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We have examined the commonly used Brenner potentials in the context of
the thermodynamic properties of diamond. A simple optimized Brenner
potential is proposed that provides very good predictions of the thermo-
dynamic properties of diamond. It is shown that, compared to the
experimental data, the lattice wave theory of molecular dynamics (LWT)
with this optimized Brenner potential can accurately predict the temper-
ature dependence of specific heat, lattice constant, Grüneisen parameters
and coefficient of thermal expansion (CTE) of diamond.

Keywords: lattice wave theory; thermodynamic properties;
optimized Brenner potential; diamond; finite temperature

1. Introduction

There has been a surge of interest in efforts to account for the effects of Enite
temperature in multiscale methods and atomistic-based continuum theories. To
achieve this goal, several models, such as local harmonic model (LHM), local
quasiharmonic model (LQHM), quasiharmonic model in real space (QHM) and
quasiharmonic model in the reciprocal space or the k-space (QHMK), can be used.

The quasicontinuum (QC) method proposed by Tadmor et al. [1,2] is a mixed
continuum and atomistic approach, which signiEcantly reduces the total number of
degrees of freedom and deals with only the mechanical response of crystalline
materials at zero temperature. To accurately predict the mechanical behavior of
nanosystems, it is necessary to take into account the effect of Enite temperature. With
LHM, the QC approach has been extended to deal with Enite-temperature solid
systems [3–5]. In [3,4], a QC Monte Carlo (QCMC) method and a QC free energy
minimization (QCFEM) method were proposed to study equilibrium properties of
defects at Enite temperature. Arroyo and Belytschko [6], Zhang et al. [7–10] and Jiang
et al. [11] have proposed nanoscale continuum theories for carbon nanotubes based on
interatomic potentials for carbon. Based on the local harmonic approximation [12],
Jiang et al. [13] established a Enite-temperature continuum theory directly from the
interatomic potential. The interatomic potential is incorporated into the continuum
analysis via the constitutivemodel and the effect of Enite temperature is also taken into
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account. Such an approach has the advantage of accounting for the Enite temperature
effect but avoiding the use of molecular dynamics or Monte Carlo simulation, which
are computationally intensive and not suitable for large-scale problems. Zhao et al.
[14] studied the bulk thermodynamic properties of crystalline silicon using three
quasiharmonic models with the Tersoff interatomic potential: QHM, QHMK and
LQHM. QHMKwas recommended for its low computational cost and high accuracy.

With the development of these multiscale methods and atomistic-based contin-
uum theories at finite temperature, multi-body potentials are being used to study the
thermodynamic and mechanic properties of covalently bonded systems, and there is
no doubt that an accurate interatomic potential is the crucial ingredient for obtaining
meaningful properties [15]. A successful method for treating covalent bonding
interactions in computation is the Tersoff-type potential [16,17]. The Tersoff model,
in comparison with traditional molecular mechanics force Eelds [18–25], allows for
the formation and dissociation of covalent chemical bonds during a simulation.
Multi-body terms reFecting the local coordination environment of each atom are
used to modify the strength of more conventional pairwise terms [26]. One
particularly successful example of Tersoff potential is the Brenner potential, which is
developed by Brenner [27–29]. This model has re-parameterized the Tersoff potential
and added nonlocal terms to properly account for the bond modification induced by
a change of bonding of neighboring atoms [30]. However, since the parameters of the
Tersoff and Brenner potentials are fitted by a little experimental data, such as
binding energy, lattice constant, etc, neither of them can accurately predict the
thermodynamic properties of carbon based structures.

In this paper, the lattice wave theory of molecular dynamics [31] (LWT) is used to
study the thermodynamic properties of diamond. A simple optimized Brenner
potential with optimized parameter sets is proposed. The present calculation results
for thermodynamic properties of diamond have found very good agreements with
experimental data, which can illustrate the validity of this theory and also the
optimized Brenner potential.

This paper is divided into seven sections. First, we will review the Brenner
potential in Section 2. Then the LWT will be briefly introduced in Section 3.
In Section 4, LWT is specified for diamond, and parameter optimization for Brenner
potential will be given in Section 5. In Section 6 the calculation results for the
thermodynamics properties of diamond, including specific heat, the coefficient of
thermal expansion (CTE), lattice constant and Grüneisen parameters, are presented
and compared with experimental data.

