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The need for large-scale electronic structure calculations arises recently in the field of material physics, and
efficient and accurate algebraic methods for large simultaneous linear equations become greatly important. We
investigate the generalized shifted conjugate orthogonal conjugate gradient method, the generalized Lanczos
method, and the generalized Arnoldi method. They are the solver methods of large simultaneous linear equations
of the one-electron Schrödinger equation and map the whole Hilbert space to a small subspace called the Krylov
subspace. These methods are applied to systems of fcc Au with the NRL tight-binding Hamiltonian [F. Kirchhoff
et al., Phys. Rev. B 63, 195101 (2001)]. We compare results by these methods and the exact calculation and show
them to be equally accurate. The system size dependence of the CPU time is also discussed. The generalized
Lanczos method and the generalized Arnoldi method are the most suitable for the large-scale molecular dynamics
simulations from the viewpoint of CPU time and memory size.
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I. INTRODUCTION

In recent years, molecular dynamics (MD) simulations
with electronic structure calculations in nanoscale structures
have attracted much attention. One needs a large size of
systems of several hundred thousands atoms with a few
hundred picoseconds (or more longer time) process in order to
investigate characteristics of nanoscale systems such as phe-
nomena of competition between different physical principles
or phenomena of the multiphysics, e.g., energy competition
between the strain field and chemical bonds.1–4 Several
requirements for large-scale MD simulation with electronic
structure calculations are contradictory to each other, e.g., total
energy accuracy versus larger system size or longer physical
time of processes.

There are several approaches for large-scale MD
simulations:5 (a) the Fermi operator expansion,6 (b) the
divide-and-conquer method,7 and (c) the minimization method
(the density matrix minimization8 or the wave-function
minimization9). Another classification may be the one ac-
corded as the basis set of wave functions: (a) the plane-wave
basis set and switching between the real-space and k-space
representation,10 and (b) localized orbitals11 or tight-binding
basis set.12 Computation with a “massively parallel machine”
is also an important issue.

An important aspect is the development of novel algebraic
algorithm for extra-large-scale systems. The most general and
important algorithm may be the linear algebra solving the
simultaneous linear equations

(z − H )x = b, (1)

where H is the self-adjoint or real symmetric matrix, b is a
given vector, z = ε + iη, ε is an energy parameter, and η is an
infinitesimally small positive number, respectively. Solutions

of Eq. (1) relate to the standard eigenvalue problem (ε −
H )x = 0. We developed the subspace diagonalization method
and the shifted conjugate orthogonal conjugate gradient
(COCG) method.13–16 Then, the methods were applied to the
fracture propagation and surface formation in Si crystals with
the tight-binding Hamiltonian based on an orthogonal basis
set.1,2 On the other hand, since its Hamiltonian is described by
the tight-binding Hamiltonian based on a nonorthogonal basis
set, the problem of the formation of Au multishell helical
nanowires was solved by the exact diagonalization method.3,4

Development of efficient linear algebraic methods has been,
so far, mainly based on the orthogonal basis sets.13,14,17–19

However, localized basis wave functions are generally
nonorthogonal and it is much more desirable to generalize
the methods to the case of a nonorthogonal basis set. The
most popular strategy of the generalized eigenvalue problem
(represented by the nonorthogonal basis set) would be the
transformation to the standard eigenvalue problem.19 Our
target in this paper is to solve simultaneous linear equations
with self-adjoint or real symmetric matrix S:

(zS − H )x = b, (2)

which relates to the generalized eigenvalue problem (εS −
H )x = 0. We will investigate efficient methods of solving
Eq. (2) with a complex energy variable z when the matrix
size of H and S is huge. Several algebraic algorithms will be
discussed and directly applied to a tight-binding Hamiltonian
based on nonorthogonal atomic orbitals in large-scale systems.

The structure of this paper is as follows. In Sec. II, the
idea of nonorthogonal atomic orbitals and physical properties
(e.g., the band energy, the local and partial density of states,
numbers of occupied electron states, the chemical potential,
etc.) are summarized. Sections III, IV, and V explain three
different algorithms of large-scale linear equations, i.e., the
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generalized shifted conjugate orthogonal conjugate gradient
method (GsCOCG), the generalized Lanczos method, and
the generalized Arnoldi method, which generate the Krylov
subspace from the whole Hilbert space. In these sections,
numerical examples are presented by using the NRL tight-
binding Hamiltonian. The generalized Lanczos method be-
comes applicable to actual large systems with a high accuracy
if one uses the modified Gram-Schmidt reorthogonalization
to maintain the orthogonality of generated basis vectors. In
Sec. VI, we compare the CPU times of each algorithm and
discuss the applicability to large-scale electronic structure
calculations and MD simulations. Section VII presents our
conclusions. The examples without reorthogonalization in
the generalized Lanczos method are shown and discussed
in Appendix A. Appendix B is devoted to discussing the
consistency between the total energy and force.

