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This paper briefly reviews a distinct and efficient numerical approach to quasi-static analysis of nanom-
aterials at finite temperature: molecular statistical thermodynamics (MST), especially its various applica-
tions and efficiency. Different from molecular dynamics (MD) based on Newton equations, MST is a half-
analytical numerical method based on the minimization of Helmholtz free energy. The applications of
MST to compression of nanorods, nanoindentations and tension of nanowires show that MST is capable
of characterizing the nucleation, propagation and interaction of dislocations as well as phase transforma-
tions involved in quasi-static deformations. Not only the mechanical responses and properties calculated
with MST are in agreement with MD simulations, but the size effect of Young’s modulus of zinc oxide
nanowires calculated with MST are also in good consistency with experimental results. All these results
justify the reliability of MST. Furthermore, the efficiency analysis indicates that MST is dramatically faster
than MD for quasi-static processes and is expected to be capable of simulating nanomaterials at larger
scales with high efficiency.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

With high surface-to-volume ratios, nanomaterials always
show unique structures and properties as compared with their
bulk components. It inspires people to investigate those structures
and properties for specific applications. In particular, mechanical
properties involved in the deformation of nanomaterials have at-
tracted more and more attentions recently, because these proper-
ties underlie the external loading conditions under which these
nano-components can work effectively. More especially, both
experimental observations and numerical calculations indicate
that most of the mechanical properties of nanomaterials are size-
dependent [1-5]; while this effect is not so prominent for bulk
ones. This size-dependence effect requires a wider size range of
nano-components to be studied in order to fully understand the
variations of mechanical properties. However, the experimental
measurements are not fully competent for this task so far, and
numerical simulations are expected to play an important role in
predicting the mechanical properties of nanomaterials as comple-
ment. Molecular dynamics (MD) simulations, with the ability to
trace each atom’s movement during microscopic processes, per-
vade the work of elucidating microscopic mechanisms involved
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in nanomaterials. However, the time scale involved in MD is usu-
ally about 102 s, which is determined by the intrinsic time scale
of atomic vibrations. Apparently, it is not suitable for quasi-static
deformation analysis of nanomaterials as in experiments. Further-
more, despite ever-increasing computer power, tremendous com-
putational consumptions of MD restrict it for atomistic
simulations of large-scale samples, which can be measured in
experiments. As a result, many efforts [6-9] have been done to
seek alternatives, which can permit the quasi-static analysis of
nanomaterials with larger spatial dimensions.

One of the remarkable approaches for quasi-static deformation
is the quasi-continuum (QC) method proposed by Tadmor et al. in
1996 [6], which is a mixed continuum and atomistic approach.
However, it is applicable at 0 K, and researchers are trying to ex-
tend this method to finite temperatures [8,10,11] or to take the
temperature effect into account in a dynamic and multi-spatial
scale scheme yet with reduced computational cost [12,13]. Alter-
natively, Hu et al. and Wang et al. proposed the molecular statisti-
cal thermodynamics (MST)/cluster statistical thermodynamics
(CST) as well as the hybrid MST and CST (HMCST) computational
frameworks [14,15]. This group of methods is designed for quasi-
static analyses of micro- or nano-materials with different spatial
scales and representation at finite temperature. Specifically, the
MST is an atomistic representation based method; while the CST
is continuum representation based and the HMCST is a hybrid with
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Table 1
Similarities and differences between MD and MST.
MD MST
Similarities Atomistic or molecular
potential
Atomic or molecule mass
Differences
1. Governing Newton’s equation of motion Formulation of
equation Helmbholtz free energy
2. Independent Time step (t) Average atomic positions
variables ()

