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a b s t r a c t

Expensive optimization aims to find the global minimum of a given function within a
very limited number of function evaluations. It has drawn much attention in recent years.
The present expensive optimization algorithms focus their attention on metamodeling
techniques, and call existing global optimization algorithms as subroutines. So it is difficult
for them to keep a good balance between model approximation and global search due
to their two-part property. To overcome this difficulty, we try to embed a metamodel
mechanism into an efficient evolutionary algorithm, low dimensional simplex evolution
(LDSE), in this paper. The proposed algorithm is referred to as the low dimensional simplex
evolution extension (LDSEE). It is inherently parallel and self-contained. This renders it
very easy to use. Numerical results show that our proposed algorithm is a competitive
alternative for expensive optimization problems.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Global optimization (GO) aims to find a best solution to a given problem, or mathematically, to find a vector x∗ within a
feasible region Ω ⊂ Rn such that f (x∗) ≤ f (x) for all x ∈ Ω . GO is a challenging task because the gradient based algorithms
such as quasi-Newton methods and nonlinear conjugate gradient methods will get stuck at a stationary point or a local
minimum. During the past few decades, great efforts have been made on GO, and a number of excellent methods for global
optimization have been presented including branch-and-bound methods (BB), adaptive simulated annealing (ASA) [1],
the covariance matrix adaptation evolution strategy (CMA-ES) [2], differential evolution (DE) methods [3], particle swarm
optimization (PSO) [4], low dimensional simplex evolution (LDSE) methods [5], etc. Despite their prominent efficiency, they
still require a large number of function evaluations to escape the local minima. However, in many engineering applications,
the evaluation of the objective function is computationally and/or experimentally expensive. We take optimal shape design
as an example, in which for a given design vector (x = (x1, . . . , xn)), we need a computational fluid dynamics (CFD)
simulation to obtain its corresponding performance f (x). The CFD simulation may take several minutes, several hours, or
even several days. The CFD simulation can be regarded as a black-box function in the optimization problem. In this case, we
need to find a reasonably good vector x∗ within a very limited number of CFDs. This is known as an expensive optimization
problem. General GO algorithms do not work for it.

In short, expensive optimization aims to find the global minimum of a given function within a very limited number of
function evaluations. It has at least three properties as follows. (1) The objective function is very costly to evaluate. (2) The
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landscape of the objective function might be not so complex. However, it is nonconvex and has multiple minimum points.
(3) The accuracy of the solution is not very high (usually it is acceptable if just the relative error is less than 1%). However,
the function evaluations are strictly limited in number (to thousands, hundreds, dozens, or even less).

In 1993, Jones et al. provided a dividing rectangles (DIRECT) method [6], in which only the function value is used (thus it
is direct and derivative-free). It can be regarded as an early version of expensive optimization. But it requires many more
function evaluations than expensive optimization can give. To accelerate the convergence speed, a class of approximation
model based GO algorithms have also been presented. They can take advantage of the inherent smoothness of the target
problems, so they will, one hopes, converge faster than direct methods. Several approximation models have been proposed.
Powell used a multivariate polynomial interpolation model within a trust-region framework [7]. Jones et al. used a kriging
model [8]. Ishikawa et al. used a radial basis function (RBF) model [9]. Among these models the radial basis function (RBF)
model is a most promising model due to its simplicity and stability. Famous expensive optimization algorithms including
CORS-RBF in [10], RBF-G in [11] and ARBF in [12] are all based on the RBF model. Expensive optimization has drawn much
attention in recent years. Evolutionary Computation in Expensive Optimization Problems has been accepted as a special session
by the 2008 IEEEWorld Congress on Computational Intelligence (WCCI 2008); now it has been accepted as a special session
again by the incoming WCCI 2010.

