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4 eriterion for thermo-plastic shear ingtability which inc-
ludes heat transfer is derived from o system of equations descri-
bing plastic deformation, the first law of thermodynamics and
Fourier's heat transfer rule. '

Tt is shown that the criterion is nearly the same as that for
adiabatic case formally and thermal conductivity connects the char-
acteristic time and length of the instability phenomenon. Both
strain-rate hardening and current strain rate control the time dur-
ing which the instability develops fully.

The criterion is applied to three metals: titanium, mild steel
and an aluminium alloy. It is shown that titanium becomes unstable
at small strains and instability develops fully at high rates but
for mild steel this 18 reversed.

I. INTRODUCTION

It is accepted that the flow stress of a metal is dependent
not only on the strain but the strain rate and temperature. Thus
in pure shear the flow stress is written as

T = T(Y,Y.8) | (1.11

shere T is stress, v is strain, v is strain-rate and @ is tempera-

ture. Increasing strain and strain-rate generally increases the
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flow stress whereas increasing the temperature decreases the flow
stress. This temperature effect is complicated by the heat genera-
ted during plastic defdrmation. At Tow strain rates, part of this
heat is dissipated due to conduction. However at high strain.rates
such as occur in projectile impact, punching and machining, heat
conduction is minimized. Under these circumstances catastropic
failure has been observed. Many authors have described adiabatic
shear instability and some have proposed criteria to determine the
‘onset of adiabatic instability. For instance, Culver (1) proposed
the condition =~ = .~ -

it = 0 [1.2]

to deduce this criterion. 'Cu1ver furthér assumed that the consti-
tutive relation of the material had the form

T o= 8y | : [1.3]

and obtained a simple critical strain criterion -

nec,
Yo T w5 . [1.4]
Kl .
. . . .o 3T, _ | 40T
where p is the density, ¢, 1S the specific heat, |5§1 = |(§§),

_ Y5Y
is the thermal softening and K is a constant equalling the quotient
of the heat generated by plastic work and the total p1ast1cvwoﬁkh

Here we start with a system of differential equations descri-
bing mechanical deformation, the first law of thermodynamics and
Fourier's heat transfer rule to derive-the criterion of thermo-
plastic shear instability. It is found that generally the criter-
jon is approximately and formally the same as the above one for
adiabatic conditions. But heat transfer controls the relationship
between the characteristic time and length of the instability phe-
nomenon explicitly, whereas strain-rate hardening and current strain-
rate control the time during which the instability develops fully.

I1. CRITERION

We~confine ourselves to pure shear deformation and make three
initial assumptions: (1) the material is incompressible; (2) it is
possible to neglect elastic energy, since it is small in comparison
with the energy of plastic deformation; (3) the relationship bet-
ween the plastic work wp and the heat q generated by it, is given
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= KW [2.11]
a p
where K= 0.9. In this case, the dynamic equation is

ol 32 32 52
= = e =) + — + 2.2
Y (8x2 BY2) oXay (ox OY) [e.2]

where u is the displacement in the x direction, o, and oy are the

Cauchy normal stresses in the x andy directions respectively and
TS Tyy is the shear stress.

Bearing in mind that there is a thermal effect involved in
plastic deformation, the first law of thermodynamics and Fourier's
heat transfer rule are introduced. The latter is

hy = A8, [2.31]
where hj is the heat flux and )\ is the thermal conductivity. Sub-

stituting eq.[2.1] and [2.3] into the first law of thermodynamics
the energy equation, including heat transfer, is obtained

oW oW
TR =Py - 30, 5 30y L (R 2
K(at U ) pcv(at T ax> A(sz v ayz)e 241

where ¢, is the specific heat.

Supposing that the variation of all the physical variables in
the y direction is much greater than that in the x direction, we
obtain the following system of equations

2 2
pa_\i:_a_T [2.5]
at2  oay?
2
KT? =pCV%%->\é—e
Ay2 [2.6]

We suppose that the material exhibit no strain-rate history
effects, then differentiating [1.1] we obtain

dt = Qdy + Rdy - Pde [2.7]
where Q = (25)- is work-hardening, R = (&) is strain-rate
9v’/Y,0 ? V8,

hardening and P = —(%%) + is thermal softening.

