transition to turbulence is observed in experiments. This is mainly due to the non-
normal nature of the linearized Navier–Stokes equations for shear flows. In order to
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Figure 5. Critical energy Reynolds number versus the wavenumber for
(a) spanwise-independent disturbances; (b) streamwise-independent disturbances.

know the transient behaviour of the plane Couette flow, we will study the non-normal
stability of the present problem.

5. Transient behaviour and non-modal stability
In the non-modal theory, two types of problems are of particular interest, i.e. the

response to external excitations and the transient energy growth of initial conditions.
For the former, the norm of resolvent denotes the maximum amplification of external
excitations; for the latter, the growth function G(t) identifies the optimal growth of
energy at time t . Before we present the results, it is helpful to discuss the mechanisms
of the influence of shear-thinning on the transient behaviour.

5.1. ‘Lift-up’ effect and Reynolds stress mechanism

It has been shown that, for in viscid shear flows, the streamwise velocity grows linearly
with time for disturbances with no streamwise variation (Ellingsen & Palm 1975).
This growth mechanism has been labelled lift-up and vortex stretching, or more
accurately vortex tilting. As explained by several authors (Butler & Farrell 1992;
Trefethen et al. 1993), for viscous shear flows the streamwise velocity grows linearly
with time via the lift-up effect before being damped by the viscosity. In order to know
growth mechanism in a non-Newtonian shear flow, it is helpful to recall the linearized
momentum equation for the streamwise velocity component u:

∂u

∂t
+ wU ′ = 0, (5.1)

in which U is the steady mean flow and the prime (′) denotes d/dz. Because w

is independent of time, the streamwise velocity increases linearly with time. For
disturbances independent of x, linearization of the in viscid vorticity equation gives

∂ω

∂t
= U ′ ∂w

∂y
, (5.2)

where ω is the normal vorticity component. Note that U ′ is the vorticity of the mean
flow.
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These two equations show that in the in viscid stage, the growth rates of u and
ω are proportional to U ′. For the Poiseuille flow of a shear-thinning fluid, with the
decrease of n the magnitude of U ′ decreases significantly in the region far away from
the wall. Thus, it is natural that the lift-up effect becomes weaker with the increase of
shear-thinning effect. In the work by Nouar et al. (2007), it is shown that the curves
of G(t) significantly decrease with the decrease of n. We infer that with the decrease
of n, G(t) decreases because the lift-up effect becomes less dominant in the region
apart from the wall.

For the plane Couette flow of a shear-thinning fluid, the value U ′ is a constant for
various n. Thus, the shear-thinning effect will not influence the energy growth in the
in viscid stage. It only plays a role in the viscous stage. We can expect that with the
increase of the shear-thinning effect, the transient energy growth will increase because
of less viscosity. We anticipate that the influence of shear-thinning on the transient
energy growth in the plane Couette flow may be different from that in the plane
Poiseuille flow.

In addition to the lift-up effect, another growth mechanism, i.e. two-dimensional
Reynolds stress mechanism, exists for shear flows (Pedlosky 1987). In an in viscid
shear flow, the energy density equation is

∂E

∂t
= −1

2

∫ 1

−1

U ′uw dz, (5.3)

where E is the perturbation energy density and the overbar denotes an average of x.
This expression indicates that a disturbance can extract energy from the mean shear.
The growth rate of E is proportional to U ′. This mechanism has also been discussed
by Orr associated with conservation in a strain field of spanwise perturbation vorticity
(Orr 1907), and it will be referred to as the Orr mechanism. Farrel & Ioannou (1993)
studied the optimal excitation of three-dimensional perturbations in the viscous
constant shear flow. The authors found that the optimal structures can be interpreted
as combinations of two fundamental types of motion associated with the lift-up
mechanism and the Orr mechanism.

For a power-law Couette flow, in the in viscid stage the index n plays no role in
the two-dimensional Reynolds stress mechanism. We also expect that the increase
of shear-thinning effect increases the transient energy growth of the spanwise-
independent disturbances because of less viscosity after the in viscid stage.