II. THEORETICAL BACKGROUND

A. Nonorthogonal basis set and S orthogonalization

We define two sets of wave functions {φi(r)} and {ψα(r)},
where {φi(r)} is the nonorthogonal (normalized) basis set (e.g.,
atomic orbitals and i denote an atomic site and energy level),
and {ψα(r)} is the orthonormalized basis set. Then, the overlap
matrix Sij and the Hamiltonian matrix Hij are defined as

Sij = 〈φi |φj 〉 =
∫

φ∗
i φjd r, Sii = 1 , (3)

Hij = 〈φi |Ĥ |φj 〉 =
∫

φ∗
i Ĥφjd r, (4)

where Ĥ is the Hamiltonian operator. The orthonormal basis
set {ψα(r)} can be expanded in terms of {φj } as

ψα(r) =
∑

i

φi(r)w(α)
i (5)

and the orthogonality relation is expressed as

〈ψα|ψβ〉 =
∑
ij

w
(α)
i

∗
w

(β)
j Sij (6)

≡ (w(α),w(β))S = δαβ , (7)

where w(α) = (w(α)
1 ,w

(α)
2 , . . .)t. We call the representation

(w(α),w(β))S the S product and the relation (7) is the S

orthogonalization of basis vectors w(α).
When ψα(r) satisfies the Schrödinger equation

Ĥψα(r) = εαψα(r), (8)

the coefficients {w(α)
i } should be elements of an eigenvector of

a simultaneous linear equation in the φ representation∑
i

Hjiw
(α)
i = εα

∑
i

Sjiw
(α)
i (9)

or, in matrix-vector form,

Hw(α) = εαSw(α). (10)

Matrices H = (Hij ) and S = (Sij ) are self-adjoint in the φ

representation.

B. Green’s function and local and partial density of states
represented by the nonorthogonal basis set

The Green’s function operator Ĝ is defined as

Ĝ(z) = {(ε + iη)1̂ − Ĥ }−1, (11)

where 1̂ is the identity operator and z = ε + iη. Elements of
the Green’s function matrix can then be written as

Gij (z) = 〈φi |Ĝ(z)|φj 〉 = {S(zS − H )−1S}ij (12)

=
∑
k,l

Sik

{∑
α

wα
k

∗ 1

z − εα

wα
l

}
Slj . (13)

The local (partial) densities of states (DOS) are expressed in
the φ representation as follows:

Dij (ε) = − 1

π
Im[G(z)S−1]ij . (14)

The normalization of the Green’s functions and the local and
partial density of states is then(

− 1

π

) ∫ ∞

−∞
dεImGij (z) = 〈φi |φj 〉 = Sij , (15)

∫ ∞

−∞
dεDii(ε) = 1. (16)

C. Total band energy and Green’s function

1. Density matrix and energy density matrix

In the simulation process, the density matrix ρij and the
energy density matrix πij appear repeatedly in the calculation
of the Mulliken charge, the total energy, and forces,20 the
definition of which may be

ρij =
(

− 1

π

)
Im

∫
dε

∑
α

f (εα)
w

(α)∗
i w

(α)
j

z − εα

(17)

=
∑

α

f (εα)w(α)∗
i w

(α)
j , (18)

πij =
(

− 1

π

)
Im

∫
dεε

∑
α

f (εα)
w

(α)∗
i w

(α)
j

z − εα

(19)

=
∑

α

f (εα)εαw
(α)∗
i w

(α)
j , (20)

where f (ε) is the Fermi-Dirac function f (ε) = {1 + exp[(ε −
μ)/τ ]}−1, where μ and τ are the chemical potential and
temperature.

2. Physical property

The chemical potential μ should be determined by the
equation for the total electron number Ntot:

Ntot = 2
∑

i

∫
dεf (ε)Dii(ε) (21)

=
∑
ijα

Sij

(
− 2

π

)
Im

∫
dεf (εα)

w
(α)∗
j w

(α)
i

z − εα

(22)

= 2
∑
ij

Sijρji, (23)
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where a factor “2” is the spin degeneracy.
The total band energy of the system is given as

Etot = 2
occ∑
α

εα = 2
∑

α

εαf (εα) (24)

= − 2

π
Im

∑
i

∫
dεεf (ε)[G(z)S−1]ii , (25)

where the summation
∑occ

α runs over the occupied states. This
equation can be expressed by the density of states, the density
matrix, or the energy density matrix as

Etot = 2
∑

i

∫
dεεf (ε)Dii(ε) (26)

= 2
∑
ij

ρijHji (27)

= 2
∑
ij

Sijπji . (28)

Moreover, any physical property can be expressed by using
the density matrix as

〈X〉 =
(

− 2

π

)∫
dεf (ε)

∑
ij

Xij Im[S−1G(z)S−1]ji

= 2
∑
ij

Xijρji . (29)

The expressions (27) and (28) and also (29) are satisfied not
only in the whole Hilbert space but also in the mapped subspace
in which we construct approximate eigenstates.

Now we have obtained three different expressions
[Eqs. (21)–(23)] for Ntot and [Eqs. (26)–(28)] for Etot. These
expressions normally give different values because we usually
use finite values of the energy interval η and approximate
eigenstates in the mapped subspace. Fortunately, if the formula∑

ij ρijHji = ∑
ij Sijπji is satisfied, the consistency between

the total band energy and the force can be kept as shown in
Appendix B.

III. GENERALIZED SHIFTED COCG METHOD

We developed the shifted COCG method for large-scale
linear equation (1).14,15,21 It was shown that the convergence
behavior can be monitored by observing the behavior of the
“residual norm.” The shifted COCG method is generalized for
Eq. (2) in this section.

