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Abstract. With the train speed becoming faster and faster, the aerodynamic drag 
turns to be one of the essential factor that restricts the train speed ascent. However, 
no public literature, abroad or abroad, has dealt with the flow field and 
aerodynamic performance of the train with the speed reaching 500km per hour. In 
this paper, an optimization study is carried out to reduce the aerodynamic drag of 
the high speed train (HST). First of all, a grid-based method is presented to 
parameterize the head shape of the HST, key variables are obtained by sensitivity 
analysis. Next, a response surface is constructed based on computational fluid 
dynamics (CFD) analysis to approximate the relationship of the drag and design 
variables at 500KPH. Finally, the genetic algorithm is used to optimize the head 
shape of the HST.  

Keywords: High speed train, head shape, optimization, RBF, genetic algorithm, 
computational fluid dynamics. 

1   Introduction 

With the increase in speed of railway trains it became a necessity to consider the 
aerodynamic effects of airflow over train including the study of induced drag, 
aerodynamic noise, and wind-related vibrations (Joseph, 2001, Raghunathana, 
2002). The current high speed train can achieve a speed of 420 km per hour (KPH) 
and this speed can have a significant impact on the aerodynamic drag it generates. 
Also, due to Reynolds number being more than 20 million in magnitude, the 
acoustic noise and wind related vibration will become an important issue for 
design and optimization of the modern trains. The aim is to identify the optimal 
shape that induces the least drag and minimizes the acoustic noise while still 
maintaining the structural integrity and other geometric constraints. This type of 
optimization involves multi-functional constraints which require a complex search 
algorithm over a multiple design spaces to find a global maximum or minimum. 
CFD Optimization of a train body can be very expensive and therefore one needs 
to impose restrictions on the number of functional evaluations that can be 
performed. Response surface based design optimization helps in reducing the 
number of real function evaluations necessary to achieve this goal (Alexander, 
2006, Keane, 2007). 
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With the ascent of the train speed, the experts come to the conclusion that the 
higher the velocity is, the more intensive the aerodynamics impact exists on the 
train. As a result, the relative problems on aerodynamics cannot be neglected. 
Davis found that the aerodynamic drag is proportional to the square of the speed. 
Because of varies kinds of limitations of constrains, the track width, the train 
height and so on, the shape of train body hardly changes. Hence, it’s better worth 
designing the reasonable train head for the high speed train to attain the 
destination of reducing the drag. However, there is little literature available 
regarding the head shape optimization. This is the motivation of our work.  

In this study, a three-dimensional head shape optimization work of a HST is 
carried out to reduce aerodynamic drag with the speed of 500KPH. A shape 
increment-based method is brought forward to parameterize the head shape. Initial 
samples to perform Design of Experiments (DOE) were selected by using both 
uniform design and Latin Hypercube Sampling technique. CFD computations 
were employed to calculate the training samples for response surface construction. 
Genetic algorithm was used as the driver of the optimization.  

2   Initial Head Shape and Parameterization Method 

The real shape of the HST is shown in Figure 1. Due to the optimization is aim at 
the head shape, the shape is simplified, shown in Figure 2. The head shape is 
shown in Figure 3.  

 

 

Fig. 1 Real shape of the initial HST 

 

Fig. 2 Simplified shape of the initial HST 

 

Fig. 3 Head shape of the initial HST 
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A shape increment-based method is brought forward to parameterize the head 
shape. The main idea is as follows. First of all, the head of the HST is divided into 
several zones, includes the side, the cowl, the nose, the top and the cab, as shown 
in Figure 3. Next, the head is discretized by structure grids. Based on the parts and 
the grids above, some key points, includes the peak of the cowl, the peak of the 
nose, the joint between the top and the cab, and the maximal curvature point of the 
side. Each point is assigned to control a local zone by given cosine distribution 
function. Thus the whole head can be controlled by the key points above. Here 
seven variables is adopted totally, include the X and Z coordinate value of  the 
peak point of the cowl, the peak of the nose, the joint between the top and the cab, 
and the X coordinate value of the maximal curvature point of the side. Based on 
the values of the key points and the controlled zones, the increment value of each 
grid point of the head can be calculated. Finally, by adding the coordinate values 
of the grid points of the initial shape and the increments, the head shape of the 
HST can be modified. An example of the head shape modification is shown in 
Figure 4. 