5.2. Pseudospectrum and response to external excitations

We will study the transient behaviour of response to external excitations. Suppose a
fluid system is driven by a harmonic signal of the form

V (x, y, z, t) = ei(−ωt+αx+βy)v(z). (5.4)

It is easily verified that the response will be

U(x, y, z, t) = iei(−ωt+αx+βy)(ωI − L )−1v(z). (5.5)

Here, I is the identity matrix. The solution operator (ωI − L )−1 is known as the
resolvent. The maximum value of amplification is equal to the norm of the resolvent:

R(α, β, ω) = maxv �=0

‖ u ‖
‖v ‖ =‖ (ωI − L )−1 ‖ . (5.6)

Here, ‖ · ‖ denotes a norm on �N , max denotes the maximum. An eigenvalue of L is
a number ω such that ‖ (ωI − L )−1 ‖ → ∞. Generalizing this result leads naturally
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to the definition of ‘ε − pseudospectrum ’ (Trefethen & Embree 2005). For any ε � 0,
the ‘ε-pseudospectrum’ of L is defined as

Λε(L ) = {ω ∈ � : ‖(ωI − L )−1‖ � ε−1}. (5.7)

In mathematical meaning, the resolvent norm represents the amplification of response
to external forcing. So, examining the structure of pseudospectra is helpful to
understand the influence of shear-thinning effect on the non-modal stability of plane
Couette flows. In the present paper, when investigating the response to spanwise-
and streamwise-independent disturbances, we fix the wavenumber and the Reynolds
number and plot the eigenvalues, the isolines of ε-pseudospectra and the numerical
range. The value of ε−1 corresponds to the maximal response R(ω, α, β). The
numerical range is defined as

W (A) = {x∗ Ax : x ∈ �N, ‖x‖ = 1}, (5.8)

in which A ∈ �N×N . The numerical abscissa of A is defined as

ω(A) = sup
z∈W (A)

Re(z) = lim
t→0

d

dt
‖eAt‖. (5.9)

The main application of the numerical range is to the analysis of energy growth
for initial-value problems. The numerical abscissa of −iL corresponds to the initial
growth rate of the energy growth function (Reddy & Henningson 1993; Trefethen &
Embree 2005). Reddy & Henningson (1993) have presented the ε-pseudospectra for
the OS operator for a two-dimensional Newtonian Couette flow. The spectrum of OS
operator displays a ‘Y’-shaped structure, consisting of a left, a right and a middle
part. The left and the right parts are symmetric about the imaginary axis, and each
consists of two branches. In figure 6, we plot the ε-pseudospectra and the spectrum
for various n from 0.2 to 1.5 at α =1.0 and Re =1000 for the disturbances which are
uniform in the spanwise direction. We note that the spectrum in figure 6 includes the
OS and Sq modes. The eigenvalues of the Sq operator locate in the imaginary axis
and the middle lines of the left and the right branches.

Comparing the spectrum in figure 6 with different n, it shows that with the decrease
of n the spectrum of OS mode becomes more continuous. For example, in the left
or right branch, the number of the OS eigenmodes is 6 for n= 1.5, 8 for n= 1.0 and
10 for n= 0.5. For n= 0.2, the number of OS eigenmodes in the left or the right
branch is greater than 14. Comparing the schematics in figure 6, it is observed that
with the decrease of n, the boundary of ε = 10−8 significantly extends in the ω plane.
This result indicates that with the increase of shear-thinning, the intersection of the
branches becomes more sensitive to perturbations. As n decreases to 0.2, the region
in the boundary of ε = 10−8 covers both the intersection of branches and the middle
branch. Additionally, the eigenvalues in the highly sensitive area become asymmetric
about the imaginary axis. Comparing these figures, we found it interesting that the
value of n has almost no influence on the spectrum of the Sq modes. In each figure
with different n, the left or the right branch always has eight Sq eigenvalues.

