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The influences of high-frequency vibrations on the Rayleigh–Marangoni instability in a two-layer
system are investigated theoretically in the framework of the averaging method. We focus on the
effects of vertical and horizontal vibrations on the stability of different convection modes. The
results show that vertical vibrations significantly stabilize the system, while horizontal vibrations
significantly destabilize it. In the presence of vertical vibrations, instability only occurs in a system
heated from below. However, in the presence of horizontal vibrations, instability can also occur in
a system cooled from below. When Marangoni effect is dominant at the interface, it is found that
there are four types of coupling modes. The oscillatory convection is the result of the competition
between different modes. In the presence of Marangoni effect at the interface, the structure of the
interfacial flow is complicated. In some cases, small counter-rolls may develop to preserve the
nonslip condition of fluids in either the upper layer or the lower layer. © 2011 American Institute of
Physics. �doi:10.1063/1.3554765�

I. INTRODUCTION

Oscillatory motion in liquid layers has been known as an
effective way to enhance the performance of many applica-
tions. The related problems of oscillatory convection in a
two-layer system have received significant attention because
of its technological importance.

The mechanisms of oscillatory instabilities in a two-
layer or multilayer system are complicated. In contrast to the
Rayleigh–Bénard problem for a one-layer system, the linear-
ized controlling equations for a two-layer system are not
self-adjoint such that oscillatory instability is possible, in
general. More physical mechanisms of the instabilities in a
two-layer system can be referred in many previous works.1–8

In the absence of vibration and Marangoni effect, there are
two different cases where oscillatory instabilities have been
predicted. The first case is that the densities of fluids are
close to each other so that the deviations of the densities with
respect to temperature are comparable with the density dif-
ference of the reference state, and the oscillation may be
self-sustained as interfacial waves. This kind of oscillatory
convection has been studied in Refs. 1, 2, and 5. The second
case is that the oscillation is driven by hydrodynamic and
thermal interaction at the interface. Rasenat et al.3 showed
that an oscillatory Rayleigh convection could develop, in-
volving no interfacial deformation. However, the critical
Rayleigh number is given by the nonoscillatory branch, so
oscillatory Rayleigh instability is difficult or sometimes im-
possible to be observed in experiments at the onset of con-
vection.

In many situations, both surface tension and buoyancy
play important roles in driving convection in liquid layers.
For Rayleigh–Bénard problems, both instability analysis and

experimental observation have found two possible modes of
convection: thermal coupling mode and mechanical coupling
mode. For a two-layer system heated from below, the ther-
mal coupling mode is characterized by rolls in each layer
rotating in the opposite directions, while the mechanical cou-
pling mode is characterized by rolls rotating in the same
direction. Liu and Zhou7,8 investigated the Rayleigh–
Marangoni–Bénard convection in a two-layer system con-
sisting of silicon oil 10cs and fluorinert FC70. It was shown
that oscillatory Rayleigh–Marangoni–Bénard convection
may occur in a narrow gap of 1.461�h�1.564 for the Bond
number, Bo=15.35, in which h is the ratio between the
depths of the upper liquid and the lower liquid.

Vibrations as well as gravitation and surface tension are
known to be an effective way to affect the behaviors of con-
vection in fluid systems. Gershuni and Lyubimov9 firstly
used the averaging method to describe the “thermal vibra-
tional convection” in the limit of high-frequency and small
amplitude. In Ref. 9, the term thermal vibrational convection
is used by the authors in two ways. The first one is connected
with the vibrational effects on convection, heat, and mass
transfer caused by static gravity field. The second one is
proposed to refer to the specific regular flows that appear
under vibration in a cavity filled with a fluid. The effects of
vibration on the onset of convection in a two-layer system
has been investigated in the framework of averaging method
by some authors.9–11 The physics of the Rayleigh–Marangoni
instability has been extensively investigated. However, to our
knowledge, investigations devoted to the influence of vibra-
tion on the oscillatory gap of the depth ratio are very limited.
Motivated by the previous works, we have made a tentative
study of the influences of vibrations on the oscillatory
Rayleigh–Marangoni convection. The present paper is only
devoted to the case of high-frequency vibrations, i.e., the
period of vibration is much smaller than the reference hydro-a�Electronic mail: liurong@imech.ac.cn.
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dynamic time and the amplitude of vibration is much smaller
than the reference length. In this case, the averaging method
can be safely applied to study the effects of vibrations.

Our paper is organized as follows. In Sec. II, the math-
ematical formulation of the problem is presented based on
the averaging method. In Sec. III, the numerical method is
described briefly. In Sec. IV, the influences of vertical and
horizontal vibrations on the Rayleigh–Marangoni instability
are studied. Finally, conclusions are given in Sec. V.

II. MATHEMATICAL MODEL

We consider two-dimensional thermal convection under
high-frequency vibrations in a two-layer system. The physi-
cal model, depicted in Fig. 1, consists of a fluid of depth d2

underlying another fluid of depth d1 �see also Fig. 2�. The
total depth of the combined layers d is defined as d=d1+d2.
The combined layers are infinite in the horizontal directions.
The upper and lower boundaries are rigid walls maintained at
constant temperatures. The surface tension � is
assumed to be a linear function of temperature T, i.e.,
�=�0−�T�T−T0�, where �T is assumed to be constant and
positive. The fluids are considered to satisfy the Boussinesq
approximation, i.e., the density variations caused by the ther-
mal expansion are relatively small: ��T�1. In this case,
the physical properties are independent of temperature,
except density, which decreases with the local temperature:
�=�0�1−��T−T0��, where � is the thermal expansion coef-
ficient, � is the density, and �0 is the density at the reference
temperature T0. After we introduce the vibration, the
complete acceleration item a in Boussinesq equations
should include both the static gravity and the vibrational ac-
celeration, which is express as a=g+nb�2 cos��t�, where
n=cos 	ex+sin 	ez is the unit vector along the orientation of
vibration, 	 is the vibration angle, b is the amplitude of
vibration, and � is the angular frequency.