 
 

 

Fig. 4 Example of the head shape modification  

3   Optimization Algorithms 

The genetic algorithm is evolved from the simulation of biological evolution. The 
optimization mechanism of genetic algorithm is: From randomly generated initial 
population, adopting a strategy based on survival of fittest to choose the best 
individual as parents; through the reproduction, crossover and mutation of parent 
individuals to produce sub-populations. After many generations of evolution, the 
fitness of the population gradually increased. For a specific optimization problem, 
the design variables that have the maximum fitness are the optimal solution to the 
problem at the end of the optimization procedure. 

As a global optimization method, genetic algorithm can get the global 
optimum, but has a large amount of calculation. In this paper, a response surface 
model was used to instead CFD analysis, so the optimization procedure has a high 
computational efficiency. And the related settings we used are as follows: 
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The population size was 40, double vector coding was adopted, the number of 
elite individuals was 2, the crossover fraction was 0.8, Gaussian mutation method 
was applied, with forward migration, and the generations were 50. The constraint 
condition was normalized boundary of the design variables, [-1;-1;-1;-1;-1;-1;-1], 
[1;1;1;1;1;1;1]. 

Because genetic algorithm is based on principle of probability to search 
extreme point, so the extreme point will be a little different every time. So for 
every response surface model, 20 cases were done by genetic algorithm method. 

4   Response Surface Modeling 

The simulation of 3-D flow field around high-speed train by computational fluid 
dynamics (CFD) is extremely expensive. To optimize the 3-D shape of high-speed 
train, it requires dozens or even hundreds of CFD analysis. In other words, the 
cost of calculation and time-consuming is enormous, and sometimes it is even 
intolerable. In order to efficiently reduce the cost of calculation and time-
consuming, the meta-model was used for the optimization in this paper. Figure 5 
showed the procedure of Response Surface method (meta-model) based 
aerodynamic shape optimization. The meta-model in simple, easy to calculate 
form, is used to replace the original CFD analysis. Besides, the meta-model also 
provides an insight to the optimization problem by visualizing the interactions 
among design variables, objective functions and constrains. 

 

 

Fig. 5 Procedure of RSM based aerodynamic shape optimization 

The establishment of response surface consists of three steeps: 1) Selection of 
design variables. The 3D high-speed train nose shape is parameterized with seven 
design variables. A sensitivity analysis was done before the optimization. As the 
result showed that all of the design variables are sensitive to the object function 
(drag coefficient of the high-speed train), all of the seven ones are chosen for the 
further study. 2) Sampling. Proper Design of Experiments (DOE) is essential for 
constructing of response surface. Both Orthogonal Arrays and Uniform Design 
sampling method are used in this study. To refine sample points near the objective 
zones, an adaptive sampling method is also used in this study. 3) Training and 
verification of the response surface. Radial Basis Function (RBF) network were 
choose to construct the response surface. 

 



Shape Optimization of High-Speed Train with the Speed of 500kph 191
 

 

Fig. 6 Radial Basis Function(RBF) net work 

The RBF network is shown in Figure 6 In this method, a nonlinear transform 
from input layer to hidden layer and linear transform from hidden layer to output 
layer is applied. As the name suggests, the form of these meta-models is a basis 
function dependent on the Euclidean distance between the sampled data point and 
point to be predicted. The model can be expressed mathematically as: 
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Where pw  is a real valued weight, ( )pX Xϕ − is the basis function, pX X−  is 

the Euclidean distance between the points X and
pX  , P is the number of sampling 

points. 

