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ABSTRACT

An adaptive global shallow-water model is proposed on cubed-sphere grid using the multimoment finite

volume scheme and the Berger–Oliger adaptive mesh refinement (AMR) algorithm that was originally

designed for a Cartesian grid. On each patch of the cubed-sphere grid, the curvilinear coordinates are con-

structed in a way that the Berger–Oliger algorithm can be applied directly. Moreover, an algorithm to transfer

data across neighboring patches is proposed to establish a practical integrated framework for global AMR

computation on the cubed-sphere grid.

The multimoment finite volume scheme is adopted as the fluid solver and is essentially beneficial to the

implementation of AMR on the cubed-sphere grid. The multimoment interpolation based on both volume-

integrated average (VIA) and point value (PV) provides the compact reconstruction that makes the present

scheme very attractive not only in dealing with the artificial boundaries between different patches but also in

the coarse–fine interpolations required in the AMR computations. The single-cell-based reconstruction

avoids involving more than two nesting levels during interpolations. The reconstruction profile of constrained

interpolation profile–conservative semi-Lagrangian scheme with third-order polynomial function (CIP-

CSL3) is adopted where the slope parameter provides a flexible and convenient switching to get the desired

numerical properties, such as high-order (fourth order) accuracy, monotonicity, and positive definiteness.

Numerical experiments with typical benchmark tests for both advection equation and shallow-water

equations are carried out to evaluate the proposed model. The numerical errors and the corresponding CPU

times of numerical experiments on uniform and adaptive meshes verify the performance of the proposed

model. Compared to the uniformly refined grid, the AMR technique is able to achieve the similar numerical

accuracy with less computational cost.

1. Introduction

Using variable resolution is an efficient way to study

multiscale phenomena with reduced conflicts between

numerical accuracy and computational cost. This tech-

nique is very attractive for geophysical fluid dynamic

simulations. Given limited computer resources, one can

achieve high-quality numerical results by either keeping

high grid resolution over the regions of interest or re-

fining the grid dynamically when smaller-scale struc-

tures develop during the simulation (Côté 1997). Several

methods can be adopted to implement the simulations

with variable resolutions, such as nested grid (Pielke

et al. 1992), stretched grid (Yessad and Bénard 1996),

and adaptive mesh refinement (AMR) grid. Among these

techniques, AMR is usually considered to be the most

intelligent one where the prior information of flow struc-

ture is not required. Since the first effort of Skamarock

(1989), several AMR models have been developed for

geophysical fluid dynamic simulations; some of them

are found in Skamarock and Klemp (1993), Blayo and
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Debreu (1999), Bacon et al. (2000), Hubbard and

Nikiforakis (2003), Behrens (1998), Jablonowski et al.

(2006), and St-Cyr et al. (2008), among others. More com-

prehensive reviews on the applications of adaptive meshes

in geophysical fluid dynamic simulations can be found in

Behrens (2006) and Nikiforakis (2009).

Two kinds of algorithms have gained popularity so far

to implement the AMR algorithms on structured grid.

The first one was proposed by Berger and Oliger (1984)

and another one was introduced by De Zeeuw (1993).

These two algorithms use different ways to organize the

computational elements with different grid spacings. The

comparisons between these two methods have been found

in existing literature (e.g., van der Holst and Keppens

2007; Jablonowski et al. 2006), but so far it is still hard to

tell which algorithm is superior to another in all aspects

regarding the computational accuracy, efficiency, and

flexibility. Considering the simple data structure and

flexible refinement ratio, we adopt the Berger–Oliger

AMR algorithm in the present study.

Since the 1980s, the Berger–Oliger AMR algorithm has

been used in many applications of CFD. Some representa-

tive adaptive codes using this algorithm are CLAWPACK

(available online at http://www.amath.washington.edu/

;claw/), CHOMBO (available online at http://seesar.lbl.

gov/ANAG/chombo/), DAGH (available online at http://

www.cs.utexas.edu/users/dagh/), and SAMRAI (available

online at http://www.llnl.gov/CASC/SAMRAI/). This method

was first introduced to atmospheric simulations in a re-

gional model in Skamarock (1989).

Because the AMR algorithm was originally developed

on Cartesian grid, the key issue when implementing it in

global geophysical fluid dynamic models is how to es-

tablish the global adaptive mesh in spherical geometry.

Some special techniques have been devised to apply

the AMR technique on the spherical latitude–longitude

grid to build a global model (e.g., the work reported in

Hubbard and Nikiforakis 2003). Recently, researchers

are paying more and more attention to some advanced

global grids with intrinsically quasi-uniform grid spacing,

such as icosahedron grid (Williamson 1968; Sadourny

et al. 1968), cubed-sphere grid (Sadourny 1972) and Yin–

Yang overset grid (Kageyama and Sato 2004). The cubed-

sphere grid projects the globe onto six patches of the

inscribed cube that have an identically structured curvi-

linear coordinate system; thus, it is particularly attractive

when one tries to implement the AMR technique derived

for Cartesian grid. The models using local high-order

schemes [e.g., spectral element (SE) model (Thomas and

Loft 2002), discontinuous Galerkin (DG) model (Nair

et al. 2005), and multimoment model (Chen and Xiao

2008)] can accurately and efficiently exchange the infor-

mation over the patch boundaries on the cubed sphere. The

numerical errors due to the broken coordinate along the

boundaries can be more easily controlled with a local re-

construction. An adaptive spectral element model has been

developed on cubed-sphere grid in St-Cyr et al. (2008).

A global shallow-water model has been recently de-

veloped on cubed-sphere grid using the multimoment

finite volume (MM-FVM) scheme (Chen and Xiao 2008).

Using the multimoment concept, the high-order spatial

reconstruction can be constructed over a compact stencil.

As mentioned before, this feature is preferred on the

cubed-sphere grid. Based on this work, a practical adaptive

global model will be reported in this paper by combining

the cubed-sphere grid, the multimoment discretization and

Berger–Oliger AMR algorithm. It should be noted that

the compactness of the stencil required for spatial re-

construction due to the use of multimoments is essentially

demanded for efficient and accurate coarse–fine interpo-

lations across the AMR grids.

The rest of this paper is organized as follows: The

multimoment finite volume scheme is described in sec-

tion 2. The reconstruction is built so as to be capable of

enforcing the solutions with desirable numerical prop-

erties, such as high-order accurate (up to fourth order),

monotone and positive preserving, by simply modify-

ing a slope parameter in the multimoment interpolation.

Section 3 focuses on how to implement the Berger–Oliger

AMR algorithm in the multimoment context. The solu-

tion procedure of Berger–Oliger AMR grid is briefly

reviewed, and the coarse–fine interpolation based on

multimoments is described in detail. The representative

numerical tests are carried out for validations of the pro-

posed model in section 4. This paper ends with conclusions

in section 5.

2. Multimoment finite volume scheme

Different from the conventional numerical schemes,

the multimoment method adopts two or more kinds of

moments to construct the high-order numerical schemes

(Xiao 2004; Xiao et al. 2006). Shown in the existing

studies Ii and Xiao (2007), Akoh et al. (2008), Chen and

Xiao (2008), Li et al. (2008), Ii and Xiao (2009, 2010),

and Akoh et al. (2010), the multimoment schemes show

competitive performance in respect to computational

accuracy, efficiency, robustness, and flexibility. The in-

creased degrees of freedom (DOFs) by using the mul-

timoment concept especially make it possible to use

compact stencil for high-order spatial reconstruction com-

pared with the single moment method (e.g., conventional

finite difference–volume method). This feature is very

useful for high-order reconstructions on unstructured

grid or under the circumstances where only limited sten-

cil is available. As we will show later, the multimoment
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discretization is also of great benefit to the implementation

of the AMR algorithm.