The interface between the two fluids is a free surface
located at z=h�x , t�, where the mean value of h�x , t� is zero.
However, free-surface deformation has a relatively small ef-
fect on the thermal instability. Pearson12 first studied the
Marangoni instability in a liquid film with a nondeformable
interface. Until now, the nondeformable assumption has been
widely used in many works on the Marangoni stability. We
consider the limit of S→
, in which the free surface be-
comes a planar, nondeformable interface.13 Here, the non-
dimensional surface tension number S is defined as
S=�L /��2, in which � is the surface tension and L is the
character length. For the present problem, we are interested

in the Rayleigh–Marangoni instability, in which the effect of
interface deflexion is slight. So, in the present study, we as-
sume that the interface between the two fluids is a nonde-
formable free surface.

Based on the Boussinesq approximation, the continuity,
the Navier–Stokes, and the energy equations are

� · v = 0, �1�

�v

�t
+ v · �v = −

�p

�0
+ ��v + g�Tez + �Tb�2 cos �tn ,

�2�

�T

�t
+ v · �T = ��T . �3�

Here, v is the velocity vector, p is the pressure, g is the
gravity, � is the kinematic viscosity, and � is the thermal
diffusivity. The operator � is the Laplacian.

A. Averaged equation and boundary conditions

The existence of a vibrational force leads to the devel-
opment of the convective flow component oscillating with
time. Thus, the velocity, temperature, and pressure field may
be presented as superpositions of a mean and pulsational
parts,9

v = v̄ + v�, T = T̄ + T�, p = p̄ + p�. �4�

The physical system is characterized by five different times-
cales. While the viscous diffusion timescale 
visc=L2 /�
and the thermal diffusion timescale 
th=L2 /� are related
to the dissipative properties of the fluid, the buoyant time-
scale 
b= �L /��Tg�1/2 and the thermocapillary timescale

tc= ��L3 /�T�T�1/2 characterize the driving force of the

O

d1

d2 g

x

z

n

FIG. 2. A sketch of the physical model.
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c old (b)

hot

c old (c ) hot
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hot
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FIG. 1. Schematic of four different types of surface-driven flow in a two-layer system: �a� convection initiating in the upper fluid when heated from below,
�b� convection initiating in the lower fluid when heated from below, �c� convection initiating in the upper fluid when cooled from below, and �d� convection
initiating in the lower fluid when cooled from below.
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buoyancy and the surface tension, and the dynamic timescale

v=1 /� is related to the vibration.

We assume that the frequency is high: 
v�
visc ,

th ,
b ,
tc. The pulsational parts v� ,T� , p� are assumed to os-
cillate quickly, with the reference time on the order of the

vibration period 
v. The average parts �v̄ , T̄ , p̄� are “slow”
functions of time, responding to the dissipation process or
the effects of buoyancy and thermocapillary. Substituting
Eq. �4� into the controlling equations and selecting “fast”
terms, we can obtain the equations for the oscillatory
components,

�v�

�t
+ �v̄ · ��v� + �v� · ��v̄ + �v� · ��v�

= −
�p�

�
+ ��2v� + g�T�ez + ��T̄ + T��b�2 cos �tn ,

�5�

�T�

�t
+ �v̄ · ��T� + v� � T̄ + v� � T� = ��2T�. �6�

The assumption of 
v�
visc ,
th can be interpreted as small
thicknesses of the boundary layers induced by vibrations are
much less than the character length,

�visc =� �

2�
� L, �th =� �

2�
� L . �7�

This assumption enables us to consider hydrodynamic fields
in the bulk and in the boundary layer separately. Addition-
ally, we assume that the amplitude of vibration is small:
b�L. Based on these assumptions, all the terms including v�
except for the leading term �v� /�t can be neglected in Eq.
�5�. In a similar way, all the terms including T� except for the
leading term �T� /�t can be neglected in Eq. �6�. Among the
terms describing convection oscillatory forces, the main one

includes T̄; we can simplify Eq. �5� further by retaining only

the term that includes T̄ and neglect the term that includes
T�. We will defer the justification to the later part, after hav-
ing the expressions for v� and T�. Following the standard
procedure of the averaging method,9 we present the vector

T̄n as the sum of solenoidal w and irrotational �� parts,

T̄n = w + �� . �8�

We obtain that

v� = �b� sin �t · w , �9�

T� = �b cos �t�w · �T̄� . �10�

From the expression of T�, T� / T̄ has the magnitude of
��Tb /L, which is much smaller than a unit. This result in-

dicates that T̄ is the main one that describes convection os-
cillatory forces, thus it is reasonable to neglect T� in the last
term in Eq. �5�. Comparing g�T� with �v� /�t and using the
expressions of v� and T�, the former can be neglected under
the relationship between the gravity acceleration and the vi-
brational one,

g

L�2��T � 1. �11�

This relationship is equivalent to the assumption that

v�
b.

Before we study the stability problem, let us now formu-
late the boundary conditions for the oscillatory velocity. Note
that the viscous force driving the oscillatory flow has been
neglected when deriving the pulsational equations. This
means that the existence of the Stokes boundary layer for the
pulsation flow is not taken into account.