2. Brenner potential

The total potential energy, Utot, of a system of N atoms is given by

Utot ¼
1

2

X
i

X
j6¼i

Vij, ð1Þ

where Vij is the interatomic potential energy that is stored in the bond between atoms
i and j. In Brenner potential [27] for carbon, Vij takes the form

Vij ¼ VRðrijÞ � �BijVAðrijÞ: ð2Þ
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where rij is the bond length or the distance between atoms i and j, VR(r) and VA(r) are

pair-additive repulsive and attractive interactions, respectively,

Vij ¼ VRðrijÞ � �BijVAðrijÞ ð3Þ

and

VAðrÞ ¼
DðeÞS

S� 1
e�

ffiffiffiffiffiffi
2=S
p

�½r�RðeÞ�fCðrÞ: ð4Þ

fC is merely a smooth cut-off function having the piecewise form

fCðrÞ ¼

1 r5Rð1Þ

1

2
1þ cos

�ðr� Rð1ÞÞ

Rð2Þ � Rð1Þ

� �� �
Rð1Þ5 r5Rð2Þ

0 r4Rð2Þ

8>><
>>: : ð5Þ

The factor �Bij in Equation (2) can be expressed as

�Bij ¼
1

2
ðBij þ BjiÞ Bij ¼ 1þ

X
kð6¼i,j Þ

Gð�ijkÞ fcðrikÞ

" #��t
; ð6Þ

where cos �ijk ¼ ðr
2
ij þ r2ik � r2jkÞ=ð2rijrikÞ is the angle between carbon bonds i� j and

i� k; the function G takes the form

Gð�Þ ¼ a0 1þ
c20
d20
�

c20
d20 þ ð1þ cos �Þ2

" #
ð7Þ

where a0 ¼ 0:00020813, c0 ¼ 330, d0 ¼ 3:5, and other parameters mentioned above

can be found in [27] (DðeÞ ¼ 6:000 eV, S ¼ 1:22, � ¼ 21 nm�1, RðeÞ ¼ 0:1390 nm,

�t ¼ 0:5, Rð1Þ ¼ 0:17 nm, Rð2Þ ¼ 0:2 nm).
The state of equilibrium is determined by minimizing the total potential energy in

Equation (1) with respect to atom positions.

@Utot

@ri
¼ 0: ð8Þ

Using the chain rule, we have

fi ¼ �
@Utot

@ri
¼ �

X
j2 �i

@Utot

@rij

@rij
@ri
¼
X
j2 �i

@Utot

@rij
eij

eij ¼
rij

rij
, i ¼ 1, . . . ,N

ð9Þ

where �i represents the set of all atoms interact with the i atom, and N is the total

atomic number.
Letting fij ¼

@Utot

@rij
eij ¼ fijeij fij ¼

@Utot

@rij
we have

fi ¼
X
j2�i

fij ¼ 0 ð10Þ

where fij can be considered the bond force between atoms i and j.
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3. Lattice wave theory of molecular dynamics

As discussed by Tang et al. [14,32], the size of the force constant matrix in the
quasi-harmonic (QHM) approach is 3N� 3N, while the local quasi-harmonic
(LQHM) approach reduces the size of the force constant matrix to 3� 3 by
neglecting all terms in the QHM model that couple vibrations of different atoms.
An alternative approach is the QHMK approach, which preserves the coupling of
the vibrations of different atoms but significantly reduces the size of the force
constant matrix.

In the QHMK approach and the LWT [31], the key idea is that the size of the
force constant matrix can be reduced based on the fact that the vibration of the
atoms in a Bravais lattice has the same magnitude and direction and only differs in
phase [33]. However, instead of the Hamiltonian being expressed in the k-space to
find the dynamical matrix, in LWT approach the dynamical matrix can be obtained
directly by the dynamic equation of the atom surround its equilibrium position.