5   Numerical Experiments and Discussions 

(a) Numerical Assumptions 
 

In this paper, we aim to optimize the streamline part of the train head. Our interest 
is to minimize the drag coefficient of the target so as to decrease the total drag 
coefficient of the train, which provides valuable references for the practical 
design. 

In order to decrease the computation time to the affordable condition and to 
focus our attention to the optimization process, the train has been reasonably 
simplified, no bogie, no windshield with streamlined surface. 

In the optimization process, the used grid is UNSTRUCTURED GRID, the 
total cell number is 5,000,000, and the scale of the grid on the train wall is 30mm 
and the far field 60000mm; after the optimization, the validation grid is hybrid 
grid with the first boundary layer thickness is 0.35mm and the total cell number is 
5,000,000. The scale the train far field is 500m×300m×300m. 
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Fig. 7 Original shape 

 

Fig. 8 Schematic of the unstructured grid near the nose shape 

 

Fig. 9 Schematic of the hybrid mesh around the train 

As the velocity of the train is 500km/h, we consider the air compressible ideal 
with the laminar model. The operating pressure is made to 0. The ground velocity 
is 138.89m/s. far field pressure is the standard atmosphere pressure and the 
temperature is 288.15K and the Ma=0.4071. The outlet pressure is 101325pa and 
the total temperature is 297.70K. 
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In the validation process, the computational grid is hybrid mesh and the 
condition is different from the optimization process in the k-Ɛ turbulence model. 

(b) Procedure And Numerical Results 
 

Before the optimization, a sensitivity study was done so as to take an analysis if 
any of the design variables could be ignored. Table 1 showed the results of the 
sensitivity study. It seems that the first, third and seventh design variables are 
more sensitive than the others, besides, the other design variables are also 
sensitive for the objective function (it stands for drag coefficient in this study). As 
a result, all the seven design variables are chosen for the further study. 

Table 1 Results of sensitivity study 

CASE Cd △Cd △i △Cd /△i 
Initial 0.04360 --- --- --- 
LMD1 0.04334 -0.00026 0.003 -0.08667 
LMD2 0.04343 -0.00017 0.010 -0.01700 
LMD3 0.04314 -0.00046 0.008 -0.05750 
LMD4 0.04320 -0.00040 0.035 -0.01143 
LMD5 0.04289 -0.00071 0.025 -0.02840 
LMD6 0.04333 -0.00027 0.020 -0.01350 
LMD7 0.04310 -0.00050 0.0011 -0.45455 

 
An adaptive refine RSM is used in the procedure of optimization. The sample 

points of the RSM are refined twice in this work.  
The first RSM is constructed with 26 sampling point, which is designed by 

uniform design. 20 objective cases of the RSM were found by genetic algorithm 
method, and 5 of them were chosen to be verified by CFD analysis. The CFD results 
are shown in Table 2, and it shows the drag coefficient decreased by 19.36%. 

Table 2 Optimization results with the first RSM 

CASE Cd Optimization rate 

Initial 0.04360  
Opti1_1 0.03519 19.29% 
Opti1_2 0.03516 19.36% 
Opti1_3 0.03610 17.2% 
Opti1_4 0.03563 18.28% 
Opti1_5 0.03785 13.19% 

 
11 additional sample points were used for the second RSM, the sample points 

near the objective zones were refined. Similarly, 20 objective cases of the RSM 
were found by genetic algorithm method, and 5 of them were chosen to be verified 
by CFD analysis. The CFD results are shown in Table 3, and it shows the drag 
coefficient decreased by 21.15%. 
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Table 3 Optimization results with the second RSM 

CASE Cd Optimization rate 
Initial 0.04360  

Opti2_1 0.03490 19.95% 
Opti2_2 0.03438 21.15% 
Opti2_3 0.03486 20.05% 
Opti2_4 0.03468 20.46% 

 
For the third RSM, 6 sample points were added to refine the objective zones. 

