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Three-Dimensional Simulation of Detonation Propagation in a Rectangular Duct
by an Improved CE/SE Scheme *

SHEN Hua(申华)1,2, LIU Kai-Xin(刘凯欣)1,2**, ZHANG De-Liang(张德良)3
1LTCS and College of Engineering, Peking University, Beijing 100871

2Center for Applied Physics and Technology, Peking University, Beijing 100871
3LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080

(Received 25 July 2011)
A genuinely three-dimensional spacetime conservation element and solution element (CE/SE) scheme is built
as simple, consistent and straightforward extensions of an improved high resolution 2D CE/SE scheme. It is
applied to examine the mechanism of three-dimensional detonation process in rectangular ducts. The simulations
clearly show detailed three-dimensional detonation modes, namely a rectangular mode and a diagonal mode.
Furthermore, the formation of unreacted pockets with high density and low temperature behind the detonation
is observed for the two modes.

PACS: 47.40.Rs, 82.33.Vx, 02.60.Cb DOI:10.1088/0256-307X/28/12/124705

Detonation is still an area of active study due to
its practical importance,[1] although it has a long his-
tory of research work over 100 years. Previous studies
demonstrated that detonation has complicated three-
dimensional structures. Due to the limitations of ex-
perimental equipment and techniques, it is very diffi-
cult to capture the complex three-dimensional struc-
ture of detonation phenomenon by experiments. Com-
pared with experimental studies, one of the main ad-
vantages of numerical simulations is that the local and
global profiles of physical variables are available at ar-
bitrary time. Thus numerical simulations act as good
complements to experiments for the study of detona-
tion propagation. Most of the previous studies have
focused on two-dimensional studies. In recent years,
three-dimensional simulations[2−4] have begun to ap-
pear as a result of major progress in both numerical
methods and available computer facilities. However,
most of the three-dimensional simulations suffer from
a number of limitations due to the considerable de-
mands on computing resources. Thus, it is necessary
to introduce efficient high resolution algorithms to det-
onation simulations.

The spacetime conservation element and solution
element (CE/SE) method, originally proposed by
Chang et al.,[5,6] is a novel numerical framework for
solving hyperbolic conservation laws. It has several at-
tractive features for three-dimensional simulations, es-
pecially including: (a) very little dissipation; (b) direc-
tional splitting method is not needed for multidimen-
sional cases, resulting in a genuinely multidimensional
scheme. Wang et al.[7] tested the accuracy of the
CE/SE method for computational aeroacoustics prob-
lems involving shock waves. The results show that the
computational accuracy of the CE/SE method with a
first-order Taylor expansion is equivalent to a fourth-
order essentially non-oscillatory scheme.

CE/SE schemes depend on the definitions of con-

servation elements (CE) and solution elements (SE).
In Chang’s original scheme, the number of CEs is
consistent with the number of unknowns designated
by the scheme including the mesh variables and their
spatial derivatives. Therefore, two CEs are needed at
each grid point to derive two discrete equations for
𝑈 and 𝑈𝑥 in a one-dimensional case. Similarly, three
and four CEs are needed at each grid point in two-
and three-dimensional cases, respectively. In order
to simplify the construction of the CE/SE scheme,
a simple type of CE and SE on the general quadri-
lateral mesh was adopted in the two-dimensional
scheme by our group. The improved CE/SE scheme
is proved to have high accuracy.[8] To date, the im-
proved CE/SE method has achieved great success
in the simulations of gaseous detonation,[8−10] two-
phase detonation,[10,11] multi-material elastic-plastic
flows.[12−14] and spall fracture.[13,14]

In the present study, a genuinely three-dimensional
CE/SE scheme is built as simple, consistent and
straightforward extensions of the improved high reso-
lution 2D scheme. In addition, the present scheme is
implemented on parallel distributed-memory comput-
ers using a domain-decomposition approach. It is ap-
plied to analyze the mechanism of three-dimensional
detonation process in rectangular ducts.