Following Tang and Wang [31], the dynamic equation of the atom k can be
written as

mk €uk ¼
X
j2�k

Kkj � uj � uk
� �

where Kkj ¼
f rkj
� �
rkj

Iþ f0 rkj
� �
�
f rkj
� �
rkj

	 

ekj � ekj ð11Þ

where �k represents the set of atoms which interact with the k atom, mk is the mass
of atom k, uj is the displacement of atom j due to thermal vibration, I is the
second-order unit tensor, and � is the tensor multiplication operator; rkj is the radius
between the k atom and the j atom, and the direction is from the k atom to the
j atom. ekj is the unit vector.

According to the dynamic theory of crystal lattices [34], the solution of
Equation (11) can be expressed as

uj ¼ Aje
ið!t�rj�qÞ: ð12Þ

For a crystal with dimensions N1a1, N2a2, and N3a3 (a1, a2 and a3 are the three
basis vectors) and the Born–von Karman boundary condition [35], the allowed
values of q are given by

q ¼
k1
N1

b1 þ
k2
N2

b2 þ
k3
N3

b3, k1 ¼ 1, . . . ,N1, k2 ¼ 1, . . . ,N2, k3 ¼ 1, . . . ,N3

ð13Þ

where b1, b2 and b3 are the three basis vectors of the reciprocal lattice.
Substituting Equation (12) into Equation (11), we have

mkAk!
2 ¼

X
j2�k

Kkj � Aje
irjk�q � Ak

� �
k ¼ 1, . . . ,N ð14Þ

where N is the total atomic number and

Kkj ¼ �kjIþ �kjekj � ekj

�kj ¼
fkj
rkj

, �kj ¼
@fkj
@rkj

, �kj ¼ �kj � �kj
ð15Þ
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Equation (14) provides the dynamical matrix of the three-dimensional (3D)
crystal.

4. Calculation results for diamond

4.1. Dynamic equation of diamond

The diamond lattice consists of two interpenetrating fcc Bravais lattices, displaced
along the body diagonal of the cubic cell by one quarter the length of the diagonal.

With the lattice constant of diamond equal to 0.3567 nm, the distance of the first
and second nearest neighbors can be calculated as

r ¼

ffiffiffi
3
p

4
a0 ¼

ffiffiffi
3
p

4
� 0:3567 nm � 0:1544 nm5 0:17 nm,

r0 ¼

ffiffiffi
2
p

2
a0 ¼

ffiffiffi
2
p

2
� 0:3567 nm � 0:2522 nm4 0:2 nm:

For the unit cell of diamond shown in Figure 1, it is obvious from the difference
of their geometrical surroundings that carbon atoms in diamond can be classified
into two types A and B. Since cut-off function is

fCðrÞ ¼

1 r5 0:17
1

2
1þ cos

�ðr� 0:17Þ

0:2� 0:17

� �� �
0:175 r5 0:2

0 r4 0:2

8>><
>>: ,

Figure 1. A unit cell of diamond; there are two types of atoms with different geometrical
surroundings, and here we use different colors to distinguish these two types of atoms.
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one carbon atom interacts with four nearest neighbors, i.e. one type A carbon
interacts with four type B carbons, and vice versa.

The dynamic equations therefore can be expressed by

m€uAi
¼
X4
j¼1

K rAi
Bj

� �
� uBj

� uAi

� �

m€uBi
¼
X4
j¼1

K rBi
Aj

� �
� uAj

� uBi

� � ð16Þ

where A and B represent the type of the atom, and i and j are serial numbers of the
atom.

The solutions of lattice wave are given by

uAi
¼ Aei½!t�rAi�q�

uBi
¼ Bei½!t�rBi�q�

�
ð17Þ

4.2. Characteristic equation

From the diamond lattice shown in Figure 2, the geometrical relation can be
written as

rA0
� rB0

¼
a0
4
ð1,�1,�1Þ;

rA0
� rB1 ¼

a0
4
ð1,�1,�1Þ; rA0

� rB2 ¼
a0
4
ð�1, 1,�1Þ;

rA0
� rB3 ¼

a0
4
ð1, 1, 1Þ; rA0

� rB4 ¼
a0
4
ð�1,�1, 1Þ;

rB0
� rA1 ¼

a0
4
ð�1, 1, 1Þ; rB0

� rA2 ¼
a0
4
ð1,�1, 1Þ;

rB0
� rA3 ¼

a0
4
ð�1,�1,�1Þ; rB0

� rA4 ¼
a0
4
ð1, 1,�1Þ;