Atomic positions (r;) Boltzmann constant (k)
Planck constant (h)
Numerical minimization

of Helmholtz free energy

Finite difference solution of
Newton’s equation of motion

3. Algorithm

atomistic and continuum representation based multi-scale ap-
proach. The core of this group of methods is MST, which is based
on the statistical thermodynamics formulation of Helmholtz free
energy of atoms and its minimization, and MST can also be used
as a separate approach to analysis of nanomaterials at finite tem-
perature. Though both MST and MD are atomistic frameworks,
there are some similarities and distinct differences between them
as listed in Table 1. The characteristics of MST indicate that it is
suitable for quasi-static processes, whereas it is very hard for
MD. Now the MST method has already been applied to investigate
structure transformations and mechanical properties of some
nanomaterials successfully [15-17]; but how well the ability of
MST to capture the microstructure deformation and temperature
effects involved in nanomaterials and how good the efficiency of
MST are should be carefully examined. More importantly, these
examinations can also be used as a reference in choosing between
MST and MD for a specific problem.

In this paper we firstly considered the face-centered-cubic (FCC)
single crystals under specific quasi-static loadings using MST. In
this consideration, the stress-strain curves of compressed nano-
rods and the depth-force curves of nanoindentaion are compared
with that of MD simulations for verification. Dislocation distribu-
tions in the simulated nanosystems excited by external loadings
are also analyzed to see whether MST could characterize the dislo-
cation nucleation, propagation and interactions. The work of Wang
et al. [17] applying MST to zinc oxide (ZnO) nanowires is intro-
duced to exhibit how well MST can handle phase transformations
involved in nanomaterials. Furthermore, Young’s modulus of ZnO
nanowires calculated using MST is combined with experimental
data to analyze the size effects. Characterization of temperature ef-
fects by MST are also examined by analyzing the Young’s modulus
of 2-dimensional (2D) and 3-dimensional (3D) nanorods at differ-
ent temperature. And finally the efficiency of MST with comparison
to MD is discussed in details.

2. Method

Here we consider a solid system in a thermal equilibrium state
containing N atoms at volume V and temperature T. Statistically
the temperature are contributed by the atomic vibrations. In par-
ticular, the atoms in an equilibrium solid system at finite temper-
ature just vibrate around their equilibrium positions and can be
treated as an ensemble of oscillators. In the quasi-harmonic
approximation, all the oscillators are assumed to be harmonic
[18]; and the Helmholtz free energy of the considered system
can be expressed as

N3 . hwja
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In this expression, @ is the total potential energy, k is Boltzmann
constant, h is the reduced Plank constant, wj, (=1, 2, 3) are the
three oscillating frequencies of atom j in Cartesian coordinate sys-
tem. The second term on the right hand side in Eq. (1) accounts
for the contribution of temperature or thermal vibrations of the
atoms to the free energy. In the classical approximation
(how < kT), Eq. (1) can be simplified to
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In practical calculations, @ is determined by summing the inter-
atomic potential over all the atoms in the system, and then the key
point is how to calculate the frequencies. According to lattice
dynamics theory [19,20], the vibration frequencies wj, are the 3N
eigenvalues obtained from the diagonalization of the dynamical
matrix D
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where m; is the mass of atom i and ry, is the oth coordinate of atom
i. Specifically if we rewrite the Eq. (2) by taking the summation in-
side the logarithmic function as product
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then the frequencies can be connected with the dynamic matrix ele-
ments in a more direct form

3N
D = [ 2. (5)
i=1

The term on the left hand is the determinant of the dynamic
matrix. However, for a system containing large amount of atoms,
it is rather difficult to accurately calculate the determinate of a
3N x 3N dimensional dynamic matrix as the computational com-
plexity is proportional to N°. As a matter of fact, the most contribu-
tions of the interaction between atoms to the oscillations come
from the nearest atoms. Hence, to strike a balance between accu-
racy and efficiency like those in references [18,21-23], the local
harmonic approximation is applied. This approximation neglects
the coupling of oscillations of different atoms. As a result, the cal-
culation of the determinate is reduced from a full 3N x 3N dynamic
matrix to N 3 x 3 local dynamic matrices, and the complexity now
is proportional to N. Substituting the frequencies into Eq. (4), the
free energy can be rewritten as
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where D; is the local dynamical matrix of atom i. The Helmholtz free
energy in Eq. (6) is expressed as a function of atomic coordinates.
The equilibrium state of a given system can be obtained by mini-
mizing the free energy with respect to the atomic coordinates and
then thermodynamic properties of the system can be calculated
based on the equilibrium configuration.