In the present formulation, two kinds of moments—

point value (PV) moment and volume-integrated average

(VIA) moment—are adopted to construct the numerical

model. Shown in Fig. 1, for one-dimensional (1D) control

volume Ci defined by [xi2(1/2), xi1(1/2)], two moments are

defined for field variable q(x, t) as

d PV moment

Pq
i6(1/2)

5 q[x
i6(1/2)

, t] and (1)

d VIA moment

Vq
i
5

1

Dx
i

ðx
i1(1/2)

x
i�(1/2)

q(x, t) dx, (2)

where Dxi 5 xi1(1/2) 2 xi2(1/2).

a. Spatial reconstruction based on multimoments

Considering the moment configuration shown in Fig. 1,

we build reconstruction polynomial with two kinds of

moments: that is, PV and VIA. Using three local degrees

of freedom over a single grid element (or control volume)

Ci, one can determine a quadratic interpolatant as in the

CIP-CSL2 scheme (Yabe et al. 2001),

Q
i
(x) 5 �

p50

2

c
p
[x� x

i�(1/2)
]p. (3)

With the constraints given by both PV and VIA

moments

Q
i
[x

i6(1/2)
]5 Pq

i6(1/2)

1

Dx

ðxi1(1/2)

x
i�(1/2)

Q
i
(x) dx 5 Vq

i

8><>: , (4)

the coefficients are

c
0

5 Pq
i�(1/2)

c
1

5� 2

Dx
[Pq

i1(1/2)
1 2Pq

i�(1/2)
� 3Vq

i
]

c
2

5
3

Dx2
[Pq

i�(1/2)
1 Pq

i1(1/2)
� 2Vq

i
]

8>>>><>>>>: , (5)

where we consider uniform grid spacing Dx, the exten-

sion to nonuniform grid is straightforward.

In this paper, we use term ‘‘MM-FVM_3 scheme’’ to

denote the numerical scheme using quadratic spatial

reconstruction (3). The name indicates that the scheme

is of third-order accuracy.

The CIP-CLS3 reconstruction profile was proposed by

Xiao and Yabe (2001). In addition to the three DOFs

used above, a slope parameter that is defined as the gra-

dient of the physical field at the midpoint of the control

volume is introduced as another constraint (see Fig. 2).

With the additional constraint of di 5 ›Q
i
(x)/›x

��
x5xi

, a cu-

bic polynomial is obtained,

Q
i
(x) 5 �

p50

3

c
p
[x� x

i�(1/2)
]p. (6)

Solving the equation set from the four constraints given

by (4) and (6) yields

c
0

5 Pq
i�(1/2)

c
1

5
1

Dx
[6Vq

i
� 6Pq

i�(1/2)
� 2Dxd

i
]

c
2

5
3

Dx2
[3Pq

i�(1/2)
� Pq

i1(1/2)
� 2Vq

i
1 2Dxd

i
]

c
3

5
4

Dx3
[Pq

i1(1/2)
� Pq

i�(1/2)
� d

i
Dx]

8>>>>>>>><>>>>>>>>:
. (7)

The additional parameter di is not an independent mo-

ment; it is calculated from the known PVs and VIAs that

are updated at every step as the computational vari-

ables. Moreover, this slope parameter is controllable; it

makes the numerical scheme based on the CIP-CSL3

reconstruction very flexible. In Xiao and Yabe (2001),

FIG. 1. Moment configuration for 1D case.
FIG. 2. The CIP-CSL3 reconstruction profile.
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several kinds of reconstruction profiles were introduced

to make the resultant schemes have the desired proper-

ties, such as monotonicity or high-order accuracy (fourth

order). For the monotone scheme, the slope limiter can

be computed by

dM
i 5 minmod(ud

L
, ud

R
, d

C
), (8)

where dL, dR, and dC are given by

d
L

5
1

Dx
(Pq

i
� Pq

i�1
)

d
C

5
1

Dx
[Pq

i1(1/2)
� Pq

i�(1/2)
]

d
R

5
1

Dx
(Pq

i11
� Pq

i
)

8>>>>><>>>>>:
(9)

and Pq
i
is an auxiliary PV moment, computed by the PV

and VIA moments through the three-point Simpson’s

quadrature rule of fourth-order accuracy as

Pq
i
5

1

4
[6Vq

i
� Pq

i�(1/2)
� Pq

i1(1/2)
], (10)

and u is a constant; we usually use u 5 2 in (8) following

the MC limiter (Leveque 2002).

Different from the algorithms used in Xiao and Yabe

(2001), a fourth-order scheme in present study is ob-

tained by using a more compact stencil. The gradient at

the midpoint is given by

d41
i 5

1

3Dx
[Pq

i�1
� 6Pq

i�(1/2)
1 3Pq

i
1 2Pq

i1(1/2)
] or

(11)

d4�
i 5

1

3Dx
[�2Pq

i�(1/2)
� 3Pq

i
1 6Pq

i1(1/2)
� Pq

i11
].

(12)

Using (11) and (12), CIP-CSL3 reconstruction profile (6)

is equivalent to the asymmetric four-point reconstruc-

tions used in Chen and Xiao (2008).

Another spatial reconstruction profile is obtained by

using a positive-preserving limiter; it is useful for some

geophysical simulations where the negative undershoots

might lead to physically or computationally unaccept-

able results. A simple positive-preserving slope param-

eter can be obtained through the combination of (8),

(11), and (12) as

dP
i 5

d41
i or d4�

i if min[Pq
x6(1/2)

, Vq
i
] . d

dM
i otherwise

(
,

(13)

where d is a small positive threshold.

It should be pointed out that the reconstruction (3)

can be retrieved from CIP-CSL3 profile if the slope

parameter is computed by

d3
i 5

1

Dx
[Pq

i1(1/2)
� Pq

i�(1/2)
]. (14)

For sake of brevity, we denote hereafter the numerical

schemes using CIP-CSL3 reconstruction with the slope

parameter being dM computed by (8) as MM-FVM_M

scheme, d 41 by (11) or d 42 in (12) as MM-FVM_4 scheme,

and dP by (13) as MM-FVM_P scheme.

For practical use, an effective mechanism should be

designed to combine the different reconstruction pro-

files; thus, the multimoment model can automatically

switch among the schemes with or without limiting pro-

jection. For this purpose, an indicator of the smoothness

can be devised and used to choose the proper schemes; for

example, the TVB limiter (Shu 1989) has been adopted in

Ii and Xiao (2007) to keep high resolution at the smooth

peaks and eliminate spurious oscillation around disconti-

nuities. Further investigation can be carried out by making

use of more sophisticated technique for oscillation sup-

pressing, such as the weighted essentially nonoscillatory

(WENO) concept (Jiang and Shu 1996).

b. Updating the moments

Considering the one-dimensional hyperbolic conser-

vation system (with M equations),

›q

›t
1

›f

›x
5 0, (15)

where q is the vector of unknowns and f is the flux vector.

For the hyperbolic system, the Jacobian matrix is defined

as A 5 ›f/›q with the real eigenvalues lm (m 5 1 to M).

First, spatial differentials are discretized using the mul-

timoment spatial reconstruction. The conservation laws

are then reduced to the semidiscrete ordinary differential

equations (ODEs) in which the spatial derivatives are

discretized. To get high-order accuracy in time stepping,

we make use of the Runge–Kutta scheme for time in-

tegration.