On a rigid boundary, the no-slip condition for the veloc-
ity leads to the formation of a well-pronounced boundary
layer. However, for a free surface of a fluid layer, the condi-
tion on the tangential stress contains only the velocity deriva-
tives. This means that the boundary layer near the free sur-
face is less pronounced and would manifest itself only in
higher spatial derivatives of the velocity field. However, for
the two-layer system, both the continuity of velocity and the
balance of the tangential stresses should be satisfied at the
interface between two fluids. If there is a difference between
the bulk velocities of the two fluids, boundary layer should
exist on each side of the interface. The magnitude of the
boundary layer thickness is ��1 /2� or ��2 /2� on each side
of the interface. In the high-frequency limit, the boundary
layer is well-pronounced on the interface as well as on the
rigid boundaries. Thus, the continuity of tangential velocity
and the balance of tangential stress are not required on the
boundaries. On the nondeformable interface, nonpermeabil-
ity condition should be imposed rather than the nonslip one,

v� · n = 0. �12�

B. Spectral amplitude problem

We scale the problem by using d, d2 /�2, � /d, and �T for
length, time, velocity, and temperature. We assume that a
mechanical quasiequilibrium exists and has the following
structure:

T10 = T10�z�, w10 = �w10�z�,0,0� , �13�

T20 = T20�z�, w20 = �w20�z�,0,0� . �14�

The nondimensional temperature gradients in the upper and
lower layers are denoted by −A1 and −A2,

A1 =
1 + h

k� + h
, A2 =

k��1 + h�
k� + h

. �15�

Here, h is the depth ratio, which is defined as h=d1 /d2.
For w0, one has the nondimensional forms

dw10

dz
= − A1 cos 	 , �16�

dw20

dz
= − A2 cos 	 . �17�

Substituting Eqs. �9� and �10� into the complete set of equa-
tions and averaging them with respect to the fast time,

we can obtain the equations for variables v̄ , p̄ , T̄ , w̄. We
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introduce two-dimensional normal mode perturbations in the
form as

�ū, v̄,w̄z, p̄,T̄� = �U�z�,V�z�,W�z�,P�z�,��z��

�exp��t + ikx� , �18�

where � is the time growth rate and k is the wavenumber of
the x direction. Eliminating the pressure p̄ and the compo-
nent ū, we get the normal mode equations,

��V1 = ����V1 −
�� Ra

Pr
k2�1 +

A1�� Rav

Pr

��− k2 cos2 	�1 + ik cos 	DW1 + k2 sin 	W1� ,

�19�

��1 = A1V1 +
��

Pr
��1, �20�

�W1 = − ik cos 	D�1 − k2 sin 	�1, �21�

��V2 = ����V2 −
Ra

Pr
k2�2 +

A2 Rav

Pr

��− k2 cos2 	�2 + ik cos 	DW2 + k2 sin 	W2� ,

�22�

��2 = A2V2 +
��

Pr
��2, �23�

�W2 = − ik cos 	D�2 − k2 sin 	�2. �24�

On the rigid boundary, the temperatures are assumed to be
fixed, and the averaged velocity satisfies the no-slip condi-
tion. On the interface, the temperature and the heat flux are
continuous, and the continuity of the averaged velocity and
the balance of tangential stresses are satisfied. The oscilla-
tory velocity satisfies the nonpermeability condition on both
the rigid boundaries and the interface.

Boundary conditions at the bottom,

V2 = DV2 = �2 = W2 = 0, �25�

at the top,

V1 = DV1 = �1 = W1 = 0, �26�

and at the interface,

V1 = V2 = 0, �27�

DV1 = DV2, �28�

�1 = �2, �29�

k�D�1 = D�2, �30�

�D2 + k2�V2 − ���D2 + k2�V1 = − k2 Ma �2, �31�

W1 = W2 = 0. �32�

Here, the operator D denotes differential operation d /dz
and � denotes D2−k2 . The parameters include the Prandtl

number �Pr�, the Rayleigh number �Ra�, the vibrational
Rayleigh number �Rav�, the Marangoni number �Ma�, and
the Bond number �Bo�, which are defined as follows:

Pr =
�2

�2
, Ra =

g�2�Td3

�2�2
, Rav =

�2�T2d2

�2�2
,

�33�

Ma =
�T�Td

�2�2
, Bo =

�2g�2d2

�T
.

The ratios of physical properties include ��=�1 /�2,
��=�1 /�2, k�=k1 /k2, ��=�1 /�2, ��=�1 /�2, and ��=�1 /�2.

III. NUMERICAL METHOD

We transform the domains of �0,d1 /d� and �−d2 /d ,0�
into the Chebyshev domain ��1,1� by introducing
�1=2zd /d1−1 and �2=2zd /d2+1. The variables V1 ,W1 ,
�1 ,V2 ,W2 ,�2 are expanded using Chebyshev expansions

V1 = �
n=0

N

V̂1
nTn��1�, W1 = �

n=0

N

Ŵ1
nTn��1�,

�1 = �
n=0

N

�̂1
nTn��1� ,

�34�

V2 = �
n=0

N

V̂2
nTn��2�, W2 = �

n=0

N

Ŵ2
nTn��2�,

�2 = �
n=0

N

�̂2
nTn��2� .

Equations �19�–�24�, together with the corresponding bound-
ary conditions, lead to a 16th order eigenvalue problem. We
force expansion of Eq. �34� to satisfy the controlling equa-
tions and the boundary conditions at the Gauss–Lobatto
points, the system of equations is required to solve for
6�N+1� unknowns of the spectral coefficients. This gives
rise to an eigenvalue problem of the form

AX = �BX �35�

for eigenvalue �, in which A and B are 6�N+1��6�N+1�
matrices, and the eigenvector X is the expansion coefficient
in Eq. �34�. The real part of the complex eigenvalue is the
time growth rate and the imaginary part is the oscillatory
frequency. In this paper, we denote the oscillatory frequency
by �. Details of the computational procedures can be found
in Ref. 14. In the present paper, it is found that N=20 is
enough to yield satisfactory results. We compute the
most unstable eigenvalue for k=4.6, h=1, Rav=0, and
Ra=8181.0. We obtain �=4.76�10−5, 0.11�10−4, and
0.25�10−4 for N=20, 30, and 40, respectively. We also com-
pute the critical Rayleigh number for k=4.6, h=1, and
Rav=0. The critical Rayleigh numbers are Ra=8381.4,
8380.91, 8379.73 for N=20, 30, 40, respectively. The rela-
tive error �Ra /Ra is less than 10−4 for N=20. This result
shows that N=20 yield almost indistinguishable critical
value of Ra from N=30,40.
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IV. RESULTS AND DISCUSSION