The governing equations used are described by the
three-dimensional Euler equations with a source term
that represents chemical reactions. In conservation
form, these equations may be written in the compact
form

𝜕𝑈

𝜕𝑡
+

𝜕𝐸

𝜕𝑥
+

𝜕𝐹

𝜕𝑦
+

𝜕𝐺

𝜕𝑧
= 𝑆, (1)

where 𝑈 = (𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝑤, 𝑒, 𝜌𝛼, 𝜌𝛽)𝑇 , 𝐸 = (𝜌𝑢, 𝜌𝑢2 +
𝑝, 𝜌𝑢𝑣, 𝜌𝑢𝑤, (𝑒 + 𝑝)𝑢, 𝜌𝛼𝑢, 𝜌𝛽𝑢)𝑇 , 𝐹 = (𝜌𝑣, 𝜌𝑢𝑣, 𝜌𝑣2 +
𝑝, 𝜌𝑣𝑤, (𝑒+𝑝)𝑣, 𝜌𝛼𝑣, 𝜌𝛽𝑣)𝑇 , 𝐺 = (𝜌𝑤, 𝜌𝑢𝑤, 𝜌𝑣𝑤, 𝜌𝑤2+
𝑝, (𝑒+ 𝑝)𝑤, 𝜌𝛼𝑤, 𝜌𝛽𝑤)𝑇 , 𝑆 = (0, 0, 0, 0, 0, 𝜔𝛼, 𝜔𝛽)𝑇 , in
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which 𝜌, 𝑢, 𝑣, 𝑤 and 𝑝 are density, the velocity com-
ponents of 𝑥-, 𝑦- and 𝑧-directions and the pressure,
respectively. The total energy density 𝑒 is defined as
𝑒 = 𝑝

𝛾−1 + 𝜌(𝑢2+𝑣2+𝑤2)
2 + 𝜌𝛽𝑄 with 𝛾 being the spe-

cific heat ratio. The two-step reaction model simplifies
the complicated chemical reactions to an induction
reaction and an exothermic reaction. The progress
parameters 𝛼 and 𝛽, for the induction reaction and
the exothermic reaction, respectively, both are zero at
first, followed by increase of 𝛼 to unity, then 𝛽 in-
creases until the equilibrium state is reached. The
rates of 𝛼 and 𝛽, 𝜔𝛼 and 𝜔𝛽 , are given as follows:[15]

𝜔𝛼 =
𝑑𝛼

𝑑𝑡
=

𝑃

3𝑅0𝑇
exp

[︁
35.1715 − 8530.6

𝑇

− 7.22 × 10−11𝑃 2 exp
(︁21205

𝑇

)︁]︁
,

(2)

𝜔𝛽 =
𝑑𝛽

𝑑𝑡
=

{︂
0 (𝛼 < 1),

(1 − 𝛽) × 𝑎× exp(− 𝑏
𝑇 )+𝑐 (𝛼 = 1)

,

(3)
where 𝑎, 𝑏, and 𝑐 are coefficients, 𝑇 the temperature
and 𝑅0 (=8.314 J/mol/K) the universal gas constant.
The unit of pressure 𝑃 is atm.

Let 𝑥1 = 𝑥, 𝑥2 = 𝑦, 𝑥3 = 𝑧 and 𝑥4 = 𝑡 be con-
sidered as the coordinates of a four-dimensional Eu-
clidean space 𝐸4. The decoupling method[9] is applied
to treat the source item in Eq. (1). That is to say, the
source item is neglected first. Then Eq. (1) can be ex-
pressed as ∇ · ℎ = 0 with ℎ = (𝐸,𝐹,𝐺,𝑈). Gauss’
divergence theorem in the spacetime 𝐸4 implies that
Eq. (1) is a differential form of the integral conserva-
tion law, ∫︁∮︁∫︁

𝑆(𝑉 )

ℎ · 𝑑𝑠 = 0, (4)

where 𝑆(𝑉 ) is the boundary of an arbitrary spacetime
region 𝑉 in 𝐸4, and 𝑑𝑠 = 𝑑𝜎𝑛 with 𝑑𝜎 and 𝑛 being
the volume and the unit outward normal vector of a
boundary element of 𝑆(𝑉 ), respectively.