A. Definition of the problem

The eigenvalue problem of the stationary Schrödinger
equation is equivalent to the scattering problem

(z1̂ − Ĥ )ψ(r) = χ (r), (30)

where z = ε + iη and ε is an energy parameter of incident
waves. The wave function ψ(r) is expanded by the set of
nonorthogonal atomic orbitals {φj }:

ψ(r) =
∑

j

φj (r)xj (z). (31)

Substituting Eq. (31) into (30), one obtains the generalized
linear equations

(zS − H )x(z) = b, (32)

where the j th component of the vector b is bj = 〈φj |χ〉. The
solution of the linear equation x(z) is then

x(z) = (zS − H )−1b = S−1G(z)S−1b (33)

with the help of Eq. (12). By setting a vector b as

b = ej = (0,0, . . . ,0, 1︸︷︷︸
j

,0,0, . . .)t, (34)

we can get the corresponding solution xj (z) as

xj (z) = S−1G(z)S−1ej . (35)

The product of ei and xj (not the S product), the ith element
of a vector xj , is identical just to the energy component of the
density matrix ρij (ε):

ρij (ε) = − 1

π
Im

[
et
i · xj (ε + iη)

]
, (36)

which relates to the local DOS as

Dii(ε) =
∑

k

Sikρki(ε). (37)

Then, the density matrix and the energy density matrix are
given by the integrations of ρij (ε) as

ρij =
∫

dεf (ε)ρij (ε), (38)

πij =
∫

dεεf (ε)ρij (ε). (39)

It should be noted here that there are no quantities of
eigenenergies in the Krylov subspace and we should use the
calculation procedure through ρij (ε) rather than the calculation
of Eqs. (18) and (20). Their resultant values depend on the
interval of energy mesh points for the energy integration and
a fictitious finite value of η.

B. Generalized shifted conjugate orthogonal conjugate
gradient (GsCOCG) method

For the nonorthogonal basis set, we can generalize the
shifted COCG procedure, named the generalized shifted
COCG (GsCOCG) method.22 The linear equations of the
seed energy σs and the shift energy σ , respectively, are
written as

(S−1A + σs1)x = S−1b, (40)

(S−1A + σ1)x(i) = S−1b, (41)

where the matrix A is defined as

A = zrefS − H (42)

with an arbitrary reference energy zref = εref + iη, 1 is the unit
matrix, and b = ej . The seed energy and the shift energy are
given as εs = εref + σs and ε = εref + σ .
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Following the procedure of the shifted COCG method,15,16

we try to find iterative nth solutions xn in the Krylov subspace
defined as

Kn(S−1A + σsI,S
−1b)

= Span{S−1b,S−1AS−1b,(S−1A)2S−1b,

. . . ,(S−1A)nS−1b}. (43)

This yields the residual vector r ′
n = S−1b − (S−1A + σS1)xn

to be22

r ′
n ⊥ Kn[(S−1A + σS1)†,b∗], (44)

where B† is the Hermitian conjugate matrix of B and b∗ is the
complex conjugate vector of b. The actual algorithms may be
as follows. Under the initial conditions

x0 = p−1 = 0, (45)

r0 = b, (46)

α−1 = 1, β−1 = 0, (47)

and a definition r ′
0 = S−1r0, we evaluate the following

equations for the seed energy σs iteratively for n = 0,1,2, . . .:

pn = r ′
n + βn−1 pn−1,

αn = (r ′
n,r

′
n)S

[ pn,S
−1(A + σsS) pn]S

,

xn+1 = xn + αn pn,
(48)

rn+1 = rn − αn(A + σsS) pn,

r ′
n+1 = S−1rn+1,

βn = (r ′
n+1,r

′
n+1)S

(r ′
n,r ′

n)S
.

The important point here is our use of r ′
n = S−1rn. In actual

procedure, we employ a form rn = Sr ′
n at each iteration

step by the CG method. Since the overlap matrix S is real
symmetric, positive definite, and sparse, the convergence of
CG iteration can be fast.

The basic theorem of the Krylov subspace is the invariance
of the subspace under an energy shift σ . The other very basic
theorem is the collinear residual23

rσ
n = 1

πσ
n

rn. (49)

Owing to these theorems, once we solve the set of equations
for the seed energy σs , we can obtain the results for any
shift energy σ only by scalar multiplications. The recurrence
equations for shift energies are given (all the quantities are
denoted by the superscript σ ), with initial values πσ

−1 = πσ
0 =

1, as follows:

πσ
n+1 = {1 + αn(σ − σs)}πσ

n + βn−1

αn−1
αn

(
πσ

n − πσ
n−1

)
(50)

and

xσ
n+1 = xσ

n + ασ
n pσ

n (51)
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FIG. 1. (Color online) Partial density of states for a system of
Au 864 atoms by the NRL tight-binding Hamiltonian (Ref. 24)
normalized to unity. (a) s orbitals, (b) p orbitals, and (c) d orbitals.
Comparison is for the GsCOCG and the exact calculation, which are
almost identical to each other. Parameters in GsCOCG calculations
are η = 10−3 Ry, τ = 5η. The energy interval of mesh points is
10−4 Ry. See Figs. 4, 5, and 7 for comparison.

with

ασ
n = πσ

n

πσ
n+1

αn,

βσ
n−1 =

(
πσ

n−1

πσ
n

)2

βn−1,

pσ
n = 1

πσ
n

r ′
n + βσ

n−1 pσ
n−1.

Partial densities of states are shown in Fig. 1 for a system
of Au 864 atoms by the NRL tight-binding Hamiltonian,24

in comparison with those by the exact calculation. In order
to see the behavior of the peak positions and the tail of the
peaks, the figures are drawn in the logarithmic scale. Two
lines of the GsCOCG and the exact calculation overlap each
other almost completely, and one can recognize an excellent
agreement between the two different calculations.
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C. Residual norm and convergence behavior

The useful characteristic property of the GsCOCG method
is the capability of monitoring the norm of residual vectors.14

The residual vectors for the seed and shift equations with an
energy εk (with b = ej and σk = εk − εref) are r (s,j )

n and r (k,j )
n ,

respectively, and the mapped residual vectors for the seed
and shift equations r ′(s,j )

n = S−1r (s,j )
n and r ′(k,j )

n = S−1r (k,j )
n .