In this section, the instability characteristics of a real
two-layer system will be investigated. Before we study the
coupling mechanism of different instability modes and struc-
tures of the flow patterns, it is helpful to review the physics
of different coupling modes that occur in the present system.
In this paper, we limit our results to the instabilities of a
system subjected to vertical and horizontal vibrations. In the
system considered here, the upper fluid is silicone oil 10sc
and the lower fluid is fluorinert FC70. The physical proper-
ties used in the calculations are listed in Table I. The total
depth of the system is fixed at 6 mm and the Bond number is
fixed at 15.35.

The Boussinesq approximation is valid for ��T�1. For
the present problem, ��10−3 K−1, so we could limit the
�T�10 K. If the depth of the system is of the magnitude of
1 cm, this range of �T allows 	Ra	 to change from 0 to about
2.5�105. If we increase the depth d, a wider range of Ra is
allowed without violating the Boussinesq approximation.
The averaging method is valid upon the assumption of

��
visc ,
th ,
b ,
tc. For d�1 cm, we obtain that 
visc�10
and 
th�103. In the range of �T�10 K, 
b�0.32 and

tc�1.3. This conditions are satisfied if 1 /��1. In the con-
dition of ��1, the averaging method could be safely used.

For d�1 cm and �T�10 K, �b��2
10 corresponds
to Rav
105. For a small b�10−3, the frequency � needs to
have a magnitude �3�103 to reach such a high Rav. This is
physically unrealistic for d�1 cm. However, for other sys-
tems with larger depth d, a very large Rav is possible. In the
present study, we note that the values of Rav are not intended
to be physically realistic; rather, they allow us to characterize
the influence of this parameter on the instability of the sys-
tem, especially the instability characteristics for �→
.

A. Physics of different coupling modes

For a two-layer system heated from below, Johnson and
Narayanan15 presented five typical convection modes at dif-
ferent depth ratios. To understand the mechanisms of differ-
ent instability modes, it is helpful to review the convection
modes discussed in Ref. 15. At the onset of instability,
in a thin fluid layer, surface tension driven convection
�Marangoni convection� dominates, and in a thick fluid layer,
buoyancy-driven convection �Rayleigh convection� domi-
nates. We first neglect the surface tension and consider the
case of Rayleigh convection. When the depth of the upper
layer is much smaller than that of the lower layer, convection
initiates in the lower layer and the upper layer is moved by
the viscous drag of the lower layer. This convection mode is

referred to as “lower dragging” mode. With the increase of
the depth of the upper layer, the effect of buoyancy becomes
comparable in both layers. In this case, two convection
modes are possible. One is “viscous coupling” mode, the
other is that “thermal coupling” mode. The convection of
“upper dragging,” lower dragging, or viscous coupling is
“mechanical coupling” mode. We should note that thermal
coupling Rayleigh convection is a rare event and mechanical
coupling is usually preferred.3 For a system heated from be-
low, the mechanical coupling mode is characterized by the
rolls in each fluid layer rotating in the opposite directions,
and the thermal coupling mode by the rolls in each layer
rotating in the same direction. When the depth of the upper
layer is larger than that of the lower layer, convection ini-
tiates in the upper layer because the buoyancy is dominant in
the upper layer, and the lower layer is viscously dragged.

In the presence of the surface tension, a convection
mode referred to as “pure thermal coupling with surface-
driven flow” can occur. In Ref. 15, the flow pattern of pure
thermal coupling with surface-driven flow is presented for a
system heated from below. We present the schematic of this
mode in Fig. 1�a�. This convection mode typically occurs in
a gas-liquid system, in which convection initiates in the up-
per layer, simultaneously sending thermal signature to the
interface, and generating Marangoni convection or Rayleigh
convection in the lower layer.15 It seems that the flow pattern
of the surface-driven flow is similar to that of thermal cou-
pling mode without Marangoni effect, in which the rolls
corotate in each layer.

In the absence of vibrations, Rayleigh–Marangoni con-
vection only occurs in a system heated from below. There is
no problem to distinguish the viscous coupling mode and the
thermal coupling mode by identifying the directions of rota-
tion of fluids. In these two cases, fluids corotate and counter-
rotate in each layer, respectively. However, when a system is
cooled from below, identifying the directions of fluids is not
enough to distinguish different coupling modes.

When the system is subjected to vibrations, Rayleigh–
Marangoni convection may occur even when the system is
cooled from below. To understand the mechanisms of con-
vection in a system under vibrations, it is helpful to look at
the flow patterns of the system heated and cooled from be-
low. In Fig. 1�a�, convection initiates in the upper layer in a
liquid-liquid system heated from below, and the flow pattern
is similar to that of a gas-liquid system in Ref. 15. In this
figure, the flows in the upper layer send thermal signature to
the interface and generate Marangoni convection in the lower
layer. The interfacial flow and the Rayleigh convection in the

TABLE I. Physical properties of the two-layer system at 298 K.

Property

�
�kg /m3�

�
�1/K�

k
�W/m K�

�
�m2 /s�

�
�m2 /s�

Silicone oil 10cs 953 1.1�10−3 1.34�10−1 9.50�10−8 1.0�10−5

FC70 1940 1.0�10−3 6.99�10−2 3.44�10−8 1.4�10−5
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upper layer discourage each other. In Fig. 1�b�, the flow pat-
tern of convection initiating in the lower layer in a system
heated from below is presented. In this figure, the rolls
counter-rotate in each layer, and the interfacial flow and the
Rayleigh convection enhance each other in the lower layer.