3. Numerical simulations and discussions

Compared with elastic properties (Young’s modulus for exam-
ple), some important microstructure rearrangements, such as dis-
location nucleation and propagation, phase transformations, are
always been greatly concerned. A computational method designed
for nanomaterials should have the capability to handle these rear-
rangements properly. To demonstrate the capability of MST meth-
od, we considered FCC single crystal nanosystems and ZnO
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nanowires subjected to various external loadings. The stress—strain
curves, distributions of dislocations, phase transformations and
Young’s modulus involved in these nanosystems are analyzed in
details, and the results obtained with MST simulations are com-
pared with those of MD. Furthermore, the temperature effects
and efficiency of MST are also addressed.

3.1. Analysis of FCC single crystal under mechanical loadings

Firstly, an FCC single crystal nanorod subjected to uniaxial com-
pression loading is studied using MST, since it is also the simple
test to evaluate MST with comparison to MD. The concerned FCC
single crystal is Cu nanorod with lattice constant a=3.615A, as
illustrated in Fig. 1a, and the nanorod is along [1 0 0] crystal orien-
tation with {1 0 0} surfaces. It contains 5155 atoms with dimen-
sional size (Ix, ly and Iz in Fig. 1a) to be 10.8 x 2.2 x 2.2 nm, and
a Lennard-Jones potential [24] with parameters &¢=0.4912 eV
and ¢=2.3276 A is used to model the interatomic interactions.
Atomic layers at the end sides with thickness of 1.0 nm are fixed
to perform displacement-controlled compression loading. The
thickness is a little larger than the cutoff radius of 0.7 nm for the
interaction calculations to ensure that unfixed atoms near the fixed
layers have the same number of interaction neighbor atoms as that
of atoms far away from the fixed layers. The same configuration is
also used to MD simulations for comparison. The concerned system
temperature in both MD and MST simulations is maintained at
100 K. The as-prepared nanorod configuration is relaxed enough
to get rid of initial stresses before compression loading is applied,
and similar relaxed configurations are adopted to both MST and
MD. Since each MST load step relates to a quasi-static state, for
comparison, each load step in MD is followed by a 25 ps relaxation
to make sure that a statistical thermal equilibrium state is reached.

The stress—strain curves obtained with both MST and MD sim-
ulations are illustrated in Fig. 2. For elastic compression stage,
the calculated Yong’s modulus is 330.78 GPa from MST, which is
quite close to 330.19 GPa from MD. The first precipitous drop in
stress of either MST (point B in Fig. 2) or MD results is correspond-
ing to a dislocation slip in the nanorod. The dislocation distribution
of MST result after the slip is demonstrated in Fig. 1b in which
atoms near the dislocations are identified by centro-symmetry
parameters [25]. Apparently, most of the slips predicted by MST
occur along {11 1} planes, which coincides well with the most
favorable slip systems of FCC crystals according to the dislocation
theory. The dislocation distribution observed in MD is similar to
that in MST; however the first slip initiates at the strain of 7.69%
in MST, which is a little bit later than 6.70% predicted by MD

FCC Crystal
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Fig. 1. (a) FCC single crystal nanorod with fixed ends. (b) Dislocation distributions
in the nanorod after compressive loadings, atoms near the dislocations are colored
by centro-symmetry parameters.
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Fig. 2. Compressive stress-strain relations of FCC single crystal nanorod obtained
with MST (open circles) and MD (solid squares) simulations.

results. This delay can be attributed to the different algorithm used
in MD and MST for locating atoms to their equilibrium states. In
MST atomic equilibrium positions are obtained through energy
minimization procedure which is corresponding to a quasi-static
process and the atomic vibration is characterized by oscillator
hypothesis. While in MD, atoms find their equilibrium positions
through a dynamic process and vibrate randomly around them. It
is these random vibrations that may lead to an earlier nucleation
and subsequent propagation of dislocations which, ultimately, re-
sults in stress drops. The mechanical response and details of dislo-
cation are correctly captured by MST in this simple test, yet a more
complex system should be considered to fully examine the capabil-
ity of MST.