We usually need only elements of the density matrix among
near-sited orbital pairs connected by nonzero elements of
the Hamiltonian or overlap matrices, and the convergence
monitoring is necessary for these components.14 Therefore,
in order to monitor the convergence behavior, we adopt the
“residual norm” defined as

∣∣∣∣r ′(s/k,j )
n

∣∣∣∣2 ≡
Hij 	=0∑

i

∣∣et
i · r ′(s/k,j )

n

∣∣2
. (52)

Furthermore, since the residual norm is different among
different energy points, the average quantity (“average residual
norm”) should be defined as14

R(j )
n ≡ 1

Nene

Nene∑
k

∣∣∣∣r ′(k,j )
n

∣∣∣∣2

= ∣∣∣∣r ′(s,j )
n

∣∣∣∣2 1

Nene

Nene∑
k

1

|πk|2 , (53)

where Nene is the number of energy points.
The convergence behavior of the residual norm for different

seed energies is shown in Fig. 2(a). The convergence at the
energy of the low DOS is very fast because the eigenstate
can be constructed by a small number of basis states. The
convergence of the averaged norm is shown in Fig. 2(b), which
confirms numerically the fact that the average residual norm
(and all the physical quantities) does not depend sensitively on
the choice of a seed energy.

D. Seed-switching technique

When one chooses a seed energy in an energy range of
rapid convergence, the spectra at majority energy points have
not been converged yet and one should restart the calculation
with a new seed energy as seen in Fig. 2(a). The most desirable
seed energy may be one of the largest (partial) DOS because
the convergence at these points is the slowest.

However, even if one chooses a starting seed energy in the
highest DOS region and the residual norm at the seed energy
reaches the convergence criterion, it often happens that there
still remain several energy points (regions) where the residual
norm has not been small enough. Fortunately, the shifting
energy does not need any additional heavy computational
task but rather several scalar manipulations such as Eq. (50).
Because of this property of shifting energy, a choice of a seed
energy σs can be arbitrary. As shown in Fig. 2(b), even if
we start with an improper seed energy and switch a seed, the
total iteration times for desired convergence over the whole
energy range are not very different. The seed switching is a
very efficient technique to avoid restarting the calculation from
the beginning with a new seed energy.16,25 One chooses a new
seed energy σ new

s and can continue the calculation without

 0
(a)

(b)

FIG. 2. (Color online) Convergence behavior of residual norms
for a system of Au 256 atoms by the NRL tight-binding Hamiltonian
(Ref. 24). The spectrum extends between −0.5 and 1.5 Ry. The inset
in (b) shows the total density of states D(ε) = ∑

i Dii(ε), where we
use a finite imaginary number in the energy and the profile is of dense
spiky peaks. (a) Residual norm ‖ r (s,j )

n ‖ at several energy points
ε = −0.5, 0.0, 0.5, and1.0 Ry for the s orbital. (b) Average residual
norms R(j )

n with different three seed energies (−0.5, 0.0, and 0.5 Ry)
for the s orbital and they all overlap with each other.

discarding the information of the previous calculation with the
old σs by using the shift property. Figure 3 shows the behavior
of the residual norms in the seed-switching process.

IV. GENERALIZED LANCZOS PROCESS AND
DENSITY OF STATES

The three-term recursive relation used in the GsCOCG
method leads us to the generalization of the Lanczos
method.18,19,26 As far as we know, the generalization of
the Lanczos method was presented first in Ref. 18. In this
section, we will stress that the generalized Gram-Schmidt
reorthogonalization process makes the generalized Lanczos
method practically useful and also the use of Eqs. (18) and (20)
gives very efficient and accurate results.

A. Generalized Lanczos process

First we define a matrix H as

H ≡ S−1H, (54)

which is not self-adjoint but still satisfies the quasi-Hermitian
property in the S product

(v,Hu)S = (Hv,u)S. (55)
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FIG. 3. (Color online) Residual norm at the seed energies for
a system of Au 864 atoms by the NRL tight-binding Hamiltonian
(Ref. 24) in (a) s orbitals and (b) d orbitals. (a) Seed switches to
0.522 Ry from −0.5 Ry at the 36th step and to −0.299 Ry at the
376th step in the s-orbital case. (b) Seed switches to 0.110 Ry from
−0.5 Ry at the 28th step and to −0.034 Ry at the 1002nd step in the
d-orbital case. Once the calculation using one seed is converged and
full convergence has not been achieved, one should choose the next
seed and continue the calculation. The gray lines show the residual
norm by energy shift r ′σ

n before seed switching.

We can construct the three-term procedure of the Lanczos
process (n = 0, 1, . . .) as18,19

Hun = anun + bn+1un+1 + bnun−1, (56)

where

an = (un,Hun)S,

b2
n+1 = {(H − an)un − bnun−1,(H − an)un − bnun−1}S,

un+1 = {(H − an)un − bnun−1}/bn+1

with conditions b0 = 0, bn � 0 and then the vectors {um}
satisfy the S orthogonality

(un,um)S = δnm. (57)

This process we call the generalized Lanczos (G-Lanczos)
process (method). It is well known that the orthogonality
relation is broken for larger n in the Lanczos method and

this is also the case here. We adopt the modified Gram-
Schmidt reorthogonalization process in order to keep the S

orthogonality. (See the results without the modified Gram-
Schmidt reorthogonalization process in Appendix A.)

We then stop the Lanczos process up to n = N and assume
um = 0 (m = N + 1,N + 2, . . .). This procedure constructs
the Krylov subspace

KN (H,b) = (b,Hb,H2b, . . . ,HN b) (58)

and the matrix H is transformed in this subspace to a matrix
of a tridiagonal form.