The present expensive optimization algorithms such as CORS-RBF, ARBF, etc., focus their attention onmetamodeling and
call existing GO algorithms as subroutines. Thus it is difficult for them to keep a good balance between metamodeling and
global search due to their two-part property. In this work, we try to overcome this shortcoming by integrating a metamodel
mechanism (including the RBF interpolation and tabu search)with an efficient global optimization, lowdimensional simplex
evolution (LDSE) [5]. Numerical results show that the resulting algorithm is a competitive alternative for expensive global
optimization.

2. A brief review of low dimensional simplex evolution (LDSE)

Low dimensional simplex evolution (LDSE) [5] is a real-coded evolutionary algorithm (EA) for box-constrained global
optimization of the form

min
x∈Ω

f (x).

Similarly to other population-set based algorithms, LDSE maintains a population set X⃗(t) of N individuals (points in Rn)
Xi(t), i = 1, 2, . . . ,N , during the evolutionary progress. The evolutionary progress is to drive these points to the vicinity of
the global minimizer. The driving is done by replacing all bad points in the current population with new better points from
generation to generation.

For each individual in the current population, m + 1 individuals are randomly selected to form an m-simplex, where
m ≪ n. Each individual Xi(t) tries to improve itself in a framework of try–try–struggle, which will be described as follows.
At the beginning, it has two chances. The first chance is provided by the simplex reflection. If the reflection point Xr is
better than Xi(t), Xi(t) will be replaced by Xr . As a result, the individual Xi(t) is promoted. Otherwise a second chance, the
simplex contraction, will be carried out. Similarly, Xi(t) will get promoted if the contraction point Xc is better. However, if
the individual Xi(t) has lost the previous two chances and still cannot achieve the average profit (that is, its function value
is greater than or equal to the average value of the current population), it will make its last struggle. The procedure of the
LDSE can be outlined as follows.
Procedure of LDSE algorithm:

Step 1. Initialize: Input population size N , initial bounds l, u, scaling factors α and β . Set the current generation t := 0; and
initialize population X⃗(0) = {X1(0), X2(0), . . . , XN(0)}, where Xi(0) ∈ Rn.

Step 2. Evaluate population: For each individual in the current population X⃗(t), compute f (Xi(t)); set the current position
i := 1.

Step 3. Update population: If the current position i ≤ N , perform the following steps.
(3.1) Construct simplex: Randomly choose m + 1 mutually different individuals Xri , i = 1, 2, . . . ,m + 1, from the

current population, find their best Xb and the worst Xw , and calculate the centroid X̄ =
1
m

∑
ri≠w Xri .

(3.2) Try reflection: Compute the reflection point Xr = X̄ + α · (X̄ − Xw). If f (Xr) < f (Xi(t)), then Xi(t + 1) = Xr ;
set the current position i := i + 1, and return to step 3.

(3.3) Try contraction: Compute the contraction point Xc = X̄ +β · (Xw − X̄). If f (Xc) < f (Xi(t)), then Xi(t +1) = Xc ;
set the current position i := i + 1, and return to step 3.

(3.4) Struggle: If f (Xi(t)) ≥
1
N

∑
i f (Xi(t)) then compute the struggle point

Xs =


Xi(t) + 0.618 · (Xb(t) − Xi(t)), if f (Xrb(t)) < f (Xi(t));
Xi(t) + 0.382 · (Xi(t) − Xw(t)), else;

let Xi(t + 1) = Xs, set the current position i := i + 1, and return to step 3.
Step 4. Check point: If some stopping criterion is satisfied, output the best-so-far individual X∗ and its function value f (X∗).

Otherwise, set the current generation t := t + 1, set the current position i := 1 and return to step 3.
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It is clear from the above procedure that LDSE hybridizes EA and the Nelder–Mead method with essential modifications.
It generates new trial points in a Nelder–Meadway, and the individuals survive by the rule of natural selection. However, the
simplex therein is low dimensional and real-time constructed; and the simplex operators are employed selectively (i.e., the
expansion and reduction operators are discarded) and a new simplex operator (the last struggle) is introduced. Meanwhile,
each individual is updated in a framework of try–try–struggle.

