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ABSTRACT: A theoretical analysis based on a pseudo-three-phase media is presented, 
and the instability of a slope causing the debris flow is studied. The occurrence of fractures 
(or water films) in saturated soils in two cases is analyzed. The first case is that the water is 
forced to percolate through the soil upwards. A perturbation method is used in this case to 
obtain an approximate solution to explain the formation mechanism of cracks. The second 
case is about the cracks in liquefied soils. Numerical analysis and theoretical analysis are 
processed for this case. The formation of fractures in saturated grain accumulation under 
gravity is due to the blocking by redeposit of finer grains. The formation of fractures presents 
a sliding surface for landslides and debris flow.
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1 INTRODUCTION

It is occurred often in the mountain area that grain deposit or grain flow translates to debris 
flow which is usually related with the strong seepage induced by earthquake or raining (Cui, 
1992; Cui et al., 2009, Hu et al., 2009). When saturated grain deposit stays or slide along a 
slope, it may become instability and the cracks or fragments occur and develop. As a result, 
debris flow happens. The fracture in saturated grain deposit is a water gap which forms when 
the permeability is nonuniform and therefore the pore water is trapped by relatively low per-
meable layers. The grains do not support one another and are therefore suspended in the 
condition of zero effective stresses. The grains in suspension eventually settle because they 
are heavier than water. The rate of such settlement is restricted by the fact that water must 
flow upward around the grains. If  liquefiable deposits are overlain by less permeable soils 
in a stratified or layered deposit, the overlaying deposit can restrict the pore water to pass 
through. If  there is no downward drainage through the deposit, this relative flow at the inter-
face, by continuity, must be equal to the velocity of settlement at the upper liquefied grain 
surface. Thus an accumulation of water in the form of a water gap at the interface forms 
(Lu et al., 2006). Seed (1987) was the first to suggest that the existence of “water film” in sand 
bed is the reason of slope failures in earthquakes. Later, some researchers (Fiegel and Kutter, 
1994; Kobusho, 1999; Kokusho, 2000; Kokusho and Kojima, 2002; Zhang et al., 1999) per-
formed some experiments to investigate the formation of “water film” in layered sand or in 
sand containing a seam of non-plastic silt. Kokusho (1999) performed shake table tests using 
sand samples containing a seam of nonplastic silt and showed that water films were formed 
beneath the silt layer. In this case the column was subjected to horizontal dynamic loadings to 
simulate earthquakes. Experimental observations on the formation of water films in vertical 
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columns of saturated sand contained in circular cylinders have also been reported by Zhang 
et al. (1999) and Peng et al. ( 2000). In both cases care is taken in preparing the sample by 
feeding wetted uniform sand continuously into a column of water to avoid intentional strati-
fication. However, small inhomogenneity still exits due to uneven settling velocity.

However, the mechanism of the formation of fractures or “water film” in grain deposit is 
not clear, which is cute to forecast grain deposit translates to debris flow. As debris flow may 
move a much more long distance than grain flow because of the lower obstruction, debris 
flow may cause heavier damage. In the viewpoints above, a primary analysis is presented in 
this paper.

2 FORMULATION OF THE PROBLEM

It is considered that a grain accumulation stays or slides along a slope. The accumulation is 
water saturated and the water is not over the surface of the accumulation. The surface of the 
accumulation is free while the bottom is sliding. The fine grains are assumed to be eroded 
from the skeleton, the eroding relation is assumed to be the following type (Lu et al., 2006). 
The x axis is upward and parallel to the slope.
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in which the first term on the right side of the first equation shows how fine grains are being 
transferred to water, the second term describing deposition places a limit on the amount of 
grains that can be carried in the field, Q the mass of grains eroded per unit volume of the 
grain/water mixture, ρs the density of the grains, u and us the velocities of the percolating 
fluid containing fine grains and the coarse grains, q the volume fraction of fine grains carried 
in the percolating fluid, T and u* physical parameters, λ a small dimensionless parameter 
used to arrive at a perturbation solution, ε (x, t) the porosity, Qc(x) the maximum Q, uc is the 
critical velocity to cause erosion.