Starting with a natural basis u0 = ej0 , one generates vectors
un in the Krylov subspace and each vector corresponds
to orthonormalized linear combination of atomic orbitals
(LCAO):

um ⇒ ϕm(r) =
∑

j

φj (r)um
j . (59)

The normalized eigenstates in the generated Krylov subspace
are denoted by

ψα(r) =
N∑

n=0

ϕn(r)Q(α)
n =

∑
j

φj (r)wα
j , (60)

which satisfies the Schrödinger equation∑
m

HnmQ(α)
m = εαQ(α)

n , (61)

where Hnm = (un,Hum)S = (un)tH um.

B. Numerical test with NRL Hamiltonian for fcc Au

Chemical potential μ can be evaluated by using Eqs. (21)–
(23) in the generalized Lanczos method. Calculation of the
Green’s function uses Eq. (13) having a double summation of
atomic sites and orbitals and it consumes a long CPU time. On
the contrary, the calculation of the density of states by Eq. (14)
costs less CPU time. The computational efficiency will be
discussed later in Sec. VI. In this section, we show several
evaluated values, the density of states, the integrated density of
states as functions of energies for a system of gold 864 atoms
of fcc structure described by the tight-binding Hamiltonian
constructed by Mehl and Papaconstantpolous.24

Several evaluated values and the consistency between
them are summarized in Table I. The parameters in the
generalized Lanczos method are N = 50, the convergence
criterion δ = 10−6 Ry in the inner CG process of r ′ = S−1r . In
GsCOCG, the imaginary small energy η = 10−3 Ry, the total
number of the energy integration mesh points is 3000, and
the convergence criterion δ = 10−6 Ry in the inner CG and
outer iteration procedures. The difference of the calculated
total energy is of the order of 10−2–10−3 Ry. The scale of the
band energy is 1 Ry and the relative error may be of 10−3.
The bold numbers in Table I are a set of consistent values
in each case (for each equation determining the chemical
potential) and the combination of Eqs. (17) and (19), and
that of Eqs. (18) and (20) are consistent pairs of data. This
consistency between the density matrix and energy density
matrix is crucial for consistency between the total energy and
force (see Appendix B).
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TABLE I. The generalized Lanczos process applied to a system of 864 atoms of fcc Au and comparison with that of the GsCOCG. The
Hamiltonian is the NRL tight-binding form (Ref. 24). The chemical potential and the total energy are in Ry units and Natom is the number of
atoms in the system. The bold numbers in each column are a set of consistent values.

G-Lanczos GsCOCG

μ by Eq. (21) μ by Eq. (22) μ by Eq. (23) μ by Eq. (21)

μ 0.301 086 69 0.292 665 28 0.287 009 85 0.300 608 32
Eq. (21) 5.500 000 01 5.480 997 05 5.467 404 01 Eq. (21) 5.500 000 00

Ntot/2Natom Eq. (22) 5.518 061 52 5.499 999 98 5.486 507 39
Eq. (23) 5.531 622 52 5.513 521 84 5.499 999 99
Eq. (26) −0.143 666 86 −0.149 267 54 −0.153 182 94 Eq. (26) −0.143 640 84

Etot/2Natom Eq. (27) ρ by Eq. (17) −0.131 164 99 −0.136 471 04 −0.140 341 32 ρ by Eq. (38) −0.125 172 55
ρ by Eq. (18) −0.131 624 01 −0.136 941 55 −0.140 820 23

Eq. (28) π by Eq. (19) −0.131 164 90 −0.136 470 94 −0.140 341 23 π by Eq. (39) −0.143 640 84
π by Eq. (20) −0.131 623 91 −0.136 941 46 −0.140 820 14

In the GsCOCG method, calculation of Eqs. (38) and (39)
needs ε integration of ρij (ε) and the numerical integration
causes a certain error in the integration of the tail of the spectra.
Once we reduce the value of η and increase the ε points of the
integration, this discrepancy can be reduced. In the generalized
Lanczos method, the combination of Eqs. (23), (18), and (20)
is the best scheme, since we do not use the numerical energy
integral.

Figure 4 shows the partial density of states and integrated
density of states for s, p, and d orbitals. Those by the
generalized Lanczos method are compared with exact results.
The peak positions and the tails overlap excellently and we
can conclude that the generalized Lanczos method can be a
powerful and convenient tool. One must note that the exact
results are more smooth in the central energy region since the
correct density of states is more dense in this energy region.
In other words, the exact results reserve the entire profile with
864 × 9 peaks but, on the contrary, those by the generalized
Lanczos method reserve the profiles with 51(= N + 1) peaks
or the density of states is expressed as a polynomial function
of energy of the order 51 in the present calculation.

V. GENERALIZED ARNOLDI PROCESS AND
DENSITY OF STATES

A. Generalized Arnoldi process

We can construct the Krylov subspace, starting with a
natural basis u0 = ej0 , by using the Hamiltonian matrix H

as19,27

ln+1 = H un, (62)

kn+1 = ln+1 −
n∑

m=0

um(um,ln)S, (63)

un+1 = kn+1

(kn+1,kn+1)S
1/2 . (64)

This is the Arnoldi process and we call it the generalized
Arnoldi (G-Arnoldi) method. The generalized Arnoldi method

generates the Krylov subspace

KN+1(H ; b) = Span{b,H b,H 2b, · · · ,HN b}
= Span{u0,u1,u2, . . . ,uN }. (65)
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FIG. 4. (Color online) Partial density of states (pDOS), normal-
ized to unity, and integrated density of states (IDOS) for a system
of Au 864 atoms by the NRL tight-binding Hamiltonian (Ref. 24).
Comparison is between those of the generalized Lanczos method (red
solid lines) and those of the exact ones (blue solid lines). (a-1) and
(a-2): pDOS and IDOS for s orbitals. (b-1) and (b-2): pDOS and
IDOS for p orbitals. (c-1) and (c-2): pDOS and IDOS for d orbitals.
η = 5.0 × 10−3 Ry.
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TABLE II. The generalized Arnoldi process applied to a system of 864 atoms of fcc Au and comparison with that of the GsCOCG. The
Hamiltonian is the NRL tight-binding form (Ref. 24). The chemical potential and the total energy are in Ry units and the Natom is the number
of atoms in the system. The bold numbers in each column are a set of consistent values.