1) SPATIAL DISCRETIZATION

The spatial discretization is described as follows. Pro-

vided that PV[Pq
i�(1/2)

] and VIA(Vq
i
) are known at

t 5 tn, the spatial reconstruction Qi
n can be obtained by

using (6) with the slope parameter calculated through

different formulations (8), (11), (12), or (13). The evo-

lution of PV and VIA moments is predicted separately

by the corresponding equations discretized by different

numerical formulations.
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The PV moment is updated by using the governing

equations of differential form. At point x 5 xi1(1/2), it is

written as

›

›t
[Pq

i1(1/2)
] 5� ›f

›x

� �
i1(1/2)

5�A
i1(1/2)

›q

›x

� �
i1(1/2)

. (16)

To update the PV moment, the first-order derivatives of

model variables need to be evaluated at the cell in-

terfaces. The piecewise reconstruction polynomial is

continuous at the cell interface because the two poly-

nomials in the neighboring cells share the same value of

PV moment that is used as one of the constraints for

reconstruction, as shown in Fig. 3. However, the values

of the first-order derivatives calculated from the re-

construction polynomials of left and right cell ele-

ments might not be continuous. The pointwise general

Riemann problem (GRP; Toro and Titarev 2005) has to

be solved at cell boundary. We make use of the local Lax–

Friedrichs (LLF) approximate Riemann solver (Shu and

Osher 1988),

›
x
f

i1(1/2)
5

1

2
›

x
f[›

x
q�i1(1/2)] 1 ›

x
f[›

x
q1

i1(1/2)]
n
�a

i1(1/2)
[›

x
q1

i1(1/2) � ›
x
q�i1(1/2)]

o
, (17)

where ›xf[›xq6
i1(1/2)] denote the first-order derivatives of

the flux function which is computed from ›xq
1
i1(1/2) 5

(›Qi11/›x)i1(1/2) and ›xq
�
i1(1/2) 5 (›Qi/›x)i1(1/2) respectively;

ai1(1/2) 5 max
1#m#M

(lm)i1(1/2) is the largest eigenvalue of

Jacobian matrix A 5 ›f/›q computed by the PVs de-

fined at cell boundary x 5 xi1(1/2).

VIA moment is advanced by using flux-form formu-

lation as

›

›t
(Vq

i
) 1

1

Dx
[f

i1(1/2)
� f

i�(1/2)
] 5 0, (18)

which assures the exact numerical conservation of the

VIA moment. Because the numerical flux across the cell

interface can be found through the PV moment directly,

VIA moment is updated without spatial reconstruction.

The simple formulation for updating the VIA moment

brings about high efficiency for the multimoment finite

volume scheme.

2) TIME INTEGRATION

The time marching is computed by Runge–Kutta

schemes. With the multimoment spatial discretization

formulations described above, the semidiscrete govern-

ing equation for each moment can be written as

›f

›t
5L(f), (19)

where f denotes any moment and L represents the

spatial discretization operator.

If fn is known at t 5 tn, the time integration is com-

puted by Runge–Kutta scheme as

fn11 5 fn 1
1

6
Dt(k

1
1 k

2
1 4k

3
), (20)

where

k
1

5L(fn)

k
2

5L(fn 1 k
1
)

k
3

5L fn 1
1

4
k

1
1

1

4
k

2

� �
8>>><>>>: (21)

with third-order accuracy (RK-3; Shu 1988), or

fn11 5 fn 1
1

6
Dt(k

1
1 2k

2
1 2k

3
1 k

4
), (22)

where

k
1

5L(fn)

k
2

5L fn 1
1

2
k

1

� �
k

3
5L fn 1

1

2
k

2

� �
k

4
5L(fn 1k

3
)

8>>>>>>><>>>>>>>:
(23)

with fourth-order accuracy (RK-4).

c. Extension to multidimensions and
cubed-sphere grid

It is straightforward to extend the multimoment scheme

described above to multidimensional case on the struc-

tured grid. The moment configuration profile for a

FIG. 3. The GRP at the interface between two control volumes.
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two-dimensional rectangular control volume is illustrated

in Fig. 4. Eight PV moments and one VIA moment are

defined in each grid element. PV moments are updated by

solving the general Riemann problems that are conducted

along the grid lines. The one-dimensional operations dis-

cussed above can be used in x and y directions, respec-

tively. VIA moment is updated by flux-form formulation

and thus is exactly conserved. The numerical fluxes across

the edges of the control volume are obtained by the PV

moments through the numerical integrations along the

edges to assure the high-order accuracy. To extend the

multimoment scheme to general curvilinear coordinates,

we apply the multimoment scheme to the governing equa-

tions, which have been recast into the curvilinear co-

ordinates. The details of extending the multimoment

schemes to cubed-sphere grid can be found in Chen and

Xiao (2008), where the metric terms are analytically

computed from the gnomonic projection. The accuracy

and other desirable features of the one-dimensional CIP-

CSL3 reconstruction can be fully ported to the multidi-

mensional computations on structured grid.

3. Implementation of Berger–Oliger AMR
algorithm

The Berger–Oliger AMR algorithm was originally pro-

posed in Berger and Oliger (1984) and Berger and Colella

(1989). Using the Berger–Oliger AMR algorithm, the com-

putational domain is covered by a number of blocks. These

blocks are grouped into several levels according to the

spatial resolutions, and blocks with fine resolution always

overlay the blocks of the coarse levels. Each block has its

own memory space for storing physical variables and other

computational parameters. In this section, we briefly re-

view the Berger–Oliger AMR algorithm at first. Then the

coarse–fine interpolation procedure based on multimo-

ments, which is substantially different from the existing

methods, will be described in detail. Our implementation

of Berger–Oliger AMR scheme follows the framework of

CLAWPACK. Modifications are made to accommodate

the multimoment discretization formulation and the

Runge–Kutta time integration scheme. Efforts are also

made to the data transfer computations on the cubed-

sphere grid with adaptive meshes.

a. Solution procedure on AMR grid

1) UPDATING PROCEDURE ON AMR GRID

Provided that the adaptive mesh has been set up at

time tn 5 nDt0, where Dt0 is the time interval for base

level (level 0), the flow solutions are put forward to the

next time step as follows: Each block of adaptive mesh

has its own storage space, and it can be updated using the

same numerical scheme as that on uniform structured

mesh if the required values on the ghost cells for spatial

discretizations have been provided through coarse–fine

interpolations. Because Berger–Oliger AMR algorithm

is also ‘‘time adaptive,’’ different nesting levels are ad-

vanced according to a special recursive procedure (see

Fig. 3 of Berger and Oliger 1984). The same work flow is

adopted in the present adaptive model.

Different from the schemes on uniform grid, syn-

chronization of the solutions over different levels is

carried out at the time step of the coarser mesh to assure

the numerical accuracy and conservation. Because the

fine blocks overlay the blocks of the next coarse level,

the solution in overlapping area is calculated with dif-

ferent grid resolutions. To keep the accuracy of numeri-

cal scheme, the solution on the coarse block obtained by

using large grid spacing is replaced by the result calcu-

lated with fine grid resolution.

To guarantee the exact conservation, flux correction is

made along the interfaces between the coarse and fine

levels (Berger and Colella 1989; Berger and Leveque

1998). As shown in the top panel of Fig. 5, the boundary

between level k and k 1 1 is considered as an example

and the refinement ratio of 2 is chosen for sake of sim-

plicity. On coarse level k, the numerical flux ek
i11 j are

used to update the VIA Vq
k
ij, whereas the VIAs of its

neighboring elements on level k 1 1 (i.e., Vq
k11
2i11,2 j�1 and

Vq
k11
2i11,2 j) are put forward by using flux ek11

2i11,2 j�1 and

ek11
2i11,2 j. In general, the following relation does not hold:

ek
i11 j 5

1

2
(ek11

2i11,2 j�1 1 ek11
2i11,2 j), (24)

FIG. 4. Moment configuration for 2D case.
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where the fluxes are time-averaged values during time

interval Dtk, which is the time integration increment of

level levk.