ð18Þ

where a0 is the lattice constant.
Substituting Equation (17) into Equation (16), and taking account for the

geometrical relation, we have (for non-deformed or uniform expanding lattice,
�ij ¼ � and �ij ¼ �� �)

4�þ
4

3
� 0 0 �þ

�

3

� �
p

�

3
p1

�

3
p2

0 4�þ
4

3
� 0

�

3
p1 �þ

�

3

� �
p

�

3
p3

0 0 4�þ
4

3
�

�

3
p2

�

3
p3 �þ

�

3

� �
p

�þ
�

3

� �
q

�

3
q1

�

3
q2 4�þ

4

3
� 0 0

�

3
q1 �þ

�

3

� �
q

�

3
q3 0 4�þ

4

3
� 0

�

3
q2

�

3
q3 �þ

�

3

� �
q 0 0 4�þ

4

3
�

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

Ax

Ay

Az

Bx

By

Bz

0
BBBBBBBB@

1
CCCCCCCCA
¼m!2

Ax

Ay

Az

Bx

By

Bz

0
BBBBBBBB@

1
CCCCCCCCA

ð19Þ
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where

p ¼ � ei½
a0
4 ðqx�qy�qzÞ� þ ei½

a0
4 ð�qx�qyþqzÞ� þ ei½

a0
4 ðqxþqyþqzÞ� þ ei½

a0
4 ð�qxþqy�qzÞ�

� �
p1 ¼ � �e

i½
a0
4 ðqx�qy�qzÞ� þ ei½

a0
4 ð�qx�qyþqzÞ� þ ei½

a0
4 ðqxþqyþqzÞ� � ei½

a0
4 ð�qxþqy�qzÞ�

� �
p2 ¼ � �e

i½
a0
4 ðqx�qy�qzÞ� � ei½

a0
4 ð�qx�qyþqzÞ� þ ei½

a0
4 ðqxþqyþqzÞ� þ ei½

a0
4 ð�qxþqy�qzÞ�

� �
p3 ¼ � ei½

a0
4 ðqx�qy�qzÞ� � ei½

a0
4 ð�qx�qyþqzÞ� þ ei½

a0
4 ðqxþqyþqzÞ� � ei½

a0
4 ð�qxþqy�qzÞ�

� �
q¼� ei½

a0
4 ð�qxþqyþqzÞ� þ ei½

a0
4 ðqx�qyþqzÞ� þ ei½

a0
4 ð�qx�qy�qzÞ� þ ei½

a0
4 ðqxþqy�qzÞ�

� �
q1¼� �e

i½
a0
4 ð�qxþqyþqzÞ� � ei½

a0
4 ðqx�qyþqzÞ� þ ei½

a0
4 ð�qx�qy�qzÞ� þ ei½

a0
4 ðqxþqy�qzÞ�

� �
q2¼� �e

i½
a0
4 ð�qxþqyþqzÞ� þ ei½

a0
4 ðqx�qyþqzÞ� þ ei½

a0
4 ð�qx�qy�qzÞ� � ei½

a0
4 ðqxþqy�qzÞ�

� �
q3¼� ei½

a0
4 ð�qxþqyþqzÞ� � ei½

a0
4 ðqx�qyþqzÞ� þ ei½

a0
4 ð�qx�qy�qzÞ� � ei½

a0
4 ðqxþqy�qzÞ�

� �

ð20Þ

where qx, qy, qz are the components of q.

Figure 2. Several atoms which we are interested in are labeled by their type first and serial
number second.
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5. Parameter optimization

Variation of original Brenner potential’s energy and its first-order derivative with

distance are summarized in Figures 3 and 4.
The original Brenner potential can describe the tendency of cohesive energy for

diamond. However, only a little experimental data, such as binding energy and

lattice constant [27], can be used to determine the parameters, which cannot

accurately determine the value of potential energy for different distances. Actually,

the numerical results show that the variation tendency of original Brenner potential

is slightly slow compared to the experimental data, so how to modify the Brenner

potential is an important problem.
Since the thermodynamic properties, such as specific heat, CTE and Grüneisen

parameters, can be predicted quite well based on the correct lattice constant one can

now focus on the calculation of lattice constant. To calculate the lattice constant at

different temperature, we should minimize the Helmholtz free energy A, instead of

the potential energy Utot, i.e.