G-Arnoldi GsCOCG

μ by Eq. (21) μ by Eq. (22) μ by Eq. (23) μ by Eq. (21)

μ 0.303 906 79 0.292 871 98 0.286 461 36 0.300 608 32
Eq. (21) 5.500 000 02 5.479 717 90 5.465 817 73 Eq. (21) 5.500 000 00

Ntot/2Natom Eq. (22) 5.517 608 87 5.500 000 01 5.486 509 81
Eq. (23) 5.531 166 53 5.513 519 49 5.499 999 99
Eq. (26) −0.142 300 73 −0.148 265 63 −0.152 231 79 Eq. (26) −0.143 640 84

Etot/2Natom Eq. (27) ρ by Eq. (17) −0.130 010 76 −0.135 144 34 −0.138 954 98 ρ by Eq. (38) −0.125 172 55
ρ by Eq. (18) −0.130 466 35 −0.135 611 05 −0.139 429 96

Eq. (28) π by Eq. (19) −0.130 010 76 −0.135 144 34 −0.138 954 98 π by Eq. (39) −0.143 640 84
π by Eq. (20) −0.130 466 35 −0.135 611 05 −0.139 429 96

The generated vector um corresponds to orthonormalized
LCAO

ϕm(r) =
∑

j

φj (r)um
j (66)

as in the G-Lanczos method. An eigenfunction ψα(r) =∑
n ϕn(r)Q(α)

n satisfies the Schrödinger equation∑
m

H̃nmQ(α)
m = εαQ(α)

n , (67)

where H̃mn = 〈ϕm|Ĥ |ϕn〉 = (um)tH un and H̃ is an upper
Hessenberg matrix. We can say that this procedure is a kind of
generalization of the subspace diagonalization of the Krylov
subspace developed before.13

B. Numerical test with NRL Hamiltonian for fcc Au

We summarize, in Table II, several evaluated values and
consistency between them, in comparison with the results of
the GsCOCG. The system is of 864 atoms of fcc Au by the NRL
tight-binding Hamiltonian.24 The bold numbers in the table are
a set of consistent results in each calculation of the chemical
potential. N = 50 for the generalized Arnoldi process. Data of
GsCOCG are the same as in Table I. The calculated values of
the total energies agree with those by the generalized Lanczos
method, and the overall difference is less than 1% as shown in
Table I.

Figure 5 shows the partial density of states and the
integrated density of states as functions of energies. The
peak positions are deviated slightly from those by the exact
calculation, which one could make smaller by increasing a
dimension N of the Krylov subspace.

VI. COMPARISON AMONG GSCOCG AND G-LANCZOS
AND G-ARNOLDI METHODS

A. Convergence

The dimension of the Krylov subspace in GsCOCG, G-
Lanczos, or G-Arnoldi methods equals to N + 1, where N is
the maximum iteration step. The GsCOCG method is a very
accurate method if one achieves the iteration to have enough
small residual norm (e.g., δ = 10−6 Ry). In Fig. 2, we have

shown the convergence behavior of the residual norms with
different seed energies and until it reaches a much smaller
convergence region. One should use the same iteration criteria
both in the inner CG and outer procedures in the GsCOCG
method. It sometimes happens that the resultant DOS shows
an unphysical behavior, e.g., negative values of DOS, if one
stops the iteration steps before enough convergence in the
GsCOCG method. On the other hand, the G-Lanczos and
G-Arnoldi methods never give such unphysical DOS, even

(a-1)

(b-1)

(c-1)

-1 -0.5  0  0.5  1  1.5  2

(a-2)

(b-2)

(c-2)

Exact

Exact

Exact

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0

In
te

gr
at

ed
 D

en
si

ty
 o

f 
S

ta
te

s 
 (

1/
or

bi
ta

l-
de

ge
ne

ra
cy

/S
pi

n)

Energy ε (Ry)

P
ar

ti
al

 D
en

si
ty

 o
f 

S
ta

te
s 

 (
1/

E
ne

rg
y/

S
pi

n)

FIG. 5. (Color online) Partial density of states, normalized to
unity, and integrated density of states. Comparison is between those
of the generalized Arnoldi method (red solid lines) and those of the
exact ones (blue solid lines) for a system of Au 864 atoms by the
NRL tight-binding Hamiltonian (Ref. 24). (a-1) and (a-2): pDOS and
IDOS for s orbitals. (b-1) and (b-2): pDOS and IDOS for p orbitals.
(c-1) and (c-2): pDOS and IDOS for d orbitals. η = 5.0 × 10−3 Ry.
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TABLE III. Chemical potential and the total energy (in Ry units)
of systems of 864 and 256 atoms of fcc Au (Ref. 24) by three different
methods. The values of ρ in the G-Lanczos and G-Arnoldi methods
are evaluated by Eq. (18).