In order to proceed, the whole space is di-
vided into uniform hexahedrons. Simple types of
SE and CE are defined for each grid point. For
example, the conservation element CE(G′) is de-
fined by the four-dimensional time-space region
𝐴1𝐴2𝐴3𝐴4𝐴5𝐴6𝐴7𝐴8𝐴1′𝐴2′𝐴3′𝐴4′𝐴5′𝐴6′𝐴7′𝐴8′,
the solution element 𝑆𝐸(𝐺′) constituted by the
four hexahedrons (𝐵1𝐵3𝐵11𝐵9𝐵1′′𝐵3′′𝐵11′′𝐵9′′,
𝐵2𝐵4𝐵12𝐵10𝐵2′′𝐵4′′𝐵12′′𝐵10′′, 𝐵5𝐵6𝐵7𝐵8𝐵5′′

𝐵6′′𝐵7′′𝐵8′′ and 𝐴1′𝐴2′𝐴3′𝐴4′𝐴5′𝐴6′𝐴7′𝐴8′) inter-
secting at 𝐺′. Their neighborhood space is demon-
strated in Fig. 1.

Suppose that the integral conservation laws are
satisfied in each CE and the physical variables in each
SE are approximated by first-order Taylor expansions.
Note that CE(G′) is related to not only SE(G′) but
also SE(A1), SE(A2), SE(A3) , SE(A4) , SE(A5),
SE(A6) , SE(A7) and SE(A8). With the aid of first-
order Taylor expansions in the nine SEs related to

CE(G′), Eq. (4) is equivalent to

𝑈𝐺′ =
1

8

(︁
�̄� +

∆𝑡

∆𝑥
�̄� +

∆𝑡

∆𝑦
𝐹 +

∆𝑡

∆𝑧
�̄�
)︁
, (5)

with

�̄� = 𝑈
(︁∆𝑥

4
,

∆𝑦

4
,

∆𝑧

4
, 0
)︁
𝐴1

+𝑈
(︁
−∆𝑥

4
,

∆𝑦

4
,

∆𝑧

4
, 0
)︁
𝐴2

+𝑈
(︁
−∆𝑥

4
,−∆𝑦

4
,

∆𝑧

4
, 0
)︁
𝐴3

+𝑈
(︁∆𝑥

4
,−∆𝑦

4
,

∆𝑧

4
, 0
)︁
𝐴4

+𝑈
(︁∆𝑥

4
,

∆𝑦

4
,−∆𝑧

4
, 0
)︁
𝐴5

+𝑈
(︁
−∆𝑥

4
,

∆𝑦

4
,−∆𝑧

4
, 0
)︁
𝐴6

+𝑈
(︁
−∆𝑥

4
,−∆𝑦

4
,−∆𝑧

4
, 0
)︁
𝐴7

+𝑈
(︁∆𝑥

4
,−∆𝑦

4
,−∆𝑧

4
, 0
)︁
𝐴8

, (6a)

�̄� = 𝐸
(︁

0,
∆𝑦

4
,

∆𝑧

4
,

∆𝑡

4

)︁
𝐴1

− 𝐸
(︁

0,
∆𝑦

4
,

∆𝑧

4
,

∆𝑡

4

)︁
𝐴2

− 𝐸
(︁

0,−∆𝑦

4
,

∆𝑧

4
,

∆𝑡

4

)︁
𝐴3

+ 𝐸
(︁

0,−∆𝑦

4
,

∆𝑧

4
,

∆𝑡

4

)︁
𝐴4

+ 𝐸
(︁

0,
∆𝑦

4
,−∆𝑧

4
,

∆𝑡

4

)︁
𝐴5

− 𝐸
(︁

0,
∆𝑦

4
,−∆𝑧

4
,

∆𝑡

4

)︁
𝐴6

− 𝐸
(︁

0,−∆𝑦

4
,−∆𝑧

4
,

∆𝑡

4

)︁
𝐴7

+ 𝐸
(︁

0,−∆𝑦

4
,−∆𝑧

4
,

∆𝑡

4

)︁
𝐴8

, (6b)

𝐹 = 𝐹
(︁∆𝑥

4
, 0,

∆𝑧

4
,

∆𝑡

4

)︁
𝐴1

+ 𝐹
(︁
−∆𝑥

4
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4
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4
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4
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𝐴5

+ 𝐹
(︁
−∆𝑥

4
, 0,−∆𝑧

4
,

∆𝑡

4

)︁
𝐴6

− 𝐹
(︁
−∆𝑥

4
, 0,−∆𝑧

4
,

∆𝑡

4

)︁
𝐴7

− 𝐹
(︁∆𝑥

4
, 0,−∆𝑧

4
,

∆𝑡

4

)︁
𝐴8
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(6c)

�̄� = 𝐺
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4
,

∆𝑦

4
, 0,

∆𝑡

4
)𝐴1 + 𝐺(−∆𝑥

4
,

∆𝑦

4
, 0,
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4

)︁
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−∆𝑥

4
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4
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4
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4
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)︁
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−∆𝑥

4
,−∆𝑦

4
, 0,
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)︁
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(︁∆𝑥

4
,−∆𝑦

4
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∆𝑡

4

)︁
𝐴8

.