Y'Y
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The perturbation method is used to solve the equations [2.5]
and [2.6]. "Supposing

Y - YO + Y*~-eu’t+1ky [2.8]
, _ : ot+iky
6.= 0, +0, ¢ [2.9]
vo= o1y (Y, * R, - Poe*)eat+1ky | [2.10]

where Yo? éo and t_ are solutions of the equationsv[2.5] and [2.61,

)
v« and 6, are the perturbations and are much smaller than Yo and eo'

respectively, k is the wave number and o is the reciprocal of char-
acteristic time. Substituting [2.8], [2.9] and [2.10] into equa-
tions [2.5] and [2.6], and considering the necessary condition for
a non-trivial solution of an homogeneous system of equations is
that the determinant of the coefficients should be zero, we can
obtain the so-called "spectral equation" connecting k and o

p2c,ad + p[KPOQO + (x+cVR0)k2]q2'
¢ 2 - 2 L .
+ (AR k2 +pc,Q Kt Py k2o + AQuk ,0 [2.11]

The condition A > 0 1is equivalent to the adiabatic case. In
this situation it is simple to verify that if

B = _0o0 > ] ' [2.121

o must have a positive root and therefore shear instability will
occur.

Physically, the inequality [2.12] implies that when the ther-
mal softening caused by plastic work becomes more dominant than
work-hardening, thermo-plastic shear instability must occur.

As far as non-adiabatic conditions are concerned, the situ-
ation is-a bit different. In this case, there is a pair of values
of Oy and km’ at which O is the maximum. In addition to eq.[2.11],

o and km must satisfy the following equation
do,

mo_ g [2.13]
dkpp?
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By differentiation and rearrangement, the following criterion
for positive real o, can be found

B > 1+ /&C [2.74]

and . falls in the interval

0w

-1

0 < &m < T [2.15]
where .
- CVRO 5 . KTOPO . KAYOPO
A pCVQO pcszo
~ QL ¥ A2k 2
6, = T k 2 = [2.161]

Therefore, inequality [2.14] is the criterion of thermo-plastic
shear instability under non-adiabatic conditions.

It is important that the thermal conductivity A and current
strain rate only appear explicitly in dimensionless parameter C in
the criterion [2.14]. If C << 1, both adiabatic and non-adiabatic
deformations would have the same formal criterion B > 1.

But the characteristic time is given by

R * pC
1 0 v
t v — v e e —— [2.17]
m %m Yo Koo
* = a’f . . . .
where RO (5T5§)o' tm is in inverse proportion to the current

strain-rate %0. This might be one of the reasons for the occurrence
of thermo-plastic shear instability at high strain rates. On the
other hand, the thermal conductivity X links the characteristic

time t with the characteristic length & as follows

N

> YL [2.18]

2 2
K k

where the thermal diffusivity a = ——.
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III. APPLICATION OF CRITERiON
The instability criterion
KTOPo

5 1 [3.1]
Py Qo |

B =

connects both state and material parameters. It is always desirable
in practice to rearrange a criterion in a way such that on one side
there are only state parametefs and on the other there are only
material parameters which form a new applicable material constant.
In the case censidered, K/pcy is obviously a material parameter,

but 14, Po and Q, are state parameters and connected with each other
by the constitutive relation of the material concerned. For this
reason, the form B > 1 is not convenient in practice.

Examining [3.1]1 carefully, we can find that dimensionless para-
meter B implicitly contains a strain, because of Q4 = stress/strain.
So, if a definite constitutive relation is introduced into [3.1],
the criterion must contain only one state parameter-strain. Ine-
quality [3.1] means that a state parameter-strain should be greater
than a critical strain.

We suppose no matter how complicated the constitutive relation
is, for a definite material, a characteristic strain exists as a
new material constant. We may suggest that this new material con-
stant becomes a practical criterion for a type of ductile failure
phenomenon. ‘

If the isothermal and rate-constant stress and strain relation
behaves as

T = By ' [3.2]

~ and Po = —(%%)0 = ct, the prescribed practical criterion is
nec,, :
Yoz Y. T R [3.3]
o

w TR [3.4]

Although T = Byn or T =Ty + By etc. are only approximate



THERMO-PLASTIC SHEAR INSTABILITY 283

expressions and affected by strain rate and temperature, in addi-
tion, Py is by no means a material constant, we still can arrive at
a rough estimate about dimensionless parameters, the critical strain
and the characteristic time.

Taking mild steel, titanium and an aluminum alloy as examples
and adapting the data from Culver (1) and others, we obtain the
results listed in Table I.

It can be seen that dimensionless parameter C is very small

and A very large. It implies that the heat transfer can affect the
process beforé the occurrance of instability, but not appear in the
instability criterion explicitly. The time ty roughly characterizes
the interval during which instability can fully develop. From the
table above titanium will become unstable at smaller shear strains
and instability can develop more quickly. On the other hand for
mild steel instability can develop slowly and at high shear strains.
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