Nanoindentation technique is commonly used to measure
mechanical properties of nanomaterials, and it is a rather complex
micro/nano structure transformation process in which contacts of
different materials, nucleation, propagation and interactions of dis-
locations are involved. So it is always selected as a benchmark to
examine new computational methods for micro/nanomaterials
[7,8,15]. Here we considered a nanoindentaion to examine whether
MST method can handle such a complex process. As shown in Fig. 3,
the substrate is FCC single crystal containing 73,800 Cu atoms with
dimensions (Ix x ly x Iz) of 10.8 x 10.8 x 7.2 nm. It is indented by
a triangular pyramid-shaped diamond-structured tip which con-
tains 888 C atoms. The tip has {0 0 1} side surfaces and its height is
about 2.3 nm. The top surface of the substrate is (0 0 1) crystal plane

ZI Y [100]

s
P
==

; 'J?f- Diamond Tip
g FCC Substrate

X
* g '
e o

>
\U@
o

Fig. 3. An FCC single crystal substrate indented by a diamond-structured tip.
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and the other two side surfacesare(1 0 0)and (0 1 0) planes, respec-
tively. The top surface is traction free and the bottom layers of the
substrate with thickness of 0.8 nm are fixed. Periodic boundary con-
ditions are imposed against the side surfaces to approximate a nano-
film with infinite width. Interatomic interaction of the substrate is
the same as that of the nanarod discussed previously. The atomic
type of the tip is different from that of the substrate, and interactions
between tip and substrate atoms are described by a Morse potential
[26] with parameters Dy = 0.087 eV, oo = 5.14 A~' and ry = 2.05 A. We
assume that the tip is rigid or relative motion of the tip atoms is pro-
hibited during indentation. Again MD simulations are performed to
the same system for comparison. The whole configuration is relaxed
enough before indentation and the temperature is maintained at
100 K. The tip force curves obtained with both MST and MD simula-
tions are plotted against indentation depth in Fig. 4. In both simula-
tions, the tip forces are calculated by directly adding all the
interaction acting on the tip atoms along the indenting direction.
As expected, the two curves coincides with each other very well in
either loading (A — B — C) or unloading (C —» D — A) stages. Saw-
tooth jumps in the curves are corresponding to dislocation events
such as nucleation, propagation and interactions. Fig. 5 shows the
dislocation distribution at point C, represented by atoms near dislo-
cations colored by their centro-symmetry parameters. Similar to the
simple slips in the previous nanorod test, the main slip systems here
are the {11 1} planes along the [1 1 2] directions. All these results
suggest that the MST method is capable of handling these complex
dislocation processes.

3.2. Phase transformation of ZnO nanowire induced by tensile loading

Besides dislocations, MST is also capable of handling phase
transformations in nanomaterials under loadings. Wang et al.
[27,28] has reported a tensile stress-induced phase transforma-
tion from wurtzite phase to a tetragonal phase of [000 1] ori-
ented ZnO nanowire by making use of MD simulations.
Recently they used MST method to analyze this transformation
as well as mechanical properties of ZnO nanowires with larger
diameters. To validate the MST method, the tensile response of
a nanowire with diameter of 2.0 nm was obtained with MST
simulations and compared with that from MD. As expected, sim-
ilar to the results of MD, the results of MST simulations also
show three-stage stress—strain relations: elastic stretching of
the original wurtzite structure, transformation from wurtzite
phase to a tetragonal phase and elastic stretching of the new
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Fig. 4. The tip force vs. indentation depth curves for FCC single crystal during
indentation and retraction obtained with MST (open circles) and MD (solid
squares), respectively.
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Fig. 5. Dislocation distributions in the substrate after indentation, where atoms
near the dislocations are indicated by their centro-symmetry parameters.

tetragonal phase. Furthermore, the lattice parameters of the
two phases obtained with three different methods: MST, MD
and density functional theory (DFT), are compared with each
other. The results from MST are well consistent with those from
MD and DFT, with errors less than 3%. These comparisons con-
firm that MST can effectively simulate phase transformations of
nanomaterials.