LDSE has shown its prominent performance over an improved version of differential evolution (DE) [5,13]. However, it
is still not fast enough for expensive optimization problems.

3. Metamodeling

The idea of metamodeling is to take the advantage of the inherent smoothness of the expensive optimization problems.
To this end, it constructs a series of metamodels mk(x) (k = p, p + 1, p + 2, . . .) to approximate the costly target function
f (x), where the model functionmk(x) is much cheaper to evaluate (usually it takes much less than one second). We hope to
havemk(x) → f (x) as k → ∞. Then the model functions are used repeatedly to identify the promising points for the target
function. In other words, the expensive global optimization problem

min
x∈Ω

f (x) (1)

is now reduced into a series of cheap global optimization problems

min
x∈Ω

mk(x), k = p, p + 1, p + 2, . . . . (2)

Themetamodel (also called the approximationmodel, the surrogatemodel, or the response surface)might be constructed
using themultivariate polynomial interpolationmodel, the krigingmodel, or the radial basis function (RBF)model (they have
been mentioned in Section 1). Users can also choose other metamodels for approximating the costly target function. In this
work, we choose the radial basis function (RBF) model because of its simplicity and stability. Suppose we have k distinct
points x1, . . . , xk with known function values fi = f (xi), i = 1, . . . , k; then the model functionmk(x) has the form

mk(x) =

k−
i=1

ωiΦ(‖x − ci‖).

We use the multiquadric type basis function Φ(r) =

r2 + β2 in our experiments. For more information of RBF, refer

to [14].
Keep in mind that the above mentioned assumption k → ∞ is impractical because we want to optimize the costly

target function within a very limited number of function evaluations, i.e., k is upper bounded, k < K . Usually the upper
bound K is limited to thousands, hundreds, dozens, or even less. We need to find a reasonably good vector x∗ within K
costly evaluations.

In fact, we can get a reasonably good vector x∗ provided that (1) the response surface mk(x) is good enough, and (2) the
global optimization search (over mk(x)) is reliable. Obviously, it is difficult to get a good approximation model with a very
limited number of function evaluations. This makes it necessary to keep a good balance between the model approximation
and the global search during the optimization process. Usually, the assumption (1) is more critical in the earlier phase of
optimization and the assumption (2) becomes more important in the later phase.

4. The metamodel-assisted LDSE algorithm

Our newalgorithm is referred to as the lowdimensional simplex evolution extension (LDSEE, pronounced LDC). It is based
on the previously described low dimensional simplex evolution (LDSE), and uses the radial basis function (RBF) response
surface as its metamodel. To make a better approximation of the costly target function, the idea of tabu search [15] is also
applied.

LDSEE starts from an initial RBF response surface determined by a set of initial points. Suppose the number of initial
points is p. Then the initial RBF model is mp(x). Suppose we have g CPUs for parallel computing; then LDSEE generates g
new promising points (thus LDSEE is inherently parallel) at every iteration of the following three kinds:

(1) the global minimum of the RBF model: x∗
= argminx∈Ω mp(x);

(2) s low simplex reflection points: X l
r = X̄ + α · (X̄ − Xw), l = 1, 2, . . . , s;

(3) (g − s − 1) K -far random points: xlK = argmaxi∈{1,2,...,K} minj∈{1,2,...,k,k+1} ‖xri − xj‖, l = 1, 2, . . . , (g − s − 1).

By ‘‘promising’’ we mean that it is hoped that the point can (1) improve the RBF response surface or (2) help to locate a
better point for the target function. This step is referred to as global search. Then the newly obtained promising pointswill be
added to the tabu list and used to update the RBF response surface and get a new RBFmodelmp+g(x). This step is referred to
as surface reconstruction. The above steps (global search and surface reconstruction) are repeated until the limited number
of costly function evaluations are used up. In general, LDSEE puts emphasis on the surface reconstruction at the beginning
and the global search in the end. The procedure of the LDSEE can be outlined as follows.
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Table 1
Characteristics of test functions.

