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Abstract. Molecular motion in turbulence is a major fundamental and engineering problem, and the classical particle 
approaches are difficult to solve it because of a wide separation of temporal and spatial scales between thermal motion 
and turbulent fluctuation. A hybrid method named as tracer molecules in continuum (TMIC) has been proposed to 
address the issues. Using the TMIC method, molecular motion in isotropic turbulence was investigated, and the Reynolds 
number based on the Taylor micro-scale was about 68. The TMIC calculation shows that tracer molecules are dominated 
by the thermal motion when time is comparable to the mean collision time, and by the turbulent fluctuation when time is 
comparable to the integral time scale of turbulence. Between the two time scales, a mixed mode prevails for which both 
thermal motion and turbulent fluctuation are important. The corresponding turbulent diffusion and viscosity coefficients 
obtained by TMIC are about 1.2  and , respectively, two orders larger than those due to 
thermal motion 

3 2 110 secm− −× 3 27.5 10 secNm− −×

Keywords: isotropic turbulence, tracer molecule, TMIC, DNS, DSMC 
PACS: 51.10.+y, 47.27.Gs 

I. INTRODUCTION 

Turbulent flows prevail in industrial processes and natural environment that greatly enhances the mass, 
momentum and energy transport of molecules. Richard Feynman describes turbulence as "the most important 
unsolved problem of classical physics." Compared to enormous studies on turbulence from the continuum viewpoint, 
the counterpart at molecular level was much less. The latter is straightforward in principle using particle approaches 
such as the molecular dynamics (MD) method or the direct simulation Monte Carlo (DSMC) method, but it is not so 
easy in practice. A big difficulty arises from a wide separation of temporal and spatial scales between molecules and 
turbulences. It is extremely time-consuming for the particle approaches to resolve turbulent flows directly with the 
mean free path ( mλ ) and mean collision time ( cτ ). Even for a simplest case, i.e. homogeneous isotropic turbulence at 
relatively low Reynolds numbers, the MD or DSMC simulation is beyond the capabilities of current supercomputers. 

A hybrid method named as tracer molecules in continuum (TMIC) is proposed to solve the kind of issues. For 
molecular motion in isotropic turbulence interested here, the direct numerical simulation (DNS) method is firstly 
employed to solve the turbulent flow field. Then a number of tracer molecules are put in the computational domain 
of DNS and tracked. When a tracer molecule moves into a cell of DNS, the number density of its surrounding 
molecules can be obtained directly from the DNS solution, and their velocities are assigned from a local equilibrium 
distribution whose mean velocity is equal to the turbulent fluctuating velocity in the cell obtained by DNS. For 
gaseous medium, the tracer molecule can collide with its surrounding molecules following a procedure similar to 
DSMC [1]. The features of molecular motion in the turbulence are obtained through statistical analysis of the 
trajectories of the tracer molecules. 

In the present paper, the TMIC method is firstly tested in tracking tracer molecules in a three-dimensional box 
with periodic boundary conditions, and the transport coefficients obtained from the trajectories of the tracer 
molecules based on the Einstein relation and the Green-Kubo formulas are compared to the theoretical values. Next, 
TMIC is applied to isotropic turbulence, and the mean square displacement and velocity variation of tracer 
molecules are compared with the classical theory of turbulence. Further, the diffusion and viscosity coefficients of 
the isotropic turbulence are determined from the trajectories of the tracer molecules. 
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II. TEST OF TMIC 

Consider argon gas in the standard conditions (273K & 1atm) and at rest. The computational domain is a 
periodic box with the side length of 10 mλ , and it is uniformly divided into 20 20 20× × cells. The hard-sphere model 
is employed to describe the interaction between tracer molecules and their surrounding molecules. Initially, forty 
tracer molecules are randomly put in each cell. For each time step of 0.3 cτ , a tracer molecule moves and collides 
with its surrounding molecules assigned from a Maxwellian distribution in the standard state. To test TMIC, the 
transport coefficients are calculated through statistical averaging the trajectories of all the tracer molecules as 
follows. 