G-Lanczos (864 atoms) (256 atoms)

μ Eq. (22) 0.292 665 28 0.287 541 33
Etot/2Natom Eq. (27) −0.136 471 04 −0.135 876 39

G-Arnoldi (864 atoms) (256 atoms)

μ Eq. (22) 0.292 871 98 0.288 621 49
Etot/2Natom Eq. (27) −0.135 144 34 −0.134 661 95

GsCOCG (864 atoms) (256 atoms)

μ Eq. (21) 0.300 608 32 0.294 715 35
Etot/2Natom Eq. (26) −0.143 640 84 −0.143 319 25

if one stops at a small iteration step because of the expression
of Eq. (13). Furthermore, the first N moments are preserved
correctly in the energy spectra of the G-Lanczos method. In the
spectrum of this model by the exact calculation, we observe
about 40 prominent peaks and then we use N = 50 in the
calculations of the G-Lanczos and G-Arnoldi procedures. This
is presumably the reason why the peak positions and detailed
profiles in the spectra of the G-Lanczos method show excellent
agreement with those of the exact calculation. The G-Lanczos
method needs the Gram-Schmidt reorthogonalization, and
also it is necessary to have enough convergence in the inner
CG procedure. The G-Arnoldi method does not need such a
reorthogonalization procedure since one solves the eigenvalue
problem in that subspace.

In condensed matters, the width of the valence and/or
conduction bands W may be of the order of 1 Ry. Then,
when the number of atoms is Natom, we can estimate the
separation of each energy level as of the order of W/(9 ×
Natom). Presumably, 10% of this separation would be enough
accuracy in the energy scale. In our case, with Natom ≈ 1000,
the convergence criterion can be chosen as 0.1 × W/(9 ×
Natom) ≈ 0.1 × 1/9000 ≈ 10−5 Ry. We also observed that
the maximum iteration steps are almost the same for the
convergence criterion δ = 10−5 and δ = 10−6 in the GsCOCG
and G-Lanczos methods. This is the reason why we choose
δ = 10−6 Ry.

We compare the results of the chemical potential and the
total band energy of systems of 256 and 864 atoms in Table III.
The difference of the chemical potential μ is of the order
of 10−3 Ry and that of the total band energy Etot is of
the order of 10−4 Ry. The level separation in the 256-atom
system can be estimated as 1.0/(9 × 256) ≈ 4 × 10−4 Ry and
that in 864-atom system as 10−4 Ry. The difference in the
chemical potential of two systems of different sizes is due
to the difference of the total number of levels, which change
the value of the chemical potential sensitively. On the other
hand, the difference of Etot is just the quantity related to the
overall spectrum, and we can see an excellent convergence of
the results of N = 50.

Figure 6 shows the actual convergence behavior of IDOS
by the G-Lanczos and G-Arnoldi methods. The agreement
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FIG. 6. (Color online) Comparison of IDOS of d orbitals for
systems of Au 256 and 864 atoms by the NRL tight-binding
Hamiltonian (Ref. 24). (a) The G-Lanczos (solid line) and exact
calculation (chain line) for 864 atoms (red) and 256 (blue) atoms.
(b) The G-Arnoldi (solid line) and exact calculation (chain line) for
864 atoms (red) and 256 (blue) atoms. The agreement between the
results by the G-Lanczos or G-Arnoldi methods and those by the
exact calculation is excellent.

between the results by the G-Lanczos or G-Arnoldi methods
and those by the exact calculation is excellent both for systems
of 864 atoms and those of 256 if we adopt N = 50. The most
apparent difference appears in the IDOS curves of the exact
calculation of systems of 256 and 865 atoms in the mid-energy
region, and the calculated results by our methods present this
difference with complete fidelity.

B. CPU times

We summarize, in Table IV, the CPU times (by using single
CPU of the standard workstation) for (s orbitals) Dii of the
generalized Lanczos and the generalized Arnoldi methods with
Eq. (14), that of GsCOCG with Eq. (37), and that of the exact
diagonalization method for the NRL Hamiltonian of fcc Au
system of 256 and 864 atoms.24 The total number of orbitals
equals nine times the total number of atoms (1 s, 3 p’s, and
5 d’s). We use, in the inner CG process of the generalized
Lanczos method, the convergence criterion δ = 10−6 Ry. Two
numbers in the row of the CPU time are referred to those
of N = 50 and 100, respectively, for the G-Lanczos and
G-Arnoldi methods, although the results of N = 100 almost
coincide with those of N = 50. For GsCOCG (with shifted
3000 energy points), the data shown here are those of δ =
10−6 Ry both for in the inner and outer iteration processes.
The repeated time of the inner CG process (S−1x part) in the
GsCOCG and G-Lanczos method is 10–11. (Repeated time of
25–27 is needed for δ = 10−18 Ry.)

The system size dependence of the CPU time is linear
for the generalized Arnoldi and Lanczos methods, bilinear
for the method, and cubic for the exact calculation. The
generalized Arnoldi method is extremely efficient in electronic
structure calculations of extra-large systems with several
hundred thousand atoms.
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TABLE IV. CPU times by using a standard single CPU worksta-
tion for a system of gold 256 atoms (Au256) and gold 864 atoms
(Au864) by the NRL tight-binding Hamiltonian (Ref. 24).

Au 256 CPU times (s)

G-Arnoldi Main part 0.52 1.11
Total 1.59 3.20

G-Lanczos Inner CG 2.04 3.89
Main part 2.89 5.60
Total 3.92 7.62

GsCOCG Seed 13.67
Shifted 7.53
Total 21.20

Exact 57.60

Au 864 CPU times (s)

G-Arnoldi Main part 1.94 3.76
Total 3.00 6.00

G-Lanczos Inner CG 7.93 15.13
Main part 10.87 21.13
Total 11.93 23.31

GsCOCG Seed 140.89
Shifted 108.36
Total 249.15

Exact 2111.51

C. Applicability to large-scale electronic structure calculations
and MD simulations

In the exact calculation and GsCOCG methods, calculations
of physical properties, such as the density matrix, the energy
density matrix, and chemical potential, require the numerical
integration as in Eqs. (21), (26), (38), and (39). Therefore, to
keep high accuracy, the integration needs fine energy mesh
points. On the other hand, the generalized Lanczos or Arnoldi
methods use the simple summation of the eigenstates in the
mapped subspace in Eqs. (22), (23), and (17)–(20). These two
methods do not consume the CPU time and give stable values
of the density matrix and the energy density matrix.