In Fig. 1�c�, the flow pattern of convection initiating in
the upper layer is presented for a system cooled from below.
In this figure, the rolls counter-rotate in each layer, which is
significantly different to the flow pattern in Fig. 1�a� for a
system heated from below. In this figure, the interfacial flow
and the convection in the upper layer enhance each other. In
Fig. 1�d� for convection initiating in the lower layer in a
system cooled from below, the rolls corotate in each layer. In
this figure, the interfacial flow and the convection in the
lower layer discourage each other.

In Fig. 1, we only give qualitative plots of convective
modes under the assumption that convection initiates in ei-
ther the upper layer or the lower layer. However, these plots
do not include all situations. In experiments or computations,
oscillatory convection may occur. In this paper, we can see
that oscillatory convection is different from any case in Fig.
1. However, oscillatory convection is the result of the com-
petition of different modes in Fig. 1.

B. Instabilities under vertical vibrations

We begin with the influences of vertical vibrations on the
stability characteristics and the structures of flow patterns.
Figure 3 presents the curves of the critical Rayleigh number
versus the depth ratio for various vibrational Rayleigh num-
bers. It is shown that at a given Rav, each curve displays a
trimodal structure. The left and right branches of the curves
are the regions where convection initiates in the lower and
upper layers, respectively. The dotted lines between the left
and the right branches are the regions where oscillatory con-
vection occurs. At the onset of instability, for each Rav, the

time growth rate �=0 in the left and right branches and
�= � i� in the oscillatory branches. This result indicates that
at the left and right branches, the convection is in the form of
static rolls, and at the oscillatory branch, the convection is in
the form of two traveling waves. In Fig. 3, all the critical
Rayleigh numbers are positive. This means that convection
occurs only when the system is heated from below. The
structures of the flow patterns of the right and left branches
are qualitatively shown in Figs. 1�a� and 1�b�. In Figs. 1�a�
and 1�b�, it is assumed that the convection initiates in either
the upper layer or the lower layer. However, when the
Rayleigh effects in the upper and lower layers are compa-
rable, the competition between different modes may occur.
The oscillatory behavior is the result of the competition of
different convective modes, i.e., convection initiating in the
upper and lower layers. In Fig. 3, it is shown that the critical
Rayleigh number significantly increases with the increase of
the vibrational Rayleigh number at all depth ratios. Gershuni
and Lyubinov9 studied the interaction of the influence of the
vibrational Rayleigh number on the critical Rayleigh number
for a one-layer system. It is shown that the increase of Rav
stabilizes the system. For pure Marangoni stability in a one-
layer system, the increase of Rav also stabilizes the system.16

It seems that in a two-layer system, the increase of Rav has
the same effect as that in a one-layer system for both the
Rayleigh stability and the Marangoni stability.

In order to know the effects of vibrations on the insta-
bilities of different convection modes, we present the mar-
ginal curves of Rayleigh number versus the wavenumber
with various vibrational Rayleigh numbers for several typical
depth ratios. In Fig. 4�a�, the marginal curves are presented
for the depth ratio h=1, at which convection initiates in the
lower layer at the onset of instability. In this figure, all the
curves are unimodal. With the increase of the vibrational
Rayleigh number, the system becomes more stable and the
critical wavenumber decreases. As shown in Fig. 3, at the
onset of instability, the oscillatory convection is the domi-
nant mode at Rav=0 for h=2. In Fig. 4�b� for the depth ratio
h=2, each marginal curve displays a bimodal structure. The
left branches of the curves are of the oscillatory mode, and
the right branches are of the mode of convection initiating in
the upper layer. In this figure, it is shown that with the in-
crease of the vibrational Rayleigh number, both the left and
the right branches become more stable. At Rav=0, the oscil-
latory mode is the dominant; however, as Rav increase to
20 000, the dominant mode switches from the left branch to
the right branch. As the depth ratio h increases to 2.3, as
shown in Fig. 4�c�, the curves for various Rav display a tri-
modal structure. In Fig. 3, at Rav=0 for h=2.3, the dominant
mode is the convection initiating in the upper layer, which
corresponds to the left branch in Fig. 4�c�. With the increase
of Rav, all branches become more stable. As Rav increases to
10 000, the middle branch and the left branch become almost
the same stable. As Rav increases further, the middle branch
becomes the dominant mode. As the depth ratio h increases
to 3, all the curves in Fig. 4�d� also display a trimodal struc-
ture. With the increase of Rav, all branches become more
stable; however, the dominant mode is always located in the
left branch.
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FIG. 3. The critical Rayleigh number vs depth ratio for various vibrational
Rayleigh numbers. The oscillatory branches are denoted by dotted lines. The
other parameters are d=6 mm, Bo=15.35, and vibration angel 	=� /2.
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In order to know the physics of different convective
modes, we will present the structures of the flow patterns for
several typical cases. In each case, the flow patterns of
streamlines, the isolines of the temperature disturbances, and
the amplitudes of V and � are presented. In the plots of
streamlines, the solid lines denote the rolls rotating anti-
clockwise, and the dashed lines denote the rolls rotating
clockwise. In the plots of isolines of temperature distur-
bances, the solid and the dashed lines denote positive and
negative disturbances, respectively. In the plots of the ampli-
tudes of V and �, the real parts are denoted by solid lines
and the imaginary parts are denoted by dashed lines.