According to the Einstein relation [2], the diffusion coefficient is proportional to the mean square displacement 
of tracer molecules when the time interval ct τ>>  , i.e.  
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According to the Green-Kubo formulas [2], the viscosity and thermal conductivity coefficients have the 
following expressions 
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m is the molecular mass, k is the Boltzmann constant, V and T are the volume and temperature of the box, 
respectively. 
        In the TMIC method, the correlation of a tracer molecule before and after a collision is taken into account, but 
the correlation between the tracer molecule and its collision partner is neglected. It can be proven that certain 
correction factors are necessary for TMIC calculating the viscosity and thermal conductivity based on Eqs. (3) and 
(4), and they are equal to 4/3 and 59/32, respectively, under the hard-sphere model. 

As shown in Fig.1, the transport coefficients obtained by TMIC are consistent with the free molecular 
prediction when ct τ<< , and  agree well with the Chapman-Enskog theory [3] when  ct τ>> .  
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FIGURE 1.  Transport coefficients calculated by TMIC. Left: diffusion; center: viscosity; right: thermal conductivity. 

 
TABLE 1.  Comparison of transport coefficients of argon gas in the standard conditions 

TMIC 
Transport coefficient Einstein                           Green-Kubo Chapman-Enskog Theory [3]

D  (m2sec) 51.43 10−×                                 - 51.43 10−×  
μ  (Nm-2sec) -                   52.13 10−×  52.12 10−×  
κ  (WK-1sec-1) -                   21.71 10−×  21.62 10−×  
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III. MOLECULAR MOTION IN ISOTROPIC TURBULENCE 

Consider an isotropic turbulence of argon gas at the standard conditions. The computational domain is a 

periodic box whose side length is 2π , and  is the integral length scale of turbulence. The Reynolds number based 

on  ( Re rmsv ν= ) is 305, where  is the root mean square (rms) velocity of the turbulent fluctuations. The 

turbulent Mach number (

rmsv

t rmsMa v a= ) takes a value of 0.17, and therefore the incompressible Navier-Stokes 

equations are approximately valid that are numerically solved by a pseudospectral method for forced turbulence 

widely used in literatures [4, 5]. The computational domain is uniformly divided into cells for DNS, and the 

time step is set to be , with 

3128
32 10 T−× rmsT v= . 

Four different scales are summarized in Table 2. If we introduce the Knudsen number based on the 

Kolmogorov scale, it is about 0.06. The Reynolds number based on the Taylor microscale ( Re rms tvλ λ ν= ) is about 

68. The cell size and time step of DNS are  and , about 63.9 10 m−× 92.6 10 sec−× 62 mλ  and 16 cτ , respectively. 

TABLE 2. Comparison of four different scales in isotropic turbulence. The integral scales are determined as follows: 
 from the values of rmsv tMa  and the sound speed of argon gas at the standard condition, and Re rmsvν= × . The mean 

energy dissipation rate 3 92.1 10rmsv l m sε 2 3−= = × , and the Taylor microscale 215t rmsvλ ν= ε
4

. The Kolmogorov scales 

are derived from , 3 1/( / )η ν ε= ( )1 4vη εν= , and ( )1 2
ητ ν ε= . The most probable speed of thermal motion 

2mc kT m= , ( )1 2m Tn  and 0.9c m vmτ λ≈  under the hard-sphere model with the collision cross section Tσ . λ σ=

Scale Integral Taylor Kolmogorov Molecule 
Length (m) 56.9 10−×  51.5 10−×  79.5 10−×  86.3 10−×  
Velocity (m/s) 52.5 - 12.6 337 
Time (sec) 61.3 10−×  - 87.5 10−×  101.6 10−×  

3.1 Mean Square Displacement 

The displacement of a tracer molecule in the x direction can be written as 
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The first term on RHS has the following exact solutions in free molecular and continuum limits [2] 
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The second term on RHS arises from turbulent fluctuation has the expressions similar to (7), but the 
characteristic time becomes  instead of T cτ [6] 
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Substitution of (7) and (8) into (6), together with a kinetic relation 23 m cD c τ= 4 , yields 
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Figure 2 shows the mean square displacement of all tracer molecules in isotropic turbulence. It agrees well with 
Eq. (9) at the different time scales.   
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FIGURE 2. Variation of the mean square displacement of tracer molecules in isotropic turbulence ( ) with time.  Re 68λ =

3.2 Mean Square Velocity Variation 

The x component of the mean square thermal velocity variation of a tracer molecule can be written as 
 [ ]2 2 2

0 0 0 0 0 0( ) ( ) ( ) ( ) 2 ( ) ( )x x x x x xc t t c t c t t c t c t t c t+ − = + + − + .  (10) 