In figure 7, we plot the ε-pseudospectra and the spectrum for the streamwise-
independent disturbances at Re = 1000 for n= 1.0 and 0.2. In the two figures, all the
modes are located in the imaginary axis. Comparing figures 7(a) and 7(b), it is observed
that the spectrum becomes more continuous with the decrease of n. The structures
of the boundaries of ε-pseudospectra are qualitatively similar for n= 1.0 and 0.2. In
figures 6 and 7, the variation of n has almost no influence on the numerical range
and numerical abscissa. This result means that the shear-thinning/shear-thickening
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Figure 6. (Colour online) Pseudospectra for the plane Couette flow with α = 1.0, β = 0 at
Re = 1000 for (a) n= 1.5, (b) n= 1.0, (c) n= 0.5, (d ) n= 0.2. �: eigenvalues; – – –: boundary
of the numerical range; −: contours from outermost to innermost representing levels from
ε = 10−1 to 10−8.

effect only slightly influences the initial growth rate of the energy growth function for
both the streamwise- and spanwise-independent disturbances.

In order to know the response to general excitations, we will examine the response
to harmonic excitations with various wavelengths at different real frequencies. In
figure 8, we plot the level lines of amplifications to harmonic excitations of various
frequencies in the α–β plane at Re = 300 for n= 0.5. At ω = 0, the maximal response is
realized in the spanwise direction with the wavenumber of β ≈ 1.0. As ω increases to
0.2, in figure 8(b) the maximal response is shifted from the β-axis to β ≈ 2.0, α ≈ 0.5.
The figures show that with the increase of ω, the maximal amplification decreases.
As shown in these figures, as ω increases from 0 to 1.0, the streamwise wavenumber
of the most amplified disturbances increases from 0 to about 1.7, and the spanwise
wavenumber increases from about 1.0 to 2.4. This result means that with the increase
of ω, the maximal response tends to occur in the shortwave range.
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We have presented the pseudospectra in the complex ω plane for several typical
cases in figures 6 and 7. In the complex ω plane, we are interested in the resonance
of the real axis, because it corresponds to external excitations at real frequencies. In
order to obtain the maximal resonance to harmonic excitations, we need to examine
the global behaviour of the operator L for all wavenumbers. We define the maximal
amplifications of spanwise- and streamwise-independent disturbances as

Rα(ω) = max∀α∈�,β=0R(α, β, ω), ω ∈ � (5.10)

Rβ(ω) = maxα=0,∀β∈�R(α, β, ω), ω ∈ �, (5.11)

in which R(α, β, ω) has been defined in (5.6).
We have computed the maximal response at various Reynolds numbers and found

that the structures of the response curves are similar. In figure 9(a), we plotted the
curves of the maximal response to spanwise-independent external excitation versus
the frequency with various n at Re = 1000. For each curve, the maximal amplification
of the response is realized at ω = 0. With the increase of the magnitude of ω, the
amplitude of the response decreases. This result indicates that a time-independent
forcing will result in the maximal response. With the decrease of n, the amplification
significantly increases at all real frequencies. In figure 9(b), the curves of the streamwise
wavenumbers of the maximal response versus the frequency are plotted. It is observed
that for each curve the wavenumber increases with the increase of the magnitude of
frequency. With the increase of shear-thinning, the wavelength of the most amplified
spanwise-independent excitation increases at all frequencies. As explained in § 5.1, the
two-dimensional Reynolds stress mechanism is responsible for the transient growth of
the spanwise-independent disturbances. In (2.12), the viscosity disturbance results in an
anisotropic disturbance stress in the momentum equations in the x- and z-directions.
The results in figure 9 indicate that in the presence of the viscosity disturbance, the
shear-thinning makes the disturbance extract more energy from the mean shear. Thus,
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the response to external spanwise-independent excitations significantly increases with
the increase of shear-thinning.