To preserve the numerical conservation, the VIA

moment of coarse element should be modified by

(Vq
k

ij)
mod

5 Vq
k

ij 1
Dtk

DVk
�� �� [hkek

i11, j

� hk11(ek11
2i11,2 j�1 1 ek11

2i11,2 j)]. (25)

Here, hk is the grid spacing and DV
k

�� �� 5 (hk)2 is the area

of the computational element of level levk.

For another case shown in the bottom panel of Fig. 5

where fine block is located at the upstream side of coarse

one, the VIA moment for coarse element is corrected by

(Vq
k

ij)
mod

5 Vq
k

ij �
Dtk

DVk
�� �� [hkek

ij

� hk11(ek11
2i�1,2 j�1 1 ek11

2i�1,2 j)]. (26)

The conservation corrections in the y direction are car-

ried out in a similar manner.

2) SETUP AND DYNAMIC ADJUSTMENT OF

THE AMR GRID

Before specifying initial conditions for simulations,

the initial adaptive mesh must be generated. First, the

base block (level 0) with prescribed resolution is con-

structed to cover the whole computational domain.

Then, other levels are generated one by one with grad-

ually refined resolutions until the targeted finest nesting

level is reached. Given the blocks of level levk, we create

the blocks of next finer level levk11 by following two

steps: 1) flagging the computational cells that need to be

refined and 2) separating the cells to a number of distinct

clusters and generating the new blocks.

The refinement criterion is another key for the adaptive

schemes. Generally, two kinds of refinement criteria are

used in the existing models: that is, the criteria based on

error estimation, such as Richardson extrapolation in

Berger and Oliger (1984), and the criteria based on the

representative physical variables, such as the gradient of

a physical field is usually used to identify the discontinu-

ities or large jumps where larger numerical errors might be

expected. The latter is based on the structure of flow field

and thus easy to implement. Though it is worth further

investigation for more general refinement criteria (e.g.,

those described in Behrens 2006, chapter 2), the simple

strategy by detecting the large gradients in the physical

field is very effective and more popular in geophysical fluid

simulations. We adopt this method in the present study.

How to cluster the elements to be refined into blocks

is also important and worthy of attention. The simplest

method to generate the blocks is bisection. A more so-

phisticated method based on pattern recognition was

proposed in Berger and Rigoutsos (1991) and is used in

the present model.

During computations, adaptive mesh is automatically

adjusted in order to follow the evolution of the flow field.

The AMR grid is completely or partially regenerated for

every step or several time steps. Although the adjustment

of AMR grid starts from fine level in an order reverse to

the initial setup of the AMR (Berger and Oliger 1984),

most operations used in the initial step can be applied

with modest modification. As long as the new AMR grid

has been constructed, the field variables on the refined

elements are interpolated from the coarse level.

b. Coarse–fine interpolation based on multimoments

As mentioned above, coarse–fine interpolation is re-

quired in an AMR model to find the values for the ghost

cells as well as the newly generated cells after grid adjust-

ment. The multimoment method is algorithmically different

from other numerical schemes and more convenient for

the data exchange among the grids of different levels. We

FIG. 5. Conservation correction along coarse–fine boundary.
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describe the coarse–fine interpolations on AMR grid based

on multimoments in this subsection.

The multimoment formulation makes use of locally

defined degrees of freedom and thus allows one to build

high-order reconstruction based on compact stencil; for

example, only a single cell is required in the CIP-CSL2

reconstruction (3). As a consequence, the interpolation

for the data transfer between coarse and fine grids can be

easily conducted. In fact, the interpolation procedure

never involves more than two levels of the nesting grids.

Figure 6 illustrates how to evaluate the ghost cells for

block of level levk11. Here, the refinement ratio between

two neighboring levels levk11 and levk is set as rk 5 2.

Without loss of generality, the interpolation procedure

described below applies to any integer refinement ratio.

In Fig. 6, coarse cell Ck
i, j of levk is adjacent to fine levels

levk11. Its right boundary edge is part of the boundary of

levk11. Two cells Ck11
2i,2 j�1 and Ck11

2i,2 j are the ghost cells

required in the spatial discretizations of level levk11.

Given the PVs (including the auxiliary PV at the cell

center) on coarse grid denoted by hollow circles in Fig. 6,

we interpolate the ghost PVs for the finer grid at points

denoted by the solid markers. The markers are classified

into three types according to their locations as follows.

d Type one: The ghost points denoted by solid circles

coincide with the points where the PV moments of the

coarse block are defined. The corresponding values

are directly copied from the known PVs.
d Type two: The ghost points denoted by solid squares

are located on the grid lines of coarse block, and the

PVs are determined by using the one-dimensional

interpolation along the line elements.
d Type three: The ghost points denoted by solid tri-

angles are the internal points of the coarse element.

Generally, a two-dimensional reconstruction polyno-

mial is needed. However, a more efficient interpolation

FIG. 6. Coarse–fine interpolations based on multimoments for

evaluating the ghost cells.

FIG. 7. Coarse–fine interpolations based on multimoments for

evaluating the flow variables in refined elements.

TABLE 1. Errors and CPU times of solid rotation of the square wave on 2D plane. Model runs on the different uniform or AMR grids and

the results are grouped according to the finest resolution.

Finest resolution Grid

Error norms

CPU time normsl1 error l2 error l‘ error

0.05 40 3 1 3 1 0.3994 0.3539 0.6819 1 (0.7249 s)

0.025 80 3 1 3 1 0.2401 0.2724 0.7007 7.6

40 3 2 3 2 0.2402 0.2721 0.7134 3.3

0.0125 160 3 1 3 1 0.1415 0.2070 0.7060 54.3

40 3 2 3 4 0.1421 0.2077 0.7207 16.2

40 3 3 3 2 0.1423 0.2075 0.7270 16.9

80 3 2 3 2 0.1423 0.2075 0.7254 20.3
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can be computed by using the one-dimensional inter-

polation based on the ghost PVs of type 2. It is equiva-

lent to the so-called cascade interpolation, which sweeps

the 1D scheme alternatively in different directions.

To limit the stencil for interpolation within a single cell,

we use the MM-FVM_3 interpolation for the problems not

requiring monotone enhancement. For problems where

spurious oscillations must be removed, the MM-FVM_M

FIG. 8. Contour plots of numerical results of square wave solid rotation on AMR grids (left) 40 3 2 3 2 and (right)

40 3 3 3 2. Shown are height fields at (top) t 5 (1/5)p, (middle) (3/5)p, and (bottom) p.
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interpolation is adopted. Considering that the scheme

given in section 2 requires additional information from

neighboring cells for limiting, we use a slope limiter which

can be built over a more compact stencil as

dM
i 5 minmod(d

L
, d

R
), (27)

where

d
L

5
2

Dx
[Vq

i
� Pq

i�(1/2)
] and d

R
5

2

Dx
[Pq

i1(1/2)
� Vq

i
]

(28)

and the notations are the same as shown in Fig. 1.

The coarse–fine interpolation used to determine the

flow variables of newly generated fine elements is shown

in Fig. 7. Coarse control volume Ck
ij is split into four fine

elements: Ck11
2i�1,2 j�1, Ck11

2i�1,2 j, Ck11
2i,2 j�1, and Ck11

2i,2 j.

The values of PV moments of the fine grid elements can

be determined by using the interpolation procedure as

mentioned above. However, particular attention must be

paid when distributing the VIA of the coarse grid to the

four fine elements (denoted by solid diamonds in Fig. 7).