A pseudo-three-phase model is presented. Mass conservation equations are:
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in which ρ is the density of water. A general equation which denotes the volume conservation 
may be obtained from these three equations, which is

 εu + (1 − ε)us = U(t) (6)

The momentum equations are written as follows
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in which eqn. (7) denotes the momentum conservation of grains, eqn. (8) denotes the total 
momentum conservation, the last term on the right hand side of eqn. (8) denotes the momen-
tum caused by the eroded fine grains, P is the pore pressure, k the permeability, σe the effec-
tive stress, θ the slope, τ the shear stress on the bed. Here k assumed to be a function of ε and 
q in the following form

 k(ε, q) = k0 (–αq + βε) (9)

in which α, β are parameters and 1 < β << α, we choose to let α much greater than β, so that 
changes in q overweighs that of ε.

3 ANALYSIS AND RESULTS

Based on the model presented above, we will analyze the occurrence of the fracture in satu-
rated soils in two cases. The first case is water flow is forced to percolate through the grain 
soils (Peng et al., 2000) and the movement of the skeleton may be neglected relative to that of 
the water. A perturbation method is used here to obtain an approximate solution to explain 
the fracture mechanism. The second case is about the fractures in a liquefied grain layer 
(σe = 0, τ ≈ 0) where the grains sink while the water is pressed to move upward just like the 
consolidation. Here, the slope is assumed to be long enough to neglect the boundary effects 
for the convenience to obtain the solutions.

(1) In the first case, a perturbation solution will be sought using λ as the small parameter. 
All solutions will be expanded in the following form, e.g.,

 
u t xn( ,x ) (un

n , )t
∞

∑λ n

0
 (10)

The initial porosity distribution ε0(x) is taken as
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in which L is the length of the grain deposit on the slope, a, b, c, d are coefficients.
It is assumed that the skeleton is static relative to percolating fluid so that

 εu = U(t) (12)

U(t) denotes the flow rate per unit cross sectional area of the grain column. The initial and 
boundary conditions are given as follows

 ε(0, t)u(0, t) = U(t), q(0, t) = 0 (13)

Using perturbation method, eq. (1) ∼ eq (5) yields
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A numerical example about porosity ε is given in Figure 1. It is shown that the porosity 
will develop periodic and the frequency becomes higher if  it is periodic initially. The higher 
frequency indicates that the porosity develops nonlinearly.

The equilibrium equations yield an expression of the effective stress as follows
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Liquefaction or location will occur and develop when σe = 0 and ∂∂ <σ e
t 0 is satisfied.

Which leads to the following equations:
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(T = 0.1, λ = 0.01, u* = 1 × 10−4 m/s, U = 0.01, a = 0.4, b = 0.1, c = 0.1, d = 0.5).
It is shown in Fig. 2 that the effective stress will develop periodic if  the initial porosity is peri-

odic and at some points in the grain column it becomes zero some time, e.g., liquefaction.
(2) In the second case, the grains are not static, then eqn. (6) becomes as follows if  the flow 

rate per unit cross sectional area of the grain column U(t) = 0, which means, when the grains 
sink downwards under gravity while the water flows upwards just like the consolidation.
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Figure 1. Changes of porosity with time.
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Figure 2. Development of effective stress with depth.
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 εu + (1 − ε)us = 0 (19)

For the convenient of analysis, Let’s take T in (1) as the characteristic time, ut denote the char-
acteristic velocity and L the characteristic length of the problem. We shall make them more 
specific in the following discussion. For the time being we use them to make eqn. (3), (4), (7) 
and (8) non-dimensional. Letting
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eqn. (3) and (4) become
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Equations (7) and (8) can be further simplified by the observation that fracture formation 
is a slow and late stage process during which the inertia effect is very small (Lu et al., 2010). 
Instituting eqn. (7) into eqn. (8) and by using eqn. (20) and (9), we can obtain the following 
equation
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when ut is taken to be

 ut = k0ρsg(1 − ρ/ρs) (23)

and

 f(q, ε) = –αq + βε (24)

Aside from a constant factor on the order of one, ut/(1 − ε) is the settling velocity of grains 
in a uniform column of grains with constant diffusion coefficient k0.

In order to de-couple the problem from the complication arising from the effect of consoli-
dation wave initiated from the bottom of the grain column, we assume that the grain column 
is very tall so that fracture would develop before the consolidation wave arrives.