In figure 10(a), the curves of the maximal response to streamwise-independent
external excitation versus the frequency are presented for various n at Re = 1000.
In this figure, like the spanwise-independent case, the most amplified response to
streamwise- independent excitation is realized at ω = 0. Additionally, the amplification
significantly decreases with the increase of the magnitude of ω. Comparing the curves
with the same value of n in figures 10(a) and 9(a), it is shown that the streamwise-
independent excitation is amplified more than the spanwise-independent one.
Figure 10(a) shows that shear-thinning only increases the amplification in a very
narrow range of low frequencies. In figure 10(b), the curves of the wavenumber of
the most amplified response are almost indistinguishable for various n, except that
the frequency is very low. These results show that shear-thinning has almost no effect
on the response to streamwise-independent disturbances in the range of medium or
high frequency.

For a Couette flow, the optimal input of harmonic disturbances is uniform in the
streamwise direction at ω = 0. The spatial structures of the optimal input of harmonic
excitation and the maximum response are shown in figure 11 for n= 0.5 at Re = 1000.
As here the optimal frequency is ω = 0, only plots of input and output are needed.
We computed the velocity fields of the optimal input and output. The results show
that the streamwise components of input disturbances are very weak, and the normal
and spanwise velocity components have most of the perturbation kinetic energy. For
the optimal output, the magnitudes of normal and spanwise velocity components are
slight in comparison with the streamwise component. The velocity field vey +wez

associated with the optimal input is plotted in figure 11(a) for n= 0.5 at Re = 1000.
The flow field is characterized by two counter-vortices with the centre near z = 0. The
optimal output of the amplitude of streamwise velocity component u is plotted in
figure 11(b). At the optimal time, the amplitude of the optimal response is 23 127.
At this time, the two counter-vortices transform into streaks. With the increase of
shear-thinning, the amplitude of response increases and the structures of the optimal
input and output disturbances are similar to the Newtonian case. The flow fields in
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figures 11(a) and 11(b) imply that the dominant physical mechanism for the response
to excitation is the lift-up effect. With the increase of shear-thinning, the streamwise-
independent disturbance has a higher amplitude of response because of less viscosity.
Comparing the flow fields with various n, it is found that with the increase of shear-
thinning, the optimal wavenumber becomes smaller. For example, as n decreases from
0.5 to 0.2, the optimal wavenumber decreases from β = 0.95 to 0.66.

5.3. Transient growth and optimal disturbances

In this subsection, we will focus on the effect of non-Newtonian viscosity on the
response of initial conditions. The greatest amplification of the initial condition at
time t is given by the growth function as

G(t) = max
u(0) �=0

‖u(t)‖2

‖u(0)‖2
=‖e−iL t‖2 . (5.12)

We can define the growth maximized over time as

Gmax = G(tmax ) = maxG(t), t � 0. (5.13)

Reddy & Henningson (1993) considered three types of behaviours for the plane
Poiseuille flow of Newtonian fluids. If the Reynolds number is less than the critical
energy Reynolds number Reg , then G(t) � 1 for all time. In this case, Gmax = 1 and
tmax = 0. If the Reynolds number exceeds the critical Reynolds number Rec such
that the operator L has an unstable eigenvalue, then Gmax → ∞ at tmax → ∞. If
Reg <Re <Rec, the flow is linearly stable but has a transient energy growth. For
general stability problems, these three types of behaviours should be considered.
However, the plane Couette flow is linearly stable in general. When examining the
characteristics of the transient growth, we only need to consider the case of Re >Reg .