In Fig. 5, the flow patterns and the amplitudes of V and
� are presented for h=1 at Rav=200 000 at the onset of
instability. The corresponding marginal curve is shown in
Fig. 4�a�. When convection initiates in the lower layer, the
upper layer can be viscously dragged or driven by surface

tension. In this case, the surface-driven flow is qualitatively
depicted in Fig. 1�b�. In Fig. 5�a�, the surface-driven flow
and the viscously dragged flow reinforce each other in the
upper layer, and the rolls counter-rotate in each layer. The
convection patterns in Fig. 5�a� are similar to the viscous
coupling mode in Ref. 15. In this case, identifying the direc-
tion of flow could not distinguish the viscous coupling mode
and the thermal coupling mode. In order to know more about
the characteristics of different coupling modes, it is helpful
to look at the temperature disturbances. In Fig. 5�c�, it is
shown that the patterns of the isothermal lines mainly locate
in the lower layer. Figure 5�d� shows that the amplitudes of
temperature disturbances in the lower layer are larger than
that in the upper layer. This result is consistent with the fact
that the convection initiates in the lower layer. Strictly speak-
ing, if the convection in the upper layer is completely a pas-
sive response to the convection initiating in the lower layer,
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FIG. 4. The marginal curves of the Rayleigh number vs the wavenumber with various vibrational Rayleigh numbers for different depth ratios: �a� h=1.0,
�b� h=2.0, �c� h=2.3, and �d� h=3.0. The other parameters are d=6 mm, Bo=15.35, and 	=� /2.
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the magnitude of the velocity component V should be much
lower in the upper layer than that in the lower layer. We
should note that for h=1, the Rayleigh effect is comparable
in each layer, and moreover, the Marangoni effect and vis-
cous coupling reinforce in the upper layer. Consequently, the
magnitudes of V in different layers are comparable. Fixing
other parameters and only changing the vibrational Rayleigh
number, we found that the structures of the flow patterns are
qualitatively the same as that in Fig. 5.

In Fig. 6, the flow patterns and the amplitudes of V and
� are presented for h=2 at Rav=100 000. In Fig. 6�a�, it is

shown the flow patterns of streamlines tilt to the left. How-
ever, in Fig. 6�c�, the patterns of the temperature distur-
bances tilt to the right. In Figs. 6�b� and 6�d�, the amplitudes
of V and � are complex functions of z. The real part of V has
a different sign in each layer. The imaginary part of V has the
same sign in each layer; however, the magnitude of the
imaginary part of V in the lower layer is much smaller than
that in the upper layer. Figure 6�d� shows that the imaginary
part and real parts of � correspond to convection initiating in
the upper and lower layers, respectively. It seems that the
imaginary and real parts of the amplitudes of V and � cor-
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FIG. 5. Plots of the flow patterns and the amplitudes of V and � at the onset of convection: �a� streamline patterns, �b� amplitude of V, �c� contours of the
temperature disturbances, and �d� amplitude of �. The other parameters are h=1.0, Rav=200 000, Bo=15.35, d=6 mm, k=2.0, and Ra=29 112.9.
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FIG. 6. Plots of the flow patterns and the amplitudes of V and � for the left traveling wave at the onset of convection: �a� streamline patterns, �b� amplitude
of the vertical component, �c� temperature contour, and �d� amplitude of the temperature. The other parameters are h=2.0, Rav=100 000, Bo=15.35,
d=6 mm, k=3.0, and Ra=50 942.3. The frequencies of the two traveling waves are �= �0.1083.
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respond to the convection initiating in the upper and lower
layers, respectively. The oscillatory convection is the result
of the alternation between these two modes.

For h=3, the dominant mode is convection initiating in
the upper layer. Figure 7 presents the flow patterns and the
amplitudes of V and � at Rav=200 000. The structures of the
main flow in Fig. 7�a� are qualitatively the same as that in
Fig. 1�a�. In Fig. 7�a�, the magnitude of V is much smaller in
the lower layer than that in the upper layer, and the rolls
corotate in each layer. Figure 7�d� shows that the maximum
temperature disturbance is located in the lower layer. This
result indicates that convection initiates in the upper layer
and the flow in the lower layer is driven by the surface ten-
sion. In Fig. 7�a�, it is found that a series of weak counter-
rolls has developed in the upper layer near the interface. In
order to know the mechanism of the presence of these
counter-rolls, it is helpful to return to Fig. 1�a�. As shown in
this figure, the direction of the interfacial flow is opposite to
the convection flow in the upper layer. Consequently, a series
of counter-roll is generated by the shear force between the
interfacial flow and the upper flow to preserve the no-slip
condition between the fluids.

C. Instabilities under horizontal vibrations

In this subsection, we will investigate the influences of
horizontal vibrations on the stability of the system. Figure 8
presents the curves of the critical Rayleigh number versus
the depth ratio for various vibrational Rayleigh numbers
when the system is subjected to horizontal vibrations. As
shown in this figure, the critical Rayleigh number decreases
with the increase of Rav at all depth ratios. Fixing the depth
ratio, some critical Rayleigh numbers become negative as
Rav increases to a certain value. This result indicates that in
the presence of horizontal vibrations, the system can become
unstable even though it is cooled from below. For Rav=0,

10 000, 20 000, and 50 000, it is obvious that there is an
oscillatory region in each curve. For Rav=0, 10 000, and
20 000, the critical Rayleigh numbers of the oscillatory re-
gions are positive. When the critical Rayleigh number is
positive, the increase of Rav narrows the oscillatory region.
As Rav increases to 30 000, the critical Rayleigh number at
the peak of the curve approximates to zero. At the onset of
instability corresponding to this peak, the temperature differ-
ence �T is slight. In this case, the Marangoni effect at the
interface is very weak, thus the competition between the left
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FIG. 7. Plots of the flow patterns and the amplitudes of V and � at the onset of convection: �a� streamline patterns, �b� amplitude of V, �c� contours of the
temperature disturbances, and �d� amplitude of �. The other parameters are h=3.0, Rav=200 000, Bo=15.35, d=6 mm, k=1.4, and Ra=51 849.5.
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branch and the right branch is almost impossible. This is the
reason that the oscillatory branch nearly disappears in the
curve of Rav=30 000. As Rav increases more, the critical
Rayleigh number becomes negative. At the onset of instabil-
ity, the magnitude of the temperature difference in the com-
bined layers is nonzero. Thus, the Marangoni effect will play
a role in the competition of different modes, and the oscilla-
tory region reappears in the curve of Rav=50 000. From the
above discussion, the horizontal vibration will destabilize the
system. In Fig. 8, it seems that when the critical Rayleigh
numbers in the oscillatory region are positive, the increase
of Rav narrows the oscillatory region; when the critical
Rayleigh numbers in the oscillatory region are negative, the
increase of Rav broadens the oscillatory region; and when the
maximum critical Rayleigh number of the curve is zero, the
oscillatory region disappears.