Let us now examine the magnitude of the parameter utT/L. In the experiments of 
zhang et al. (1999) and Peng et al. (2000), T and ut are typically on the order of 20 sec and 
10–4 ∼ 10–5 m/s respectively, while L is on the order of 0.06 m. Hence utT/L is on the order of 
0.03∼0.003. Therefore, when the initial non-uniformity of the grain column is small (δ << 1), 
the second terms in eq. (21) can be neglected until such time that the non-uniformity becomes 
sufficiently large and concentrated at certain locations. Consequently for limited time eq. (21) 
can be further simplified to
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which shows that ε and τ are periodic in ς when ε0(η) is. Quadrature eq. (25) yields
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 ε = ε0(ς) + q (26)
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This solution indicates that fractures are likely to develop at such values of when q reaches the 
largest value at the smallest time. It provides an answer to where and when fractures develop. In 
particular, it shows that fractures would develop at equal intervals of x if the initial porosity dis-
tribution is periodic in x. However this solution is not sufficiently accurate in describing how frac-
ture eventually develops because the non-linear terms in eq. (21) are then no longer negligible.

Fractures do not take place under all circumstances. In our formulation, aside from the 
initial porosity distribution there are a number of constants. In a non-dimensional form they 
are α, β, λ. We now show under what constraints must be placed on these constants to ensure 
that fracture do develop. To do so, we make the problem more specific by considering the case 
where the initial porosity at distances far greater than Tut from ς = 0 is constant so that

 ε ς ε ς0εε0εε 0 0εε εε( )ςς → →ε ςεε ∞ ( )ς( ) →ςεε −∞+ −→ε ς ( )and aεεε )ςς → εεε−ε ( )ς → ε

We want to know under what conditions the two parts of the grain column will eventually be 
moving apart or closer. Fracture will clearly develop between them if  they are moving apart. 
This leads us to examine the grain velocities us at large |ς| as τ → ∞. Now, according to eq. (26) 
τ → ∞ clearly requires the denominator in the integrand to be zero. This enables us to solve 
for the porosity ε + and ε − at ς → ± ∞ from the following equations as τ approaches infinity 
asymptotically
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Defining the corresponding grain velocity by us
± ,  we obtain
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This condition places the necessary condition on values of α, β, λ for given ε0εε
+ε  and ε0εε

−. If  
us0 0su 0+ −− >u 0usu , the fracture will expand gradually, e.f., the faster sinking of grains at the lower 
layer leads fractures develop gradually when the upper layer is dense while the lower layer 
is loose. As an example, we take ε0εε 0 408− = . , ε0εε 0 392+ε = . , α = 1, β = 56 and λ = 14. This yields 
u us su+ − −=u 3 56 1× 0 3 as τ → ∞ with u us0 0usu 33 2 10+ − −=u 0u × . This results clearly demonstrates that 
fracture will eventually develop near ς = 0.

NND difference method[9] is used here to solve eqn. (25). It is shown that if  the initial 
permeability is periodic or non-periodic, then the grain column will rupture periodic or 
non-periodic (Figs. 3 a,b). The reason is that the grain above the blocked position will be pre-
vented to drop across the blocked position and so the porosity becomes smaller and smaller, 
while the grain below the positions will settle gradually and cause the fracture initials and 
grows gradually[10]. Non-uniformity of grain size distribution along the depth of the grain 
column is an essential precondition for fracture to initiate and grow. The transport of fine 
grains by percolation tends to aggravate this non-uniformity. The porosity of the upper part 
must be smaller than that of the lower part if  fractures form. Liquefaction is a necessary 
condition for the formation of fractures.

Assuming that the grain column is always jammed once the permeability k of  a point 
reaches zero. The parameters in our numerical computing are adopted as:

If  the coordinate x is less than 0.05 m or greater than 0.45 m, then ε0 equals 0.4. Other-
wise, ε0 is distributed as eqn. (11). And β = 80.0, a = 0.4, b = 0.04, c = 0.025, d = 0.5, u* = 0.04, 
k0 = 4 × 10–5 m/s, h = 0.5 m.
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Figure 3. Development of fractures.

4 CONCLUSIONS

It is shown that the occurrence of fractures in saturated grain accumulation under gravity is 
due to the jamming of the finer component by percolation. A theory of pseudo-three-phase 
media is presented to explain the basic mechanism of the formation of such fractures. The 
primary theoretical analysis and calculations indicate the theory does catch the main features. 
If  the distribution of initial porosity is periodic, the fractures will occur periodic also. After 
enough fractures occur and each block becomes fragment, debris flow will form.
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