In the study of the size effect on Young’s modulus of ZnO
nanowires, the smallest diameter of nanorods tested experimen-
tally is limited to about 17 nm [3]. Since MST is much faster
than MD (this will be discussed in details in Section 3.4), it gives
us a very good tool to calculate the Young’s modulus of nano-
wires with diameters comparable with experimental samples.
As shown in Fig. 6 (the experimental data are from Ref. [3]),
the Young’s modulus obtained with calculations and experiments
increases as the diameter is decreased. This size enhanced elas-
ticity arises from the skin of several atomic layers where the
bond becomes shorter and stronger [2,29,30]; the elasticity and
strength is proportional to the binding energy density. As the
diameter is decreased, the ratio of the number of surface atoms
to total atoms of the sample increases and eventually the
Young’s modulus is enhanced. For the largest sample with diam-
eter of 23.4 nm in MST simulation, the calculated Young’s mod-
ulus is 210.37 GPa. And for the sample with diameter close to
the smallest sample (about 17.5 nm diameter) tested in experi-
ments, the calculated Young’s modulus is 217.14 GPa which is
in good agreement with the experimentally measured value of
221 GPa. These values calculated from MST provide a very good
reference for analyzing the size effect on Young’'s modulus of
ZnO nanowires.
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Fig. 6. Variation of Young’s modulus of ZnO nanowire with its diameter obtained
with MST calculations and experiments, and the dash-dotted line denotes the
experimentally reported bulk ZnO value of about 140 GPa.
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Fig. 7. Variation of Young’s modulus with temperature obtained with MST and MD
simulations.

3.3. Temperature effects on Young’s modulus

As stated before, temperature effects are taken into account in
MST method by taking the system’s Helmholtz free energy as its
objective function. As a basic part to the new HMCST multi-scale
method, MST should characterize mechanical properties of nanom-
aterials in a normal temperature range effectively. Here 2D and 3D
nanosystems are analyzed to examine the characterization of MST
on temperature effects. The atomic arrangement in the initial 2D
sample is similar to the close-packed or (1 1 1) plane of FCC lattice.
It contains 2460 Cu atoms with dimensional size of 26.6 x 5.1 nm,
and atoms at the left and right ends with thickness of 2.2 nm are
fixed for performing displacement-controlled loadings. The 3D
configuration is the same as that illustrated in Fig. 1. These 2D
and 3D nanosystems are simulated using MD and MST, respec-
tively, and Young’s modulus at the temperature of 100, 300 and
600 K are plotted in Fig. 7. For the 2D case, as temperature in-
creases from 100 to 600 K, the Young’s modulus calculated from
MST decreases from 417.47 to 374.08 GPa. Compared with that
from MD, the errors are 0.91%, 1.45% and 3.97% (as listed in Ta-
ble 2), respectively. For the 3D case, the Young’s modulus are cal-
culated to be 330.78, 320.73 and 298.66 GPa in MST simulations,
and the errors are 0.18%, 5.93% and 8.56% in comparison with
MD, respectively. Both MST and MD predict the reduction of
Young’s modulus in either 2D or 3D systems as the temperature
is increased. Physically, thermal excitation will prolong and weak-
en the bonds throughout the sample which leads to the decrease of
the binding energy density. As a result, a lower modulus is ob-
tained with elevated temperature. The comparison in Table 2 also
shows that the errors between MST and MD increase as tempera-
ture is increased. Perhaps this should be attributed to the local har-
monic approximation applied in MST method. When atoms vibrate
around their equilibrium positions with small displacement, local
harmonic approximation is a good approximation to characterize
these vibrations [18,22]. However, as temperature increases; the