(6d)

Here 𝑋(𝑑𝑥, 𝑑𝑦, 𝑑𝑧, 𝑑𝑡)𝑁 are the Taylor expansions of
𝑈 , 𝐸, 𝐹 and 𝐺 at the reference point 𝑁 , i.e.

𝑋(𝑑𝑥, 𝑑𝑦, 𝑑𝑧, 𝑑𝑡)𝑁 =𝑋𝑁 + (𝑋𝑥)𝑁𝑑𝑥 + (𝑋𝑦)𝑁𝑑𝑦

+ (𝑋𝑧)𝑁𝑑𝑧 + (𝑋𝑡)𝑁𝑑𝑡. (7)

Substituting Eq. (7) into Eq. (1), we obtain

(𝑈𝑡)𝑁 = −(𝐸𝑥)𝑁 − (𝐹𝑦)𝑁 − (𝐺𝑧)𝑁 . (8)

124705-2

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

http://cpl.iphy.ac.cn


CHIN.PHYS. LETT. Vol. 28, No. 12 (2011) 124705

Equations (7) and (8) imply that the variables needed
to be calculated are 𝑈 , 𝑈𝑥, 𝑈𝑦 and 𝑈𝑧 at each grid
point, because 𝐸, 𝐹 and 𝐺 are functions of 𝑈 .
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Fig. 1. Definitions of CE and SE for the improved three-
dimensional CE/SE scheme: (a) CE(G′), (b) SE(G′).

Using the continuous conditions at point 𝐴1′–𝐴8′,
the derivatives of 𝑈 at 𝐺′ with respect to 𝑥, 𝑦 and 𝑧
are calculated by

(𝑈𝑥)𝐺′ = 𝑊 [(𝑈𝑥)−𝐺′ , (𝑈𝑥)+𝐺′ , 𝛼],

(𝑈𝑦)𝐺′ = 𝑊 [(𝑈𝑦)−𝐺′ , (𝑈𝑦)+𝐺′ , 𝛼],

(𝑈𝑧)𝐺′ = 𝑊 [(𝑈𝑧)−𝐺′ , (𝑈𝑧)+𝐺′ , 𝛼], (9)

where

(𝑈𝑥)−𝐺′ = − 1

2∆𝑥
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2

)︁
𝐴1

+ 𝑈
(︁

0, 0, 0,
∆𝑡

2

)︁
𝐴2

+ 𝑈
(︁

0, 0, 0,
∆𝑡

2

)︁
𝐴3

+ 𝑈
(︁

0, 0, 0,
∆𝑡

2

)︁
𝐴4

− 4𝑈𝐺′

]︁
,
(10e)

(𝑈𝑧)+𝐺′ = +
1

2∆𝑧

[︁
𝑈
(︁

0, 0, 0,
∆𝑡

2

)︁
𝐴5

+ 𝑈
(︁

0, 0, 0,
∆𝑡

2

)︁
𝐴6

+ 𝑈
(︁

0, 0, 0,
∆𝑡

2

)︁
𝐴7

+ 𝑈
(︁

0, 0, 0,
∆𝑡

2

)︁
𝐴8

− 4𝑈𝐺′

]︁
.
(10f)

The weighted average function is defined as

𝑊 [𝑥−, 𝑥+, 𝜒] =
|𝑥+|𝜒𝑥− + |𝑥−|𝜒𝑥+

|𝑥+|𝜒 + |𝑥−|𝜒
, (11)

where 𝜒 is an adjustable constant and usually equals
to 1–2.