In order to know more about the effects of horizontal
vibrations on the stability of different convection modes, Fig.

9 presents the marginal curves of the Rayleigh number ver-
sus the wavenumber for several typical cases. As shown in
Fig. 9�a� for h=1, the marginal curves for all Rav display a
unimodal structure. At all wavenumbers, the Rayleigh num-
ber decreases with the increase of Rav. As Rav decreases to
30 000, it is obvious that the critical Rayleigh number has
become negative. As shown in Fig. 9�b� for h=2, the mar-
ginal curve of Rav=0 is bimodal. The left branch corre-
sponds to oscillatory mode, and the right branch corresponds
to convection initiating in the lower layer. At Rav=0, the
oscillatory mode occurs at the onset of instability. As Rav
increases to 10 000, a new left branch gradually appears and
the convection initiating in the upper layer becomes the
dominant mode. As Rav increases further, the left branch
decreases more than the middle and right branches. As Rav
increases to 50 000, the middle branch is completely sup-
pressed by the left branch. Figure 9�c� presents the marginal
curves for h=3. In this figure, each curve displays a trimodal
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FIG. 9. The marginal curves of the Rayleigh number vs the wavenumber with various vibrational Rayleigh numbers for different depth ratios:
�a� h=1.0, �b� h=2.0, and �c� h=3.0. The other parameters are d=6 mm, Bo=15.35, and 	=0.
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structure. With the increase of Rav, all branches become
more unstable. However, the left branch is always the domi-
nant mode.

In Fig. 10 for h=1 and Rav=30 000, at the onset of
instability the critical Rayleigh number is negative. In Figs.
10�c� and 10�d�, the patterns of the temperature disturbances
and the amplitude of � indicate that the maximal tempera-
ture disturbances occur in the lower layer. In Figs. 10�a� and
10�b�, the amplitude of V is much larger in the lower layer
than that in the upper layer. It is obvious that the convection
initiates in the lower layer, and the upper layer is driven by
the surface tension. The flow pattern in Fig. 10�a� is qualita-

tively the same as that in Fig. 1�d�. Being significantly dif-
ferent from that in Fig. 5�a� for vertical vibrations where
rolls counter-rotate in each layer, in Fig. 10�a� the rolls coro-
tate in each layer. As Rav increase to 50 000, the main flow
patterns are similar to that in Fig. 10. However, we found
that at the interface, a series of weakly counter-rolls has de-
veloped in the lower layer to preserve the no-slip condition
between the fluids.

For h=3 at Rav=30 000, the critical Rayleigh number
decreases to be a negative number. At the onset of convec-
tion, a large temperature difference exists in the combined
layers, thus the Marangoni effect is dominant at the interface.
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FIG. 10. Plots of the flow patterns and the amplitudes of V and � at the onset of convection: �a� streamline patterns, �b� amplitude of V, �c� contours of the
temperature disturbances, and �d� amplitude of �. The other parameters are h=1.0, Rav=30 000, Bo=15.35 d=6 mm, 	=0, k=6.4, and Ra=−13 299.9.
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FIG. 11. Plots of the flow patterns and the amplitudes of V and � at the onset of convection: �a� streamline patterns, �b� amplitude of V, �c� contours of the
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We note that in this case the Marangoni effect and the vis-
cously coupling mode reinforce at the interface. The convec-
tion mode is qualitatively plotted in Fig. 1�c�. In Fig. 11, the
flow patterns and the amplitudes of V and � are presented
for h=3 at Rav=30 000. In Fig. 11�b�, the amplitude of V
changes sign from the upper layer to the lower layer, and the
magnitude of V in the lower layer is much smaller than that
in the upper layer. Being similar to that in Fig. 7 for vertical
vibrations, the convection in Fig. 11 initiates in the upper
layer. In Figs. 11�c� and 11�d�, the patterns of temperature
disturbances and amplitude of � are very similar to that in
Figs. 7�c� and 7�d�. However, being different from that in
Fig. 7, the rolls in Fig. 11�a� counter-rotate in each layer.

V. CONCLUSIONS

In the present paper, we have studied the effects of high-
frequency vibrations on the Rayleigh–Marangoni instability
in a two-layer system. Our results have shown that the depth
ratio h plays an important role in determining the instability
modes at the onset of convection.

In the absence of vibrations, convection initiates in the
lower layer for small depth ratio and in the upper layer for
large depth ratio. When the system is heated from below and
Marangoni effect is dominant at the interface, the rolls
counter-rotate in each layer for small h, whereas the rolls
corotate in each layer for large h. Because these two modes
of convection discourage each other, for a medium h, the two
modes compete against each other, resulting in oscillatory
convection.

The vibration angle 	 is a crucial parameter that influ-
ences the stability of the system. In the present paper, we
limit our attention to two typical cases, i.e., vertical vibration
�	=� /2� and horizontal vibration �	=0�.