Table 2

Variations of Young’s modulus with temperature.
Dimension 2D 3D
Temperature (K) 100 300 600 100 300 600
MD (GPa) 41371 393.04 359.79 330.19 302.77 275.10
MST (GPa) 417.47 398.74 374.08 330.78 320.73 298.66
Errors (%) 0.91 1.45 3.97 0.18 5.93 8.56

system expands and the average distances between atoms grow.
As a result, atoms would vibrate with greater amplitudes in wider
and gentler energy wells. Consequently, atoms would vibrate in a
more non-harmonic way, so the real system becomes softer than
that described by local harmonic approximation. Nevertheless
MST can still well predict the temperature effects on Young’s mod-
ulus with errors less than 9% at the temperature even close to
600 K.

3.4. Efficiency of MST and MD simulations

Despite ever-increasing computer power, it is still a challenge
for MD to simulate larger systems, like micrometers. So the effi-
ciency is a key point for new computational methods designed
for micro- or nano-materials. Here a series of simulations are per-
formed to compare the efficiency of MST and MD. All the nanorods
simulated in this section have configurations similar to that illus-
trated in Fig. 1 except for the dimensional sizes. The ratio of the
lengths of the unfixed body along x, y and z directions is set to
be 4:1:1 for all these simulated samples. For MST simulations we
considered 6 nanorods with Ix ranging from 18.0 nm to 36.9 nm
(the following nanorods discussed will be denoted by Ix) and with
atoms from 20,507 to 246,103. As comparison, MD calculations are
also carried out with the same size range. All these samples are
compressed in terms of MST and MD methods, and the CPU con-
sumptions are recorded at each load step for the analysis. In this
work, the MD simulations are performed using the LAMMPS code
which is an open source and commonly used MD simulation pack-
age distributed by Sandia National Laboratories [31], and the MST
package is developed by the authors (the MST package has been
registered in the Copyright Protection Center of China with regis-
tration No. 2011SR003778. This package is free and will be avail-
able online in the future). All these simulations are performed on
the same hardware environment with a single Intel® Core™ 2
Duo CPU E6750.

The time consumptions per load step by MST simulation for the
nanorod of 31.1 nm are plotted in Fig. 8, and this is also the typical
time consumption pattern of MST. It is noticeable that the first step
(point A in Fig. 8) consumes much more time than the other steps
at the earlier stage. Actually, the first step is corresponding to the
relaxation of the initial configuration. Since the initial configura-
tion is truncated from a perfect bulk FCC crystal, atoms near the
free surfaces after truncation are far away from their actual equi-
librium positions. However, in the following elastic compression

CPU Time (h)

0 5 10 15

20 25 30 35 40
Load Step

Fig. 8. CPU time consumptions at each loading step in MST simulation of FCC single
crystal nanorod.
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steps in which a little bit of strain is applied to the nanorod, atoms
are not quite far away from their target positions after the previous
minimization steps. Therefore, it takes less time for MST to relocate
atoms in normal elastic loading steps than the first step. The two
significantly higher bars at the 34th and 37th step in Fig. 8 (point
B and C) are corresponding to large scale dislocation slips in the
nanorod, and MST also spends more time to find the new equilib-
rium states under these loading conditions. Fig. 9 shows the time
consumptions by MD and MST against the sample size (the total
of atoms). Apparently, both MD and MST results show a linear rela-
tionship between the total CPU time and the sample size, and most
importantly, in this comparison, the MST is about eight times faster
than MD, suggesting its advantages for larger problems under qua-
si-static loadings at finite temperatures. It should be pointed out
that the strain rate in the MD simulation is 1.25 x 10° s~!, which
is much higher than real quasi-static loading rate. Normally the
efficiency of MD simulation is linear proportional to the strain rate.
This means, even if we set the strain rate in MD be 1.25 x 10°s™!
(still much higher than real quasi-static process), the efficiency of
MST would be about 80 times higher than that of MD.