func.name abbr dim domain no.min

1D 1D 1 [−4, 4] 4
Peaks PK 2 [−4, 4]2 2
Six-hump camel back CB 2 [−4, 4]2 6
Branin BR 2 [−4, 4]2 6
Goldstein-Price GP 2 [−2, 2]2 5
Hartman-3 H3 3 [0, 1]3 5
Sheckel-10 S10 4 [0, 10]4 10
Hartman6 H6 6 [0, 1]6 5

Procedure of LDSEE:

Step 1. (Initialization) Input the number of initial points p, the number of CPUs g , the maximum number of expensive
function evaluations K , and the number of nodes at the jth direction Nj. Select a set of initial vectors x1, . . . , xp
and calculate their target function values fi = f (xi), i = 1, 2, . . . , p. Find the best vector x∗ and its target value f ∗.
Let the tabu list be T = {xi| i = 1, 2, . . . , p}, set k := p, the initial tabu radius δ := (δ1, . . . , δn) for general points,
where δj =

1
2(Nj+1) · 0.9, j = 1, 2, . . . , n, and the initial tabu radius for the elite point δe = 0.9.

Step 2. (Surface construction) Construct a RBF response surfacemk(x) with known data (xi, fi), i = 1, 2, . . . , k.
Step 3. (Global search) Use the LDSE algorithm (see Section 2) for solving the cheap problem

min
x∈Ω

mk(x)

with the tabu radius δ to get the global minimum of the RBF model x∗. Generate s low simplex reflection points xlr
and (g − s − 1) K -far random points xlK with elite tabu radius δe as mentioned above.

Step 4. (Target evaluation) Calculate the target function value at the g promising points obtained in step 3 and update the
best vector and its target value (x∗, f ∗) if f (xk+l) < f ∗, l = 1, 2, . . . , g .

Step 5. (Stop checking) If k ≥ K , stop and output the best vector x∗ and its target value f ∗. Otherwise, set k := k+ g , update
the tabu list T = {xi| i = 1, 2, . . . , k}, update the general tabu radius δ, where δj =

1
2(Nj+1) · 0.9 ·


1 −

k−p
K−p


, j =

1, 2, . . . , n, and the elite tabu radius δe = 0.9 ∗ cos

2 ·

k−p
K−p


, and return to step 2.

In contrast to the original LDSE described in Section 2, LDSEE uses the RBF response surfaces to locate the minimum of
the target function and requires that every new generated individual must keep a dynamic distance away from the points
in the tabu list.

5. Numerical results

The proposed algorithm LDSEE is implemented in C++. As an integrated evolutionary algorithm, LDSEE is self-contained.
It does not rely on other GO algorithms and is very easy to use. To test the performance of LDSEE, we choose a set of box-
constrainedmultimodal functions (see Table 1) for performing our numerical experiments. Most of these functions (the last
five) are from [16], and frequently cited for testing the performance of expensive optimization algorithms [6,10,12]. The first
one-dimensional function (1D) is defined as f (x) = −(((3 ∗ x − 1) ∗ sin x − 2) ∗ cos x − 1). The second function (Peaks) is
the logo function of Matlab (a popular numerical computing programming language, developed by MathWorks). The third
function (2D Six-hump camel back) is a multimodal function frequently used to test GO algorithms [3]. In Table 1, the test
function name, its abbreviation, dimension, domain, and the number of local minima are denoted as func.name, abbr, dim,
domain, no.min respectively. As described in [10], these functions are not really costly to evaluate, but their multimodal
property is similar to those of the real world costly functions. Therefore, the performance on these test functions is expected
to mimic the performance on the real world costly functions.

In our numerical experiments, uniform inner grid points are used as initial points. For example, if we consider a
function within [0, 1] × [−1, 0] and we want to seed two sample points in each direction, there will be four initial points
(0.333, −0.333), (0.333, −0.666), (0.666, −0.333) and (0.666, −0.666). Note that the number of inner grid points will be
quite large for high dimensional problems. To avoid unnecessary sampling, an experimental design method such as Latin
Hypercube [17] or Uniform Design [18] might be applied. However, in our experience, too few initial points might result in
unreliable results.