At 	=� /2, with the increase of Rav, the critical
Rayleigh number significantly increases at all depth ratios.
We have presented the marginal curves of the Rayleigh num-
ber versus the wavenumber for several depth ratios with vari-
ous Rav. The structures of the marginal curves may display a
trimodal structure. The branch of convection initiating in the
upper layer is located on the left of the oscillatory branch,
and the branch of convection initiating in the lower layer is
located on the right of the oscillatory branch. It is shown that
all the branches of marginal curves become more stable with
the increase of the vibrational Rayleigh number. Fixing the
wavenumber, the increase of Rav only influences the critical
value of the Rayleigh number; however, it does not influence
the direction of the rolls in each layer.

At 	=0, with the increase of Rav, all the branches be-
come more unstable. In the presence of horizontal vibrations,
instability may occur even though the system is cooled from
below. The results show that when the critical Rayleigh num-
ber change from positive to negative, a stationary counter-
rotating rolls will become a stationary corotating rolls at
small h, and a stationary corotating rolls will become a

stationary counter-rotating rolls at large h. Thus, for a system
subjected to high-frequency vibrations, the surface-driven
flows have four typical flow patterns, as shown qualitatively
in Fig. 1. Our result shows that the oscillatory convection
can be suppressed or even be completely eliminated by
changing the vibrational Rayleigh number.

We have also made a tentative study on the structures of
the interfacial flows. For some parameters, the surface flow
induced by Marangoni effect and the convection in the initi-
ating layer discourage each other. In these cases, a counter-
roll will develop to preserve the nonslip condition in the
layer where convection initiates.

ACKNOWLEDGMENTS

The authors thank the financial support for this research
from the National Foundation of China �Grant Nos.
50890182, 11072249, and 10772185� and the Knowledge
Innovation Program of Chinese Academy of Sciences
�Grant No. KGCX-SW-409�.

1Y. Renardy and D. Joseph, “Oscillatory instability in a Bénard problem of
two fluids,” Phys. Fluids 28, 788 �1985�.

2Y. Renardy and M. Renardy, “Perturbation analysis of steady and oscilla-
tory onset in a Bénard problem with two similar liquids,” Phys. Fluids 28,
2699 �1985�.

3S. Rasenat, F. H. Busse, and I. Rehberg, “A theoretical and experimental
study of double-layer convection,” J. Fluid Mech. 199, 519 �1989�.

4P. Colinet and J. C. Legros, “On the Hopf bifurcation occurring in the
two-layer Rayleigh-Bénard convection instability,” Phys. Fluids 6, 2631
�1994�.

5M. Le Bars and A. Davaille, “Stability of thermal convection in two su-
perimposed miscible viscous fluids,” J. Fluid Mech. 471, 339 �2002�.

6A. A. Nepomnyashchy and I. B. Simanovskii, “Influence of thermocapil-
lary effect and interfacial heat release on convective oscillations in a two-
layer system,” Phys. Fluids 16, 1127 �2004�.

7Q. S. Liu, B. H. Zhou, T. H. Nguyen, and W. R. Hu, “Instability of
two-layer Rayleigh-Benard convection with interfacial thermocapillary ef-
fect,” Chin. Phys. Lett. 21, 686 �2004�.

8Q. S. Liu, B. H. Zhou, and Z. M. Tang, “Oscillatory instability of
Rayleigh-Marangoni-Bénard convection in two-layer liquid systems,” J.
Non-Equilib. Thermodyn. 30, 305 �2005�.

9G. Z. Gershuni and D. V. Lyubimov, Thermal Vibrational Convection
�Wiley, Chichester, 1998�.

10Q. S. Liu, J. Y. Zhou, A. Wang, V. I. Polezhaev, A. Fedyushkin, B. H.
Zhou, N. T. Henri, and B. Bernard, “Thermovibrational instability of Ray-
leigh Marangoni Bénard convection in two-layer fluid systems,” J. Adv.
Space Res. 41, 2131 �2008�.

11S. M. Zen’kovskaya and V. A. Novosyadlyi, “The effect of a high-
frequency progressive vibration on the convective instability of a two-
layer fluid,” J. Appl. Math. Mech. 73, 271 �2009�.

12J. R. A. Pearson, “On convection cells induced by surface tension,” J.
Fluid Mech. 4, 489 �1958�.

13M. K. Smith and S. H. Davis, “Instabilities of dynamic thermocapillary
liquid layers. Part 1. Convective instabilities,” J. Fluid Mech. 132, 119
�1983�.

14C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Meth-
ods in Fluid Dynamics �Springer-Verlag, New York, 1988�.

15D. Johnson and R. Narayanan, “Geometric effects on convective coupling
and interfacial structures in bilayer convection,” Phys. Rev. E 56, 5462
�1997�.

16S. M. Zen’kovskaya and A. L. Shleikel, “The effect of high-frequency
vibration on the onset of Marangoni convection in a horizontal liquid
layer,” J. Appl. Math. Mech. 66, 559 �2002�.

034105-12 Q. Liu and R. Liu Phys. Fluids 23, 034105 �2011�

Downloaded 22 Mar 2012 to 159.226.231.78. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.865046
http://dx.doi.org/10.1063/1.865227
http://dx.doi.org/10.1017/S0022112089000467
http://dx.doi.org/10.1063/1.868153
http://dx.doi.org/10.1017/S0022112002001878
http://dx.doi.org/10.1063/1.1652654
http://dx.doi.org/10.1088/0256-307X/21/4/027
http://dx.doi.org/10.1515/JNETDY.2005.022
http://dx.doi.org/10.1515/JNETDY.2005.022
http://dx.doi.org/10.1016/j.asr.2007.09.016
http://dx.doi.org/10.1016/j.asr.2007.09.016
http://dx.doi.org/10.1016/j.jappmathmech.2009.07.013
http://dx.doi.org/10.1017/S0022112058000616
http://dx.doi.org/10.1017/S0022112058000616
http://dx.doi.org/10.1017/S0022112083001512
http://dx.doi.org/10.1103/PhysRevE.56.5462
http://dx.doi.org/10.1016/S0021-8928(02)00074-6