In fact, there are two key factors that may affect the efficiency of
MST relative to that of MD. The first one is the type of the potential
used to model the interatomic interactions. For the Lennard-Jones
potential, the time consumption in either MD or MST simulations
is proportional to the total of atoms N of the system as discussed
before. However, this is not the case for Buckingham-type potential
that is commonly used to model ionic and some covalent solids,
like ZnO. Besides short-range interactions between atoms, long-
range Coulomb interactions are also involved between cations
and anions. The calculations of the long-range Coulomb interac-
tions are always carried out using the Ewald sum scheme, which
makes the computational consumption growing as N*2. Wang
et al. [17] carefully compared the efficiency of MST with that of
MD for a nanowire with diameter of 2.0 nm using 32 processors
on an Itanium® 2 based parallel cluster in their work (see
Fig. 10). The result turns out that the efficiency of MST is approxi-
mately 60 times higher than that of MD for the same problem. It is
worth noting in Fig. 10 that MST spends more time at the 44th step
to find a new equilibrium state for the phase transformation from
waurtzite to tetragonal structure. The other factor affecting the effi-
ciency comparison is the loading rate used in MD simulations. As
stated before, each loading step in MST simulations is a quasi-static
process, while it is dynamic in MD. Since the time scale in MD sim-
ulation is governed by the intrinsic atomic oscillations (like
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Fig. 9. CPU time consumptions in MD and MST simulations against the computa-
tional scale (the total of atoms). In this comparison, the MST is about eight times
faster than MD.
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Fig. 10. Comparison of CPU time consumption in MD and MST simulations of ZnO
nanowire under tensile loading. MST spends much more time at the 44th load step
to handle the phase transformation event.

10713s), it is hard to simulate a real quasi-static process (even in
a few seconds) by making use of MD. Practically, in MD simulations
quasi-static loading processes are always approximated by equili-
brating the atomic system for a relatively long time (1072 s for
example), yet the rate would still be at the order of 10°s~! even
for a negligible small strain 107°. Above all for a specific quasi-
static problem, the more equilibration time steps are required for
MD simulation, the more advantages in efficiency MST will bring us.

4. Summary

In this work we present a distinct and efficient numerical ap-
proach to quasi-static analysis of nanomaterials at finite tempera-
ture, the MST method. Theoretically, MST is used to analyze the
quasi-static mechanical response of nanomaterials by minimizing
its Helmholtz free energy, which is expressed as a function of the
coordinates of all atoms in the system. In addition, temperature ef-
fects are taken into account in MST by evaluating the thermal
vibrations with local harmonic approximation. Hence, this method
greatly releases the restriction of time scale involved in molecular
simulations, like ps in MD. In the analysis of single FCC crystals,
like nanorods under uniaxial loadings and nanoindentations, both
loading responses and dislocation distributions obtained with MST
simulations agree quite well with that of MD simulations. In
particular, the application to ZnO nanowires with long range inter-
action indicates that MST is capable of identifying the wurtzite-to-
tetragonal phase transformation originally predicted by MD and
DFT simulations. Furthermore, the Young’s modulus of ZnO nano-
wires calculated with MST is in good agreement with experimen-
tally measured values, this provides a useful reference for the
analysis of size effects in nanomaterials. The calculations of
Young’s modulus of both 2D and 3D FCC nanosystems at different
temperatures verify that temperature effects on the mechanical
properties have been effectively introduced into MST method.
More importantly, MST has a big advantage over MD in dealing
with quasi-static problems. For the Lennard-Jones potential, CPU
time consumptions in MST simulations show linear proportional
to the size of the simulation system. For Buckingham-type poten-
tial, MST can be up to 60 times faster than MD calculations, there-
fore, potentially allowing larger size systems to be analyzed with
MST. Since MST is an atomic simulation method in terms of free
energy minimization, it can be seamlessly coupled with a quasi-
continuum program, CST, in terms of the same free energy and
then they form a new multi-scale method, the HMCST method
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[15]. It is expected that the MST method combined with HMCST
methods could handle more quasi-static problems at finite temper-
ature with even larger systems properly up to several micrometers
in the future.
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