For sake of simplicity, the 1D single-cell-based re-

construction profile based on two PV moments and one

VIA moment is represented by RF(Pql,
Pqr,

Vq). The

line-integrated averages over the four boundary edges

of the coarse element (i.e., Lql,
Lqr

Lqb, and Lqt for left,

right, bottom, and top edges, respectively) are computed

by using the three-point Simpson’s rule based on the

known PV moments as

Lq
l
5

1

6
[Pq

k

i�(1/2) j�(1/2) 1 4Pq
k

i�(1/2) j 1 Pq
k

i�(1/2) j1(1/2)],

(29)

Lq
r
5

1

6
[Pq

k

i1(1/2) j�(1/2) 1 4Pq
k

i1(1/2) j 1 Pq
k

i1(1/2) j1(1/2)],

(30)

Lq
b

5
1

6
[Pq

k

i�(1/2) j�(1/2) 14Pq
k

ij�(1/2) 1 Pq
k

i1(1/2) j�(1/2)], and

(31)

Lq
t
5

1

6
[Pq

k

i�(1/2) j1(1/2) 14Pq
k

ij1(1/2) 1 Pq
k

i1(1/2) j1(1/2)].

(32)
Then the following quantities are obtained:

Vq
l
5

2

Dx

ðx
i

x
i�(1/2)

RF(Lq
l
, Lq

r
, Vq

k

ij) dx and (33)

Vq
r
5

2

Dx

ðx
i1(1/2)

x
i

RF(Lq
l
, Lq

r
, Vq

k

ij) dx, (34)

where Vq
l
, Vq

r
are volume-integrated averages over left

and right halves of the control volume Ck
ij and

Lq
tl

5
2

Dx

ðx
i

x
i�(1/2)

RF[Pq
k

i�(1/2) j1(1/2),
Pq

k

i1(1/2) j1(1/2),
Lq

t
] dx,

(35)

Lq
tr

5
2

Dx

ðxi1(1/2)

x
i

RF[Pq
k

i�(1/2) j1(1/2),
Pq

k

i1(1/2) j1(1/2),
Lq

t
] dx,

(36)

Lq
bl

5
2

Dx

ðx
i

x
i�(1/2)

RF[Pq
k

i�(1/2) j�(1/2),
Pq

k

i1(1/2) j�(1/2),
Lq

b
] dx,

and (37)

Lq
br

5
2

Dx

ðx
i1(1/2)

x
i

RF[Pq
k

i�(1/2) j�(1/2),
Pq

k

i1(1/2) j�(1/2),
Lq

b
] dx,

(38)

where Lq
tl
, Lq

tr
are line-integrated averages over the left

and right halves of top boundary edge and Lqbl,
Lqbr are

corresponding quantities of bottom boundary edge.

Based on the quantities given above, the VIA mo-

ments for newly generated fine elements are determined

by one-dimensional interpolatants as

Vq
k11

2i�1,2 j�1 5
2

Dy

ðy
j

y
j�(1/2)

RF(Lq
bl

, Lq
tl
, Vq

l
) dy, (39)

Vq
k11

2i,2 j�1 5
2

Dy

ðy
j

y
j�(1/2)

RF(Lq
br

, Lq
tr

, Vq
r
) dy, (40)

Vq
k11

2i�1,2 j 5
2

Dy

ðy
j1(1/2)

y
j

RF(Lq
bl

, Lq
tl
, Vq

l
) dy, and

(41)

FIG. 9. The 1D plots (along y 5 0) of height fields of square wave

solid-rotation test on different grids.
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Vq
k11

2i,2 j 5
2

Dy

ðy
j1(1/2)

y j

RF(Lq
br

, Lq
tr

, Vq
r
) dy. (42)

It is straightforward to show that the numerical procedure

distributing the VIA moment from coarse grid element to

fine grid elements is exactly conservative; that is,

Vq
k

i, j 5
1

4
(Vq

k11

2i�1,2 j�1 1 Vq
k11

2i,2 j�1 1 Vq
k11

2i�1,2 j 1 Vq
k11

2i,2 j).

(43)

c. Extension to the cubed-sphere grid

On each patch of the cubed sphere, the AMR blocks

can be constructed using the algorithm described above

directly. The global AMR model, however, requires

some extra efforts along the patch boundaries. The basic

numerical procedure of the data transfer across the

patch boundaries can be found in our previous report

(Chen and Xiao 2008). We summarize the major points

that need special attention when dealing with the data

communications across the patch boundaries in the

AMR context as follows.

(i) When implementing Berger–Oliger AMR algo-

rithm on the elements along the patch boundary, it

is necessary to know the grid structure on the ad-

jacent patch. Since the local coordinate system is

separately used for each patch, the connections

between two neighboring patches concerning the

projection and coordinate orientation must be cre-

ated for the data transfer between the grid hierarchy.

(ii) For the blocks located along the patch boundaries,

ghost cells for spatial discretization will be gener-

ated on the neighboring patch. Because of the

broken coordinates along the patch boundary, the

locations of these ghost cells need to be calculated

from the geometrical relations of the projection,

and the values of the physical variables need to be

interpolated using the data of the corresponding

cells of the neighboring patch.

(iii) Along the patch boundaries, two or three PV mo-

ments may be defined at the same location but are

stored and updated on different patches separately.

To achieve global conservation, a correction step

(Chen and Xiao 2008) is required to assure these

PV moments to be single valued. On the AMR grid,

averaging operation is done when the patch bound-

ary is shared by two blocks of same nesting level.

When the boundary is shared by two blocks of dif-

ferent nesting levels, the values of PVs of the coarse

block are substituted by those of the fine block.

(iv) On the global AMR grid, the aforementioned con-

servation correction along the interface between

coarse and fine nesting levels may occur between

two blocks on different patches. Special attention is

required to take into account the difference in ori-

entation between the local coordinates on the two

neighboring patches when computing the fluxes for

conservation correction.

TABLE 2. Errors and CPU times of the cosine bell advection on the cubed sphere in the direction of a 5 p/2. Model runs on the different

uniform or AMR grids and the results are grouped according to the finest resolution.

Finest resolution Grid

Error norms

CPU time normsl1 error l2 error l‘ error

58 16 3 1 3 1 0.1212 0.9205 3 1021 0.9193 3 1021 1 (0.9489 s)

2.58 32 3 1 3 1 0.1766 3 1021 0.1497 3 1021 0.1488 3 1021 6.5

16 3 2 3 2 0.1766 3 1021 0.1496 3 1021 0.1488 3 1021 2.1

1.258 64 3 1 3 1 0.3360 3 1022 0.3400 3 1022 0.4939 3 1022 47.5

16 3 2 3 4 0.3367 3 1022 0.3400 3 1022 0.4933 3 1022 6.9

16 3 3 3 2 0.3371 3 1022 0.3394 3 1022 0.4888 3 1022 6.7

32 3 2 3 2 0.3369 3 1022 0.3396 3 1022 0.4905 3 1022 11.8

TABLE 3. As in Table 2, but in the direction of a 5 p/4.