@A r,Tð Þ

@r
¼ 0: ð21Þ

Since the Helmholtz free energy, A, takes the form [36,37]

A ¼ Uþ kBT
X
j

ln 2 sinh
�h!j

2kBT

	 
� �
, ð22Þ

where kB is the Boltzman constant (1.38� 10�23 J/K), �h is the Planck’s

constant (1.055� 10�34 J s) and !j are the vibration frequencies of the system.

Figure 3. Variation of original Brenner potential energy (per atom) with distance.
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Substituting Equation (22) into Equation (21), we have

@U

@r
� T

@S

@r
¼ 0, ð23Þ

where S ¼ �kB
P

j ln½2 sinhð�h!j=2kBTÞ�. It is obvious that the equilibrium of

potential force and entropy (TS) force (�T@S=@r) determines the lattice constant.
The potential force, which tends to make the lattice constant equal to its original

value, is opposite to the TS force. Thus, the ratio of the potential force @U=@r to

T@S=@r determines the magnitude of the lattice constant. Furthermore, the numerous

results show that the ratio of @U=@r to @2U=@r2 determines the shape of the CTE
curve. Fortunately, the original Brenner potential gives the correct shape of the CTE

curve, and we only need to keep this ratio.
However, there is another thing that needs to be considered. From Equations (19)

and (20), one can clearly see that the squares of the vibration frequencies are

approximately determined by a linear combination of the first-order and
second-order derivative of the potential. Thus, in order to predict the accurate

value of the specific heat, we should adjust the value of this linear combination.
Since the prediction on CTE given by original Brenner potential is remarkably

higher than the experimental data, we change the parameter De in the original
Brenner potential from 6.0 to 9.0. The optimized potential and its first-order

derivative are shown in Figures 5 and 6. Since the value of binding energy at

equilibrium distance should keep unchanged, we can add a constant, C, which equals

to 1.83 eV:

Vij ¼ VRðrijÞ � �BijVAðrijÞ þ C: ð24Þ

As discussed by Jiang et al. [13], with the original Brenner potential there is
discrepancy between calculation and experiment for CTE, which is mainly because

Figure 4. Variation of the first-order derivative of original Brenner potential energy (per
atom) with distance.
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the CTE is directly proportional to the derivative of vibration frequencies d!=dr. It is
recalled from Equation (19) that !2 is determined by the first-order and second-order
derivatives of the interatomic potential. Therefore, d!=dr involves the third-order
derivatives of the potential energy, which may not be accurate since the parameters
in interatomic potentials are usually determined from the energy at the ground state,
its Erst-order derivative (lattice constant) and second-order derivative (elastic
moduli), but not third-order derivative [27,38]. Now, with the first-order derivative
and second-order derivative of optimized Brenner potential, its third-order derivative
is also changed, which enables calculation of CTE to predict the experimental data
quite well.

It is worth noting that the value of the second-order derivative optimized Brenner
potential is 1.5 times higher than the original one, which means the bulk modulus of
the optimized Brenner potential approximately equals to 700GPa. Since the bulk
modulus of diamond and chemical vapor deposition (CVD) diamond is, respectively,
442GPa [39] and 1200GPa [40], 700GPa for the optimized Brenner potential is
acceptable.

6. Thermodynamic properties of diamond

All calculations in this paper are carried on for 10� 10� 10, 1000� 100� 10 and
100� 10� 100 unit cells with periodic boundary conditions. It is shown that, with
different numbers of unit cells being used, the results of thermodynamic properties
are nearly identical. Thus, we just give one calculation curve instead of three in the
following figures.