In this subsection, we first examine the energy growth of spanwise- and streamwise-
independent disturbances. Figures 12(a) and 12(b) plot the curves of the growth
function G(t) for spanwise-independent disturbances with various n at Re = 300 and
1000, respectively. As we discussed in § 5.1, the two-dimensional Reynolds stress
mechanism is responsible for the rapid transient growth of the spanwise-independent
disturbances. In figure 12, each curve shows that the disturbance experiences a
transient growth and then decays after tmax . With the decrease of n, the plane Couette
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Figure 12. Transient energy growth function G(t) versus time for spanwise-independent
disturbances with various n at α =1.0. (a) Re =300, (b) Re = 1000.
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Figure 13. Transient energy growth function G(t) versus time for streamwise-independent
disturbances with various n at β = 2.0. (a) Re =300, (b) Re = 1000.

flow has a greater transient energy growth. This result is consistent with the discussion
in § 5.1 that shear-thinning is destabilizing because of less viscosity. In figure 12, it is
observed that for more shear-thinning fluids, the spanwise-independent disturbances
need more time to reach the maximal energy growth. For the present problem, we
are interested in the transient behaviours at initial stage. In figure 12(a), for a low
Reynolds number of Re = 300, with the decrease of n, the temporal growth rate of
G(t), i.e. dG(t)/dt , slightly increases at t = 0. However, in figure 12(b) for Re = 1000,
the curves with various n are almost undistinguishable at the initial stage. This result
is consistent with the discussion in § 5.1 that shear-thinning does not influence the
two-dimensional Reynolds stress mechanism at the initial stage.

Figures 13(a) and 13(b) plot the curves of the growth function G(t) for streamwise-
independent disturbances with various n at Re = 300 and 1000, respectively. In
figure 13, each curve shows that the disturbance experiences a transient growth and
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Figure 14. Level lines of the maximum energy growth Gmax in the α–β plane at Re = 1000.
(a) Newtonian case of n= 1.0, (b) shear-thinning case of n= 0.5.

then decays after tmax . Moreover, with the decrease of n the streamwise-independent
disturbance has a greater maximal energy growth Gmax and needs more time to reach
the maximal growth. Comparing the curves with the same index n in figures 13(a)
and 13(b), it is shown that the energy growth G(t) is much greater at Re = 1000
than that at Re = 300. In these two figures, the curves with various n are almost
undistinguishable at the initial stage. This result is consistent with the discussion in
§ 5.1 that the non-Newtonian viscosity does not affect the lift-up mechanism for the
Couette flow in the in viscid stage. Comparing figure 12 with figure13, we found
that the transient energy growth of the streamwise-independent disturbances is much
higher than the spanwise-independent one.

Chikkadi et al. (2005) have studied the characteristics of the transient energy
growth for the plane Poiseuille flow of a Carreau fluid. The authors only considered
the stratification of viscosity and neglected the perturbation of viscosity. Their results
indicate that the shear-thinning effect has little influence on the transient growth
of spanwise disturbances. Nouar et al. (2007) have revisited the same problem as
Chikkadi et al. (2005). The authors have accounted for a non-vanishing viscosity
disturbance, which yields an anisotropic disturbance stress tensor. The results of
Nouar et al. (2007) show that shear-thinning effect significantly reduces the maximal
energy growth of streamwise-independent disturbances.

For the present problem, we have taken into account the perturbation of viscosity.
For the Couette flow, there is no stratification of viscosity; so the effect of non-
Newtonian viscosity only includes an anisotropic disturbance stress tensor. As shown
in figures 12 and 13, the shear-thinning effect significantly increases the transient
energy growth of the disturbances. It seems that the shear-thinning effect on the plane
Couette flow is opposite to that on the plane Poiseuille flow reported by Nouar et al.
(2007). This result is consistent with the prediction in § 5.1 that the shear-thinning is
destabilizing for the plane Couette flow.