Finest resolution Grid

Error norms

CPU time normsl1 error l2 error l‘ error

58 16 3 1 3 1 0.9625 3 1021 0.7913 3 1021 0.1018 1 (0.9489 s)

2.58 32 3 1 3 1 0.1497 3 1021 0.1251 3 1021 0.1425 3 1021 6.5

16 3 2 3 2 0.1497 3 1021 0.1251 3 1021 0.1425 3 1021 2.1

1.258 64 3 1 3 1 0.3200 3 1022 0.3081 3 1022 0.3719 3 1022 47.3

16 3 3 3 4 0.3207 3 1022 0.3080 3 1022 0.3757 3 1022 6.6

16 3 3 3 2 0.3211 3 1022 0.3076 3 1022 0.3743 3 1022 6.7

32 3 2 3 2 0.3210 3 1022 0.3077 3 1022 0.3737 3 1022 11.7

FEBRUARY 2011 C H E N E T A L . 533



FIG. 10. Contour plots of numerical results of cosine bell advection (a 5 p/4) on 16 3 2 3 2 grid. Shown are fields

at days (top) 3, (middle) 7.5, and (bottom) 12.
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FIG. 11. As in Fig. 10, but for the test on 16 3 3 3 2 grid.
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4. Numerical tests

Numerical tests are carried out in this section to verify

the proposed adaptive model. To examine the effect of

using AMR technique in improving numerical accuracy

and in saving computational cost, we have conducted

numerical experiments with different levels of resolution

with both uniformly refined and adaptively refined grids.

The normalized l1, l2, and l‘ errors, which are defined

following Williamson et al. (1992), and the corresponding

CPU time on different grids are examined and compared.

a. Advection tests

The advection tests adopted here involve small-scale

features in limited areas that require high-resolution

refinement with the AMR technique. For such kind of

tests, an ideal AMR formulation should be one that is

able to reduce overall numerical error down to a level

similar to that on a uniformly refined grid and mean-

while has a significant reduction in the CPU time con-

sumption. In advection tests, the gradient-based criterion

is adopted. For the two-dimensional case Ck
ij, a control

volume on level levk will be refined if

max[jPh
i1(1/2) j

� Ph
i�(1/2) j

j, jPh
ij1(1/2)

� Ph
ij�(1/2)

j] . d,

(44)

where h(x, y) is the transported height field and d the

threshold prescribed in advance. We use the same grid

spacing in the x and y directions.

1) SOLID ROTATION OF SQUARE WAVE ON

TWO-DIMENSIONAL PLANE

The numerical test on 2D Cartesian grid is checked first.

The advected field is chosen as the square wave, which is

specified on the computational domain [1, 1] 3 [1, 1] as

h(x, y, 0) 5
1, if max(jx� 0.35j, jyj) , 0.25

0, otherwise.

�
(45)

The rotation velocity field is specified by u 5 2y and y 5

22x. The discontinuous jumps of the square wave are

locally refined by the AMR model.

We ran the test on uniform and AMR grids of dif-

ferent spatial resolutions for one revolution (t 5 p)

using the MM-FVM_M scheme with RK-3 temporal

marching. The numerical errors and CPU times on dif-

ferent grids are given in Table 1. All numerical tests in

this paper are computed on an Intel Xeon E5520 CPU

(single process). In Table 1, the elapse CPU time is given

for the case on the coarsest uniform grid, whereas the

CPU times for all other cases are normalized to that on

the coarsest uniform grid. The grid configuration is given

as n 3 m 3 r, which means that the base grid has n 3 n

computational elements, the maximal nesting level is m,

and the refinement ratio between two adjacent levels is

r. The results are grouped according to the finest reso-

lution. Because of the discontinuous distribution of the

height field, the normalized l1 and l2 errors reduce as the

grid is refined, whereas the l‘ error does not change

remarkably. It is observed that the normalized errors of

each group on uniform and AMR grids are quite close,

FIG. 12. Time history of normalized l2 errors of cosine bell

advection test on different grids.

TABLE 4. Errors and CPU times of the nonsmooth deformational flow on cubed sphere. Model runs on the different uniform or AMR

grids and the results are grouped according to the finest resolution.

Error norms

Finest resolution Grid l1 error l2 error l‘ error CPU time norms

58 16 3 1 3 1 0.5127 3 1021 0.1199 0.6144 1 (0.2410 s)

2.58 32 3 1 3 1 0.2813 3 1021 0.8731 3 1021 0.6050 6.3

16 3 2 3 2 0.2818 3 1021 0.8738 3 1021 0.6050 4.4

1.258 64 3 1 3 1 0.1580 3 1021 0.6640 3 1021 0.5101 46.1

16 3 2 3 4 0.1590 3 1021 0.6660 3 1021 0.5101 21.4

16 3 3 3 2 0.1659 3 1021 0.6907 3 1021 0.5173 20.1

32 3 2 3 2 0.1654 3 1021 0.6906 3 1021 0.5167 22.8
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FIG. 13. Contour plots of numerical results of nonsmooth deformational flow on 16 3 2 3 2 grid. Shown are

height fields at t 5 (top) 0.625, (middle) 1.5625, and (bottom) 2.5.

FEBRUARY 2011 C H E N E T A L . 537



FIG. 14. As in Fig. 13, but for the test on 16 3 3 3 2 grid.
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and the AMR model significantly reduced the CPU time

compared to the uniformly refined computations. These

results reveal the effectiveness of the present AMR

model in saving computational cost.

Figure 8 displays the contour plots of the height fields

at t 5 p/5, 3p/5, and p computed by two AMR grids. The

jumps of the square pulse is well resolved by the AMR

model, and the solution is significantly improved when

finer mesh adaptation is implemented. One-dimensional

plots of the cross-sectional (y 5 0) profiles of height

fields computed by different grids are given in Fig. 9. The

discontinuities are reproduced with better resolution on

the finer nesting levels. The spurious oscillations are

effectively removed by the monotone limiter.

2) COSINE BELL ADVECTION ON CUBED SPHERE

The global AMR model on cubed sphere is evaluated

by a global advection transport of a passive tracer field.

First, the solid rotation of a cosine bell on the sphere

(i.e., test 1 in Williamson et al. 1992) is computed. The

initial height field is given as

h 5

h
0

2

� �
1 1 cos

pr

r
0

� �
if r , r

0
,

0 otherwise

8<: (46)

where r is the great circle distance between point (l, u)

and the initial center (l0, u0) 5 [(3p/2), 0]. Other con-

stants are specified as h0 5 1000 m and r0 5 R/3, where R

is the radius of the earth.

A divergence-free velocity field is given by (Williamson

et al. 1992)

u
l

5 u
0
(cosu cosa 1 sinu cosl sina)

u
u

5�u
0

sinl sina

�
, (47)

where u0 5 2pR/(12 days) and the parameter a repre-

sents the angle between the rotation axis and polar axis

of the earth.

MM-FVM_P scheme is used in simulations with the

RK-4 temporal integration scheme. We ran the numerical

experiments on seven different grids of 16 3 1 3 1, 32 3

1 3 1, 64 3 1 3 1, 16 3 2 3 2, 16 3 3 3 2, 16 3 2 3 4, and

32 3 2 3 2. The notation of grid adaptation n 3 m 3 r

has the same meaning as explained before. When ap-

plied to the cubed-sphere grid, an identical base grid of

n 3 n is set up for each patch. On the cubed-sphere grid

generated by equiangular projection, the finest resolution

is measured by the minimum increment of the central

angular.

We present two advection tests with flow directions

being a 5 p/2 and a 5 p/4. The normalized errors and

CPU times are given in Table 2 for a 5 p/2 and Table 3

for a 5 p/4. The normalized errors of the tests on AMR

grids are similar to those on the uniformly refined grids

of the same finest resolution. Significant reduction in

CPU time is found in the AMR computations. The test

with flow in the direction of a 5 p/4 is of particular

importance for the AMR computation on the cubed-

sphere grid because the cosine bell passes four vertices

and two complete patch boundaries, where more com-

plicated numerical procedure is involved. The contour

plots of numerical results of flow with a 5 p/4 on two

grids of 16 3 2 3 2 and 16 3 3 3 2 are given in Figs. 10

and 11 at days 3, 7.5, and 12 (one complete revolution).