The control parameters of LDSEE and the performances are listed in Table 2, where the function name abbreviation, the
number of initial points, the number of search points, the actual global minimum, the minimum obtained, and the relative
residue are denoted as func, no.ini, no.sch, act.min, obt.min and rel.res respectively. The control parameters of the global
search part are set as follows. The scaling factors are α = 1.0, β = 0.333. The number of CPUs is g = 1; thus s = 0. The
population size is N = 50 and the maximum number of generations is M = 200. N and M are set large enough to ensure
that the global search is reliable. It can be seen from Table 2 that the results are very encouraging.
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Table 2
Settings and performances of the LDSEE algorithm.

func no.ini no.sch act.min obt.min rel.res

1D 4 10 −6.80484 −6.80484 0.00002
PK 4 10 −0.6551 −0.6542 0.14
CB 4 10 −1.031 −1.027 0.39
BR 4 10 0.398 0.399 0.16
GP 9 20 3.0 3.0 0.0001
H3 8 20 −3.862782 −3.82629 0.94
S10 16 40 −10.5364 −10.4514 0.81
H6 64 30 −3.322368 −3.32143 0.028

Table 3
Number of function evaluations needed to achieve a function value with
relative error less than 1% for different expensive optimization algorithms.

func DIRECT RBF-G CORS-RBF(SP1) CORS-RBF(SP2) LDSEE

BR 63 44 34 40 14
GP 101 63 49 64 29
H3 83 43 25 61 28
S10 97 51 51 64 56
H6 213 112 108 104 94

Table 4
Number of function evaluations needed to achieve a
function valuewith relative error less than 0.1% for PSO, DE,
LDSE and LDSEE on the Six-hump camel back (CB) function.

Algorithm PSO DE LDSE LDSEE

no.eval 639 210 187 14

To compare with other existing expensive optimization algorithms, we cite the results from [10]. The comparison results
are listed in Table 3, where DIRECT is presented in [6], and RBF-G is presented in [11]. The best result for each test function
is marked in bold. It is shown that LDSEE performs the best on three out of five functions. For the other two functions
(H3 and S10), the performance of LDSEE is very close to the best. Note that we use a preset number of search points in
LDSEE; thus the relative error obtained might be much less than 1% (e.g., for GP and H6). If we stop at 1%, the required
number of function evaluations might be smaller. On the basis of these results, we conclude that LDSEE is a competitive
alternative for expensive optimization problems.

To help give readers a better understanding of the difference between the expensive optimization algorithms and the
general (for cheap functions) GO algorithms, we give the number of function evaluations needed to achieve a function
value with relative error less than 0.1% for different algorithms in Table 4. We can see that LDSEE needs far fewer function
evaluations than LDSE, DE and PSO. This means that LDSEE works much better if the objective function is costly to evaluate.
However this doesNOTmean that LDSEE is better than LDSE, DE or PSO in general cases. In fact, these algorithms are designed
for different kinds of problems. LDSEE is designed for expensive optimization problems while the others are for general GO.
If the objective is cheap to evaluate, LDSEE might consume much more CPU time and memory.

6. Conclusion

We have presented a new algorithm named the low dimensional simplex evolution extension (LDSEE) for expensive
optimization problems. LDSEE integrates the radial basis function (RBF) interpolation and tabu search with an efficient
evolutionary algorithm, low dimensional simplex evolution (LDSE). LDSEE is inherently parallel and very easy to use. As an
integrated algorithm, LDSEE can keep a good balance between the model approximation and the global search. As a self-
contained algorithm, it does not rely on other GO algorithms. Numerical results indicate that it is a very promising algorithm.

In practical applications of LDSEE, parallelization implementation is very important for both the global search process
and the costly function evaluations.Meanwhile, implicit constraint handling is another problem to be concernedwith. These
topics are left for our future research.
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