The CPU times per one MD step are, for these models, a
few seconds by the generalized Lanczos and Arnoldi methods.
From the above comparison among various viewpoints, we
can conclude that the generalized Lanczos method or the
generalized Arnoldi method are very suitable to large-scale
electronic structure calculations and MD simulation of several
tens of thousands atoms and a long MD step. On the other hand,
the GsCOCG method can give excellently rigorous results with
more CPU times and may be applicable to problems of a fixed
atomic configuration (but not for the MD simulation).

The GsCOCG method is based on the three-term recursive
equations and we need to store three generated vectors at
each recursive process. Of course, when the sizes of the
Hamiltonian and overlap matrices are extremely large and
the memory size becomes a serious obstacle (although much
smaller consumption than the exact diagonalization method),
we should invent other methods of much faster convergence
and smaller cost of memory size.

The convergence criterion δ = 10−5 might correspond to
the range of neighboring 1000 atoms, as already discussed,
and we do not observe any clear difference between results by

our methods and the exact calculations. Even when we should
discuss some physics of nanoscale systems, the electronic
structure is determined by some nearby surroundings. This
idea we call near-sitedness.28 Even when we have to deal with
much larger systems, we can use a smaller interaction range
than the system size due to the near-sitedness. Presumably,
more serious problems of the system size occur in some
specific problems, for example, entire calculation of nano-
devise or the electron-strain field interactions such as fracture
propagation1,2 and dislocation.29

VII. CONCLUSION

We have derived several efficient and accurate algebraic
methods to calculate the Green’s functions, total and partial
density of states, and total band energy in case of nonorthog-
onal atomic orbitals. The method is very general.

We have investigated the accuracy and efficiency by
showing numerical data with different numerical procedures.
The GsCOCG is very accurate with less consumption than the
exact diagonalization, but may not be appropriate for long MD-
step simulations. The generalized Lanczos method becomes
applicable to actual large systems with the modified Gram-
Schmidt reorthogonalization to maintain the orthogonality
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FIG. 7. (Color online) Partial density of states and integrated
ones without the modified Gram-Schmidt reorthogonalization of the
generalized Lanczos method (red solid lines) and those by the exact
ones (blue solid lines) for a system of Au 256 atoms by the NRL
tight-binding Hamiltonian (Ref. 24). N = 50. (a-1) and (a-2): pDOS
and IDOS for s orbitals. (b-1) and (b-2): pDOS and IDOS for p

orbitals. (c-1) and (c-2): pDOS and IDOS for d orbitals. One should
note that the normalization of the integrated density of states is broken
without reorthogonalization procedure and that some “ghost” peaks
appear due to incorrect mixing of states. η = 5.0 × 10−3 Ry.
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of generated basis vectors. Then, the generalized Arnoldi
and Lanczos methods are accurate and efficient, and their
CPU times depend linearly upon the system size. Therefore,
these two methods would be the most suitable to the large-
scale electronic structure calculations and MD simulations.
A crucial point we should point out finally is the fact that the
G-Lanczos and G-Arnoldi methods do not adopt any numerical
integration in energy, which leads to additional numerical error.
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APPENDIX A: REORTHOGONALIZATION BY MODIFIED
GRAM-SCHMIDT METHOD

The three-term recursive relation in the generalized Lanczos
method guarantees theoretically the automatic S orthogonal-
ization. However, the orthogonality is broken in the numerical
calculation procedure. This problem causes several issues
such as the existence of constant background of error in the
spectrum,14 appearance of “ghost” structure in spectrum due
to erroneous mixing of states, and a broken normalization of
the partial density of states.

Figure 7 shows the examples of this broken orthonormality
in a system of 256 atoms of fcc Au by using the NRL
Hamiltonian. One can see the “ghost” peaks [e.g., at ε 
1.8 Ry in (a-1), at ε  1.25 − 1.3 Ry in (b-1) and (c-1)],
and broken normalization [e.g., in (a-2) and (b-2)]. These
problems are solved by the reorthogonalization with the
modified Gram-Schmidt method.

APPENDIX B: CONSISTENCY BETWEEN THE TOTAL
ENERGY MINIMUM AND A VANISHING FORCE

We should construct our eigenstates in a small subspace,
and a certain numerical error is unavoidable in evaluated
total energy and force. Even in this case, the consistency
between the total band energy minimization and a vanish-
ing atomic force is the most important in the electronic
structure calculation in equilibrium atom configuration. In
the framework of the tight-binding model, the force (due
to band energy) acting on an atom I is evaluated by
a formula

FI = −2
∑
ij

(
ρij

∂Hij

∂ RI

− πij

∂Sij

∂ RI

)
, (B1)

which can be rewritten, with only an assumption of the
eigenstate property Eq. (8) in the mapped subspace, as

FI = −2
∂

∂ RI

{∑
ij

(ρijHij ) −
∑
ij

(πijSij )

}

− ∂

∂ RI

∑
α

f (εα)εα. (B2)

Therefore, calculated atomic and electronic configuration of
the minimum total energy is consistent with that of vanishing
atomic force if the identity

∑
ij (ρijHij ) = ∑

ij (πijSij ) is
satisfied always in any atomic configuration. It should be noted
that the above equality is satisfied in the mapped subspace as
described in II C 2. It is important in the actual calculating
procedure that we should use the consistent pair of equations
as (17) and (19) or (18) and (20).
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