Present AMR model works well even along the patch

boundaries and at the vertices of the cube. Normalized l2
errors of three refining grids are shown in Fig. 12. No

FIG. 15. The 1D plots (along equator) of height fields of nonsmooth

deformational flow test on different grids.
FIG. 16. Time history of normalized l2 errors of steady-state

geostrophic flow test on different grids.
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FIG. 17. Contour plots of numerical results of steady-state geostrophic flow test on different grids. Shown are

(top) height field at day 14 on 36 3 1 3 1 uniform grid and 36 3 3 3 2 static three-level grids constructed with

configurations (middle) 1 and (bottom) 2.
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obvious increase of l2 error is found when cosine bell

moves across or along the patch boundaries. The mul-

timoment model effectively controls the numerical er-

rors introduced by the broken coordinates along patch

boundaries.

3) DEFORMATIONAL FLOW ON CUBED SPHERE

A deformational flow test on sphere was proposed in

Nair et al. (1999). The advected field is given on a ro-

tated latitude–longitude grids (l9, u9) [with the origin at

(lc, uc) 5 (2p/4, 23p/10)] as

h 5�tanh
r

gd
sinl9

� �
, (48)

where

r 5
2g cosu9

1 1 sinu9
(49)

and g 5 1.5 and d 5 0.01 are specified to generate

nonsmooth initial profile.

With the angular velocity given by

v9 5
3
ffiffiffi
3
p

sech2r tanhr

2 cosu9
, (50)

the analytic solution reads

h 5�tanh
r

gd
sin(l9� v9t)

� �
. (51)

This test is used to evaluate the AMR model in the pres-

ence of complex field that requires more complicated

dynamic adaptation. The MM-FVM_M scheme is adop-

ted to remove the spurious oscillation in the vicinity of the

large jumps in the solution. The normalized errors and

CPU times of the numerical experiments on different

grids shown in Table 4 give the same conclusion as we

have drawn from the previous tests on the performance of

the adaptive multimoment model. The contour plots of

height field and corresponding adaptive mesh are shown

in Figs. 13 and 14 for the simulations on 16 3 2 3 2 and

16 3 3 3 2 grids. The height field with complex structures

is well resolved in this test. During the computations, the

AMR grids have been properly adjusted to maintain the

numerical accuracy around the large gradient in numer-

ical solution. The present AMR scheme is capable of

dealing with the physical fields with complex structures.

We repeated the simulations with the vortex center being

at (0, 0). The cross-sectional profiles along the equator of

the height fields on different grids are shown in Fig. 15.

The resolution for both smooth peaks and discontinuous

jumps are significantly improved with refined grids, and

no visible oscillation is found.

b. Shallow-water tests

We present four benchmark tests to evaluate the

adaptive shallow-water model on the cubed sphere. In

tests 2 and 6 of Williamson’s standard test set, we use the

static multilevel grid as suggested in St-Cyr et al. (2008)

to quantitatively analyze the extra errors introduced by

coarse–fine interpolations. In test 5 of Williamson’s stan-

dard test set and the barotropic instability test introduced

by Galewsky et al. (2004), the complete adaptive model

is used. The reference solutions are required to calculate

the normalized errors. For Williamson’s test 2, the geo-

strophically balanced distribution specified as the initial

condition gives the exact solution. In Williamson’s tests 5

and 6, the high-resolution spectral transform solutions

(T426 for test 5 and T511 for test 6) are adopted as the

reference solutions [available online at http://icon.enes.

org/; provided by Germany’s National Meteorological

Service (DWD)]. In the barotropic instability test, the

numerical result computed by present model on a high-

resolution uniform grid (256 3 256) is used as the ref-

erence solution. The adaptive refinement criteria for

shallow-water tests are computed in terms of the vor-

ticity field. On the cubed-sphere grid, a computational

element is flagged for mesh refinement if

z 5
1ffiffiffiffiffi
G
p

ij

1

Dh
[Pu

i1(1/2) j
� Pu

i�(1/2) j
]

�

� 1

Dj
[Py

ij1(1/2)
� Py

ij�(1/2)
]

	
. d, (52)

FIG. 18. Time history of normalized l2 errors of Rossby–Haurwitz

wave test on different grids.
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FIG. 19. Contour plots of numerical results of Rossby–Haurwitz wave test on different grids. Shown are

height field at day 10 on (top) 36 3 1 3 1 uniform grid, (middle) 36 3 2 3 2 static two-level grid, and (bottom)

T511 spectral transform reference solution.
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where the threshold d 5 2 3 1025 is prescribed in the

numerical tests. j and h are the local coordinates on each

patch,
ffiffiffiffiffi
G
p

is the Jacobian of the transformation, and u

and y are the contravariant velocity components. The

details of these quantities are described in Chen and

Xiao (2008). In shallow-water tests, the fourth-order

MM-FVM_4 scheme with RK-4 is adopted for all cases.

1) STEADY-STATE GEOSTROPHIC FLOW

The initial height field is defined as

gh 5 gh
0
� RVu

0
1

u2
0

2

� �
3 (�cosl cosu sina 1 sinu cosa)2, (53)

where gh0 5 2.94 3 104 and u0 5 2pR/(12 days) and a is

the angle between the rotation axis and the polar axis of

the earth.

The divergence-free initial velocity field, same as pre-

vious advection test, is specified by (47) flow field. The

Coriolis parameter is calculated as

f 5 2V(�cosl cosu sina 1 sinu cosa). (54)

It is obvious that the above velocity field geostrophically

balances the height field given by (53).

We computed the case of a 5 p/4, which is the most

challenging one for models on the cubed-sphere grid.

One uniform 36 3 1 3 1 grid and two static three-level

36 3 3 3 2 grids are adopted. The static multilevel grids

are constructed by refining the computational cells if

jl 2 lcj , p/8 and ju 2 ucj , p/12 where (l, u) is the

location of the cell center and (lc, uc) is specified as

[p, (p/4)] for configuration 1 and [(3p/4), (p/6)] for

configuration 2 (see St-Cyr et al. 2008).

The proposed model was integrated on these three

grids to day 14 without dynamic adjustment of the mesh.

Time history of normalized l2 error is given in Fig. 16.

Although introducing high-resolution blocks can effec-

tively reduce the numerical errors in the areas they

cover, the interpolation procedure for data transfer

between the coarse–fine interfaces might introduce

some extra numerical errors. Similar to the formula-

tions examined in St-Cyr et al. (2008), multimoment

FVM model also produces extra numerical errors when

adding fine blocks to the uniform grid; however, using

the same test configurations, the multimoment model

performs better than the FVM model reported in St-

Cyr et al. (2008). The normalized l2 errors increase

35.23% for configuration 1 and 5.37% for configuration

2 in the present tests. It should also be noted that the

numerical error depends on the location of the re-

finement blocks. Different from the FVM result in St-

Cyr et al. (2008), laying the fine blocks in regions of

strong gradients in the present model effectively re-

duces the extra errors. The numerical results on dif-

ferent grids are given in Fig. 17. The thick solid lines are

the edges between different refinement levels.

2) ROSSBY–HAURWITZ WAVE

The four-wave Rossby–Haurwitz wave, known as test

6 in Williamson’s standard test set, is also computed on

static multilevel grids. The divergence-free flow field is

given by the streamfunction as

c 5�R2v sinu 1R2K cosru sinu cosrl, (55)

and the initial height field is specified as

gh 5 gh
0

1 R2A 1 R2B cosrl 1 R2C cos2rl, (56)

where constants v, K and r are specified as v 5 K 5

7.848 3 1026 s21 and r 5 4. The quantities A, B, C are

functions of the latitude.