(a) t=22 mm
(b)t=24 mm (c)t=26 mm

(d)t=28 mm (e)t=30 mm
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Fig. 2. Pressure space isosurfaces at various times within
a period of the rectangular mode.
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(e)t=24 mm
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   T
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Fig. 3. Pressure space isosurfaces at various times within
a period of the diagonal mode.

(e)

(a)

(d)(b)

(c)

x-y plane

x-z plane

x-y plane

x-z plane

SW

SW

Fig. 4. Comparison of maximum pressure histories. (a)
Two-dimensional results; (b) three-dimensional results for
rectangular mode; (c) three-dimensional results for diag-
onal mode, (d) experimental results[16] for rectangular
mode; (e) experimental results[16] for diagonal mode.

In the present study, the stoichiometric H2-O2

cellular detonation propagating in a duct with the
size of 8 × 8 × 80 mm (𝐿/𝑑 = 10) are simulated.
All the simulations have the same grid resolution of
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101 × 101 × 1001. The initial pressure and tempera-
ture are 1 atm and 298K, respectively. The ignition
condition in the channel’s left is 40 atm pressure. The
computing parameters of the two-step reaction model
for the stoichiometric H2-O2 gas mixture are given as
𝑎 = 1.2 × 108, 𝑏 = 8 × 103 and 𝑐 = 0.[15]

x

y

z
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z
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Unreacted
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(b)(a)
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0.8

0.2

0.5
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Fig. 5. Space isosurfaces of progress parameter 𝛽 at 30µs:
(a) rectangular mode; (b) diagonal mode.
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Fig. 6. Local enlargement vision of normalized physical
quantities along the center line: (a) rectangular mode, (b)
diagonal mode.

Two types of propagation modes, namely a rectan-
gular mode and a diagonal mode, were observed exper-
imentally by Hanana et al.[16] In our simulations, the
two types of propagation modes are captured. It seems
that the rectangular mode is a more stable mode. The
diagonal mode is triggered just under a particular ini-
tial condition. Figure 2 shows pressure space isosur-
faces at various times within a period of the rectangu-
lar mode. The detailed evolution of Mach stems (MS),
incident shock (IS), transverse waves (TW) and lines
of triple points (TL) is observed intuitively. The rect-
angular mode consists of two two-dimensional waves
which are orthogonal and travel individually with each
other. At 24µs, two groups of TLs propagate inde-
pendently, in the vertical and horizontal directions,
respectively. Then they collide with each other at the
center of the duct at 26µs. TWs and high pressure
zones where local explosions occur are generated in
the vicinity of TLs. An entire cycle is about 8µs.

Similarly the results for the diagonal mode are shown
in Fig. 3. Unlike the rectangular mode, the TLs move
in diagonal directions for this mode. An entire cycle
is about 6µs, which is about three quarters of that of
the rectangular mode. Figure 4 shows the calculated
and experimental[16] results comparison of maximum
pressure histories. The cellular pattern of rectangular
mode is similar to that of the two-dimensional case.
However, there exists slapping waves (SW) which are
formed by the TLs propagating in the direction per-
pendicular to the plane. With respect to the diagonal
mode, the cell length is about three quarters of that
obtained in two-dimensional simulations. There is no
SW for this mode. The three-dimensional numerical
results agree well with the experimental results.

In Tsuboi’s study,[2] he formation of unreacted
pockets behind the detonation was observed only in
the results for rectangular mode in phase. However, in
the present study, the formation of unreacted pockets
for the two modes mentioned above is captured. The
detailed distribution of unreacted pockets is shown by
space isosurfaces of 𝛽, which represents the progress
parameter of the exothermic reaction. As seen in
Fig. 5, there are a large number of unreacted gases
(𝛽 < 1) behind the detonation front. It seems that
the unreacted pockets have a tendency to be formed
near the transverse waves. The unreacted pockets are
wrapped up by MS and TW or the tube wall. Fig-
ure 6 shows the local enlargement vision of normal-
ized physical quantities along the center line of the
duct at 30µs. It can be clearly seen that there is an
unreacted zone with 𝛽 < 1. The gases in the zone
have lower temperature and higher density compared
to the surrounding gases. This is because the gases in
the unreacted zone were compressed by MS and TW.

In conclusion, the present scheme is a genuinely
three-dimensional scheme. The numerical results
show that the complex three-dimensional detonation
phenomenon can be simulated accurately by using the
improved CE/SE scheme.
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