We have examined the transient behaviours of the streamwise- and spanwise-
independent disturbances. In order to know the energy growth of oblique disturbances,
we will present the maximal energy growth Gmax in the α–β plane. In figure 14, isolines
of Gmax are plotted for n= 1.0 and 0.5 at Re = 1000. The structures of the level lines
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Figure 15. Cross-stream (y–z) view of the optimal input and output fields of the initial
problem at Re = 1000, β = 1.5 and n= 0.5. (a) the vectors of v and w components at t = 0.
(b) isolines of u component at optimal time tmax = 183.6, Gmax = 1685.1.

of Gmax are similar in these two cases. In the α–β plane, we can define the optimal
energy growth as

Gopt = maxα,βGmax (α, β) at t = topt . (5.14)

For the plane Poiseuille flow, the optimal energy growth is realized in the spanwise
direction (α = 0) (Reddy & Henningson 1993). However, for the plane Couette flow,
the most amplified disturbance does not located in the β-axis. In figures 14(a) and
14(b), the optimal amplification is in the form of non-streamwise uniform disturbances,
but having a very large streamwise wavelength. As shown in figure 14(a), the optimal
energy growth of the plane Couette flow is realized at the point of α ≈ 0.025 and
β ≈ 1.6 for n= 1.0. For n= 0.5, the optimal disturbance shifts to the point of α ≈ 0.04
and β ≈ 1.5.

In order to know more about the influence of shear-thinning on the energy growth
of optimal disturbances, we plot the flow fields at the initial time t = 0 and the
optimal time tmax for two typical cases, i.e. the streamwise- and spanwise-independent
disturbances. In figure 15, we plot the flow field for the optimal streamwise-
independent disturbance at Re =1000, β = 1.5 for n= 0.5. At the initial time t =0
and optimal time tmax , the flow fields are characterized by two counter-rotating
vortices and the optimal streaks. These flow structures of the shear-thinning case are
qualitatively similar to that of the Newtonian case. As explained in many previous
works, the streamwise velocity grows linearly with time via the lift-up mechanism
before being damped by the viscosity. The structures of the flow at the t = 0 and
tmax are also very similar to the optimal input and output of harmonic excitations in
figure 11. The difference is that the spanwise wavelength of the initial value problem
in figure 15 is smaller than that in figure 11. We have also computed the flow fields
of streamwise-independent disturbances for various values of n; it is found that the
structures of the flow fields and the wavelength are only slightly changed with n. It
seems that the non-Newtonian viscosity does not influence the streaky structure of
the streamwise-independent disturbances.

In figure 16, we plot the isolines of the streamfunction of the spanwise-independent
disturbances at initial time and optimal time for n= 1.0 and 0.5. As shown in
figures 16(a) and 16(c), the streamlines of the initial flow field tilt opposite to
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Figure 16. Flow patterns of the streamfunction for the spanwise-independent disturbances at
Re = 1000 for n= 1.0 and 0.5. (a) Flow filed at initial time, (b) flow field at optimal time for
n= 1.0, Gmax = 13.0, tmax = 8.7, α = 1.23; (c) flow filed at initial time, (d ) flow field at optimal
time for n= 0.5, Gmax =20.5, tmax = 11.7, α = 1.10.

the mean flow. As explained by the two-dimensional Reynolds stress mechanism,
the disturbance gains energy from the mean shear. Comparing figure 16(a) with
figure 16(c), it is observed that with the increase of shear-thinning, the streamlines
tilt more opposite to the direction of the mean flow. This means that for a more
shear-thinning fluid, the disturbance can extract more energy from the mean flow. At
the optimal time, the structures of the flow fields are similar for n= 1.0 and n= 0.5.
As shown in figures 16(b) and 16(d ), the flow patterns become upright. In this case,
the disturbance gains no energy from the mean shear. After the optimal time, we
found that the flow patterns of the streamlines tilt to the streamwise direction. At
this stage, the disturbance energy is returned to the mean flow.

6. Conclusions
In this paper, linear stability in the plane Couette flow of a power-law fluid has

been investigated using the eigenvalue analysis, the energy method and the non-modal
stability theory. We focus on the effect of shear-thinning on the stability of the flow.
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For the plane Couette flow of a power-law fluid, there is no stratification of viscosity.
The effect of non-Newtonian viscosity is in the form of an anisotropic of stress tensor
of disturbance.