The numerical model is integrated to day 15 on the

uniform 36 3 1 3 1 grid and static two-level 36 3 2 3 2

grid. The refinement criterion is specified by the initial

meridional velocity as uu , 60 m s21. The normalized l2
errors are calculated at days 5, 10, and 15 against the

T511 spectral transform reference solution. The time

history of normalized l2 errors on different grids is

shown in Fig. 18. It is observed that the multimoment

FIG. 20. Time history of normalized l2 errors of zonal flow over an

isolated mountain test on different grids.
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FIG. 21. Contour plots of numerical results of zonal flow over an isolated mountain test on 18 3 4 3 2 AMR grid.

Shown are height field at days (top) 5, (middle) 10, and (bottom) 15.
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model produces very similar results in both runs. Nu-

merical results together with the reference solution at

day 10 are displayed in Fig. 19. As in the previous test,

thick solid lines indicate the border between different

levels. This test again shows the priority of the multi-

moment scheme in treating the coarse–fine interfaces

over the traditional FVM models.

3) ZONAL FLOW OVER AN ISOLATED MOUNTAIN

In this test, a zonal flow is the same as in section 4b(1),

except that the parameters are modified as h0 5 5960 m

and u0 5 20 m s21. A bottom mountain is centered at

(lc, uc) 5 [(3p/2), (p/6)], and the height of the mountain

is analytically given as

h
s
5 h

s0
1� r

r
0

� �
, (57)

where hs0 5 2000 m, r0 5 p/9, and r 5 min[r0,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(l� lc)2 1 (u� uc)2

q
].

Four grids, including three uniform ones with resolu-

tions of 18 3 1 3 1, 36 3 1 3 1, and 144 3 1 3 1 and one

four-level adaptive one, 18 3 4 3 2, are chosen for this

test. Besides the dynamic refinement criteria based on

vorticity, the computational element where hs . 0 is also

refined. The normalized l2 errors compared with the

T426 spectral transform solution are given in Fig. 20.

The numerical results at days 5, 10, and 15 on AMR grid

are given in Fig. 21. The CPU times required by different

grids are summarized in Table 5. The normalized l2 error

on AMR grid is very similar to that on the finest uniform

144 3 1 3 1 grid. The multimoment adaptive model has

a performance quite similar to the SE model and better

than the FVM model cited in St-Cyr et al. (2008). It is

obvious that a large saving in the computational cost

is achieved. The adaptive model consumes about only

16% CPU time to obtain the similar result compared with

the uniformly refined grids.

4) BAROTROPIC INSTABILITY TEST

This test problem is particularly suitable for examine

the AMR model because the large jumps in the height

and velocity fields are limited in the zonal belt, which are

the major source of the numerical errors and easy to be

dynamically identified. We carried out this test on dif-

ferent uniform and AMR grids as in the advection tests.

The zonal flow field in this test is given by

u
l
(u) 5

0 if u
0

# u
0

u
max

e
n

exp
1

(u� u
0
)(u� u

1
)

� �
if u

0
, u , u

1

0 if u
0

$ u
1

8>>><>>>: ,

(58)

where umax 5 80 m s21, u0 5 (p/7), u1 5 (p/2) 2 u0, and

en 5 exp[24/(u1 2 u0)2]. The basic balanced height field

can be obtained by integrating the following balance

relation

gh(u) 5 gh
0
�
ðu

�p/2

Ru
l
(u9) f 1

tan(u9)

R
u

l
(u9)

� �
du9,

(59)

where h0 is determined by prescribing the mean height

to be 10 000 m. An initial perturbation of height field is

added to the balanced flow to initiate the instability as

h9 5 bh cos(u) exp � l

a

� �2

�
u

2
� u

b

� �2
" #

, (60)

where bh 5 120 m, a 5 1/3, b 5 1/5, and u2 5 p/4.

The normalized l2 errors on different grids are given in

Fig. 22, which are computed by comparing the numerical

results with the reference solution obtained by a high-

resolution solution of the present model on 256 3 1 3 1

grid. It is observed that locally refining the grid resolution

FIG. 22. Time history of normalized l2 errors of the barotropic

instability test on different grids.

TABLE 5. CPU times of zonal flow over an isolated mountain test

on different grids. CPU time is normalized by that of the coarse

grid (18 3 1 3 1).

Case No. Grid configuration CPU time

1 18 3 1 3 1 1 (67.79 s)

2 36 3 1 3 1 7.14

3 144 3 1 3 1 441.85

4 18 3 4 3 2 70.86
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FIG. 23. Contour plots of numerical results of the barotropic instability test on different grids. Shown are the relative vorticity at day 6. The

grids used the computations are (top)–(bottom) 32 3 1 3 1, 32 3 2 3 2, 32 3 3 3 2, and 128 3 1 3 1.
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by AMR effectively maintains the numerical accuracy.

The numerical errors from the AMR computations are

comparable to those using uniformly refined grids over

the whole computational domain. Cases 2 and 4 are in

the same group that has the same finest grid resolution

(64 3 64 on each patch) for the regions where the in-

stability develops, whereas cases 3, 5, 6, and 7 are in

another group with a finest grid of 128 3 128. Cases 1, 2,

and 3 use uniformly refined grids over the whole globe.

The AMR solution of case 4 has almost identical errors

to that with a uniformly refined grid. In a similar manner,

the AMR computations of cases 5, 6, and 7 satisfactorily

retrieve the solution on the globally refined grid in case 3.

The numerical results on four different grids, 32 3 1 3 1

(case 1), 32 3 2 3 2 (case 4), 32 3 3 3 2 (case 5), and

128 3 1 3 1 (case 3), are illustrated by the contour plots

in Fig. 23 for height field at day 6. For clarity, we plot the

boundaries between different nesting levels in these fig-

ures. The numerical result on coarse grid without AMR

(panel 1 in Fig. 23) is dominated by the errors mainly

generated from the patch boundaries. We observe that,

with the increased grid resolutions by using finer nesting

grids adaptively over the areas where the barotropic in-

stability develops, the numerical results converge to the

reference solution [see Fig. 4 of Galewsky et al. (2004)].

Consistent to the overall error evaluation shown in Fig. 22,

the result of 32 3 3 3 2 (case 5) is very close to the uniform

global refinement with the 128 3 1 3 1 (case 3) grid.

For a more detailed comparison in computational cost,

we show the CPU times consumed on different grids in

Table 6 where the grid configurations of all cases corre-

spond to those given in Fig. 22. It is observed that the

AMR computations in cases 5 and 7 take less than 30%

CPU time compared to the global refinement computa-

tion. The adaptive model, which maintains the accuracy

comparable to the uniform-grid computation, has a big

advantage in the computational efficiency.

5. Conclusions

In this study, we extend the multimoment global

shallow-water model proposed in Chen and Xiao (2008)

to an AMR framework, which should be one of the im-

portant functions of a practical atmospheric or oceanic

model. The Berger–Oliger AMR algorithm is extended

to the spherical geometry on the cubed-sphere grid. The

flexibility and locality of the multimoment reconstruction

not only simplify the AMR implementation but also

provide the numerical model with desirable properties,

such as high-order accuracy and monotonicity enforcement.

Locally intensified flow structures, like tropical low

pressure and midlatitude cyclone in atmosphere, are

commonly observed in geophysical fluid motion. As

we can see in the benchmark tests, AMR technique

is able to significantly reduce the computational cost

in the simulations of atmospheric and oceanic dy-

namics when the local grid adaptation is properly imple-

mented. We expect the proposed formulation can be a

base for practical models that solve geophysical flows

with multigrid resolutions for the optimized usage of

computer resources.
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