In an equilibrium state, we have  
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where ( ) ckT mDζ α τ= = , and 2 3.α =  
Substitution of (11) into (10) yields 
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According to the Kolmogorov’s small-scale similarity theory [6], the x component of the second-order 
autocorrelation function of turbulent fluctuation velocity has an expression as follows 
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where 0A  and  are constants. 0C
The velocity of a tracer molecule due to thermal motion and turbulent fluctuation velocities are assumed 

irrelevant, then we have  
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Figure 3 shows the mean square velocity variation of all tracer molecules in isotropic turbulence. It is in good 
agreement with Eq. (14) when , and 0 5A = 0 2C = . See Ref. [7] for a detailed discussion on the values of 0A  and .  0C

IV. TURBULENT DIFFUSION AND VISCOSITY COEFFICIENTS 

The Einstein relation (1) is not only applied to thermal motion, but also to turbulent fluctuation. Based on the 
relation, the diffusion coefficient of isotropic turbulence can be obtained from the mean square displacement of 
tracer molecules in the long time limit. From Fig.1, it is about 3 2 11.2 10 secm− −×  when . This value is two 
orders larger than the diffusion coefficient due to thermal motion (

Re 68λ =
5 2 11.43 10 secm− −× ). 

The Green-Kubo formula for viscosity is extended to apply for isotropic turbulence. Under the assumption that 
the thermal motion and turbulent fluctuation velocities of tracer molecules to be irrelevant, Eq. (3) is simplified as   
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FIGURE 3.  Variation of the mean square velocity of tracer molecules in isotropic turbulence ( ) with time.  Re 68λ =

 ,m tμ μ μ= +  (15) 
where  

 , ,0
1

1 (0) ( ) , ( ) ,
N

m m m
m ij ij ij i

k
k j kJ J t dt J t mc c

VkT
μ

∞

=

= ∑∫ =  (16) 

 , ,0
1

1 (0) ( ) , ( ) .
N

t t t
t ij ij ij i

k
k j kJ J t dt J t mv v

VkT
μ

∞

=

= ∑∫ =  (17) 

In the present DNS calculation of forced turbulence, the values of kinetic energy are fixed for the wave number 
below 4. Such a common treatment leads to an anisotropic effect on the large scale. Eq. (17) is modified as follows 
to reduce the effect. 
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Figure 4 shows the evolution of viscosity coefficients as well as  in isotropic turbulence. The mean value 
of the viscosity coefficients due to turbulent fluctuations is about  when . It is two orders 
larger than the thermal viscosity coefficient of argon gas ( ). Because of the anisotropy of the forced 
turbulent on the large scale, the turbulent viscosity coefficients are somewhat different in the three directions. 
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FIGURE 4.  Variation of the viscosity coefficients and their correlation functions in isotropic turbulence ( ) with time. Re 68λ =
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V. DISCUSSIONS 

The TMIC method provides a tool to observe and understand molecular motion in turbulence. For an isotropic 
turbulence case studied here, typically shown by Fig. 2 and Eq. (9), tracer molecules are dominated by the thermal 
motion when time is comparable to the mean collision time, and by the turbulent fluctuation when time is 
comparable to the integral time scale of turbulence. Between the two time scales, a mixed mode prevails for which 
both thermal motion and turbulent fluctuation are important.  

Compared with the notion of fluid element widely used in fluid mechanics, molecules are a reality, and the 
interaction between them, at least for gases in a room state, are clearly understood. Figure 2 and Eq. (9) suggest an 
analogy between turbulent fluctuation and thermal motion: the root mean square velocity, integral length and time, 
in the viewpoint of diffusion, correspond to the thermal velocity, mean free path and mean collision time, 
respectively. At least for isotropic turbulence, such an analogy has a true physical meaning.  

More complicated turbulent flows are composed by "eddies" of different sizes. A cascade process was 
suggested by Richardson [8]: “Big whirls have little whirls, which feed on their velocity; little whirls have smaller 
whirls, an so on to the viscosity.” In this way, the energy is passed down from the large scales of the motion to 
smaller scales until reaching a sufficiently small length scale such that the viscosity of the fluid can effectively 
dissipate the kinetic energy into internal energy. To a certain extent, a universal picture for molecular motion in the 
cascade process is equivalent to the closure problem of turbulence in continuum mechanics. This is a very important 
issue that needs more efforts in future. 
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