The eigenvalue analysis is used to investigate the long time behaviour of the
disturbances. We have studied the temporal growth rate of the least stable mode
for both the spanwise- and streamwise-independent disturbances. It is found that
the plane Couette flow is always stable for shear-thinning fluids at rather high
Reynolds numbers. This suggests that, like the Newtonian case, the plane Couette
flow of a shear-thinning fluid is always stable at all Reynolds number. For
both the spanwise- and streamwise-independent disturbances, the temporal growth
rate decreases with the increase of the wavenumber. For spanwise-independent
disturbances, the shear-thickening effect only slightly stabilizes the system. However,
the shear-thinning effect significantly destabilizes the system in the medium and
shortwave ranges. For streamwise-independent disturbances, the shear-thinning effect
significantly destabilizes the plane Couette flow.

We have studied the condition for no energy growth using the energy method.
The critical energy Reynolds number Reg below which there is no energy
growth was determined by searching the maximal eigenvalue of (L − L ∗)/2.
The streamwise-independent disturbances are more unstable than the spanwise-
independent disturbances for all the index n. With the increase of n, the plane
Couette flow becomes more stable for both the streamwise- and spanwise-independent
disturbances.

The main focus of the present paper is the non-modal stability of the plane
Couette flow. We study the response to external excitations and initial conditions.
The response to external excitations is characterized using the ε-pseudospectrum, and
the response to initial conditions is described by the energy growth function G(t). For
both the streamwise- and spanwise-independent disturbances, the maximal response
to external excitations is realized at ω = 0. The shear-thinning effect significantly
increases the amplification of response for the spanwise-independent disturbances at
both low and high frequencies. However, the response to streamwise-independent
excitations is insensitive to shear-thinning at high frequency. When fixing ω, we
present the maximal response to external excitation in the α–β plane. For ω = 0,
the most amplified disturbance is streamwise uniform. For ω > 0, the most amplified
disturbance becomes oblique. The increase of n reduces the response of oblique
disturbances in the α–β plane.

We have studied the effect of shear-thinning on the transient energy growth of
initial conditions. The results show that when the Reynolds number exceeds Reg , the
disturbances experience a transient growth and then an exponential decay. For the
plane Poiseuille flow, the optimal disturbance is streamwise uniform. However, for
the plane Couette flow of a Newtonian or non-Newtonian fluid, the optimal response
is achieved by a slightly oblique disturbance with a very large streamwise wavelength.
Both the lift-up effect and the two-dimensional Reynolds stress mechanism can be
responsible for the energy growth of the initial disturbances. With the increase of
shear-thinning, the transient energy growth increases for both the streamwise- and
spanwise-independent disturbances.

All results in the present paper show that in the absence of a stratification of
viscosity, the effect of shear-thinning is destabilizing for the plane Couette flow.
This result is different to that for the plane Poiseuille flow, in which a stratification
of viscosity plays an important role and the shear-thinning effect appears to be
stabilizing. In order to explain the difference between the present problem and the
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plane Poiseuille flow, we examine the energy budget of the Orr–Sommerfeld equation
for the eigenvalue problem. For a general plane shear flow, shear-thinning has a
dual effect. The viscosity stratification arising from shear-thinning is stabilizing, and
the effect of the viscosity disturbance is destabilizing. For the plane Poiseuille flow,
the stabilizing effect is dominant. For the plane Couette flow, there is no viscosity
stratification. So, the total effect of shear-thinning is destabilizing. We also examine the
effect of shear-thinning on the lift-up mechanism and the two-dimensional Reynolds
stress mechanism which are responsible for the transient energy growth. For the plane
Poiseuille flow, with the decrease of n the magnitude of U ′ decreases in the region far
away from the walls. So, the lift-up mechanism and the two-dimensional Reynolds
stress mechanism become weaker with the increase of shear-thinning. However, for
the Couette flow, U ′ is independent of the index n. With the increase of shear-thinning,
the transient energy growth arising from these two mechanisms increases because of
less viscosity.
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