Figure 5. Variation of the original and optimized potential energy with distance.
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6.1. The specific heat of diamond

The total thermal energy and specific heat were given respectively by [41]

E Tð Þ ¼
XN
q

X6
s¼1

1

2
�h!sðqÞ þ

�h!sðqÞ

e�h!sðqÞ=kBT � 1

	 


CV ¼
dE Tð Þ

dT
¼
XN
q

X6
s¼1

kB
ð�h!sðqÞ=kBTÞ

2e�h!sðqÞ=kBT

ðe�h!sðqÞ=kBT � 1Þ2

	 
 ð25Þ

where q takes N (N is the total primitive cell number) distinct values and

!sðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sðqÞ=m

p
, (s¼ 1, 2, . . . . . . 6), is the frequency of the sth oscillator for a

given q.

Figure 6. Variation of the original and optimized potential energy’s first-order derivative with
distance.
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In Figure 7, it can be seen that the result from the LWT [31] model with

optimized Brenner potential is in good agreement with experimental data [42] over

the entire range of temperature.

6.2. Lattice constant

We computed the zero pressure equilibrium distance r0ðT Þ at various temperatures

(0–2000K) by using the optimized Brenner potential. The equilibrium distance r0ðT Þ

is obtained when the Helmholtz free energy A is minimized with respect to r0ðT Þ, i.e.

@A

@r
¼ 0: ð26Þ

The result (Figure 8) obtained from the optimized Brenner potential agrees quite

well with experimental data.

6.3. CTE of diamond

The coefficient of thermal expansion (CTE), �, is deEned by

� ¼
1

r0 293Kð Þ

dr0 Tð Þ

dT
, ð27Þ

where r0ðT Þ is the bond length after thermal expansion at temperature T.

Figure 7. Temperature dependence of the specific heat, CV, for diamond. The upper and lower
solid lines are the calculation results of the lattice wave theory [31] (LWT) based on original
and optimized Brenner potential, respectively; the experimental data [42] and the calculation
result by Jiang et al. [13] with original Brenner potential are also shown for comparison.
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As mentioned above, a correct lattice constant leads to an accurate prediction for
CTE. Here the calculation result (in Figure 9) obtained from LWT theory with
optimized Brenner potential predicts the CTE quite well over the entire range of
temperature.

6.4. Grüneisen parameters

Since the specific heat and CTE are obtained, Grüneisen’s rule can be used to
calculate the Grüneisen parameters at different temperature, i.e.

� ¼
�

K0

CV

V
) � ¼ K0V

�

CV
, ð28Þ

where K0 is the bulk modulus, V is the volume, � is the CTE and CV is the specific
heat. The comparison between the computed Grüneisen parameters and the
experimental data is shown in Figure 10.

With accurate prediction for both specific heat and CTE, one can expect that
the calculation result of Grüneisen parameter is in good agreement with the
experimental data.

7. Conclusion

In this paper, the lattice wave theory of molecular dynamics [31] (LWT) is used to
calculate the thermodynamics properties of diamond, such as specific heat, CTE,

Figure 8. Variation of the lattice constant with temperature predicted by LWT [31] with
original and optimized Brenner potential, and the experimental data [43].
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lattice constant and Grüneisen parameters. Since the variation tendency of the

original Brenner potential is a slightly slow, a simple optimized Brenner potential is

proposed and has been demonstrated to improve the prediction remarkably. The

calculated thermodynamics properties of diamond have been found to be in very

Figure 10. Variation of the Grüneisen parameters with temperature obtained from original
and optimized Brenner potential (with LWT [31]), and the experimental data of Skinner [44],
Wright [45] and Thewlis and Davey [46].

Figure 9. Variation of the CTE with temperature. The calculation results obtained from LWT
[31] with original and optimized Brenner potential, the experimental data [43] and the
calculation result by Jiang et al. [13] with original Brenner potential.

Philosophical Magazine 513

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

M
ec

ha
ni

cs
] 

at
 1

9:
08

 0
3 

D
ec

em
be

r 
20

12
 



good agreement with the corresponding measured values. This paper shows clearly
that the simple optimized Brenner potential is suitable for diamond. But for other
materials, it can be used only after systematic and careful testing. Meanwhile the
present optimized Brenner potential can be used for the calculation of the mechanical
properties, such as Young’s modulus for diamond, when diamond is subjected to
deformation. Thus, one can expect that the method to optimize parameters for
Brenner potential may provide a reference for the calculation of thermodynamics
properties based on other potentials in different systems.
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