The Optimization results are shown in Table 4. It shows the drag coefficient just 
decrease by 0.8% when compares to the case Opti2_3, so it is reasonable to 
believe that twice refined RSM is enough. 

Table 4 Optimization results with the third(final) RSM 

CASE Cd Optimization rate 
Initial 0.04360  
Opti3 0.03434 21.23% 

 
Table 4 shows the final optimization results with 21.23% decreased of the drag 

coefficient. 
 

(c) 5.3 Validation 
 

In this study, we use the hybrid grid to validate the optimization results. from the data 
showed in Table 5, we can get the conclusion that the validation results is linear to the 
optimization results, which represents the optimization process successfully.  

Table 5 Comparison between the laminar model and turbulence model results 

CASE 
Cd_pressure Cd_viscous    Cd  Cd_pressure Cd_viscous Cd 

Laminar model 
(Unstructured grid) 

 k-Ɛ turbulence model 
(Hybrid grid) 

Initial 0.04315 0.00045 0.04360  0.08131 0.02202 0.10332 
Opti1_2 0.03471 0.00045 0.03516  0.05515 0.02197 0.07713 
Opti2_3 0.03389 0.00048 0.03438  0.05392 0.02343 0.07735 
Opti3 0.03385 0.00047 0.03434  0.05255 0.02286 0.07541 

 
In order to provide reference value for the practical design, we get two train 

models with original shape and optimized shape respectively. The Table 6 shows 
the drag coefficient optimization rate of the streamline part both on the head and 
the tail part. By optimization, the streamlined part drag coefficient of the head and 
tail has been decreased by 24.57% and 28.25% respectively. 
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Table 6 Optimization results of the streamline parts 

CASE 
Cd_pressure Cd_viscous    Cd Cd_pressure Cd_viscous Cd 

Streamline part of the head Streamline part of the tail 
Initial 0.07759 0.02209 0.09967 0.06935 0.01831 0.08767 
Opti3 0.05210 0.02308 0.07518 0.04631 0.01658 0.06290 

Optimization rate   24.57%   28.25% 

 
 
Table 7 and Table 8 show the optimization results of the train. It proved the 

optimization of the nose shape is successful and meaningful. Though the 
streamline part of the train is optimized, the drag coefficient of the whole train 
also decreased by 19.79%. The pressure contours of the head and the tail are 
shown in figure 10 and 11.  The pressure distribution in the symmetric plane 
comparisons between the head and the tail are shown in figure 12 and 13. The 
difference of the pressure distribution between the initial shape and the optimized 
one is clearly, especially in the zone around the cowl.  

Table 7 Optimization results of different part  

CASE Cd_head Cd_middle Cd_tail 
Initial 0.14062 0.05976 0.12684 
Opti3 0.11397 0.05340 0.09453 

Optimization rate 18.95% 10.65% 25.48% 

Table 8 Optimization results of the train 

CASE Cd_pressure Cd_viscous Cd 
Initial 0.14954 0.17769 0.32722 
Opti3 0.09971 0.16217 0.26189 

Optimization rate 33.3% 8.7% 19.97% 

 

     

Fig. 10 Pressure contour of the initial (left) and optimized (right) head comparison 
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Fig. 11 Pressure contour of the initial (left) and optimized (right) tail comparison 

 

Fig. 12 Pressure distribution of the head part at symmetric plane 

 

Fig. 13 Pressure distribution of the tail part at symmetric plane  
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6   Conclusions 

An optimization study was conducted to pursue the head shape of HST with lower 
aerodynamic drag than the original one. The head shape is optimized by adopting 
the RSM and GA method. The aerodynamic coefficients are evaluated by using 
simple unstructured grids in the optimization cycle for reducing the computation 
consumption, while an accurate hybrid grid was used to calculate the aerodynamic 
performance of the baseline and the optimized shapes for assuring the 
computational accuracy. It is clear that the drag of the optimized shape is lower 
than the initial one.  
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