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Analysis and Application of High Resolution Numerical Perturbation Algorithm
for Convective-Diffusion Equation *

GAO Zhi(高智), SHEN Yi-Qing(申义庆)**

LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190

(Received 9 May 2012)
The high resolution numerical perturbation (NP) algorithm is analyzed and tested using various convective-
diffusion equations. The NP algorithm is constructed by splitting the second order central difference schemes of
both convective and diffusion terms of the convective-diffusion equation into upstream and downstream parts,
then the perturbation reconstruction functions of the convective coefficient are determined using the power-series
of grid interval and eliminating the truncated errors of the modified differential equation. The important nature,
i.e. the upwind dominance nature, which is the basis to ensuring that the NP schemes are stable and essentially
oscillation free, is firstly presented and verified. Various numerical cases show that the NP schemes are efficient,
robust, and more accurate than the original second order central scheme.

PACS: 47.11.Bc, 47.10.ad, 02.70.Bf DOI: 10.1088/0256-307X/29/10/104702

A number of numerical methods have been devel-
oped for computational fluid dynamics (CFD). The
second order central difference (2-CD) scheme has the
comprehensive advantages of accuracy, efficiency, sim-
plicity, and maintainability; hence it is regarded as a
good scheme for some CFD applications,[1] for exam-
ple, it is used for the large eddy simulation in the
pressure-based solver in FLUENT. However, the 2-
CD scheme generates spurious oscillations if the solu-
tion contains a large gradient or a discontinuity. How
to overcome this drawback and improve its accuracy
and robustness, without increasing any nodes and the
complexity, is no doubt meaningful and practical. The
numerical perturbation algorithm provides a new ap-
proach to achieve this outcome.

The numerical perturbation algorithm is to cou-
ple fluid dynamics effects with the discretized schemes
of the convective diffusion equation.[2,3] The main
steps of constructing the algorithm are as follows:
the flux and coefficient of the convective derivative
in the mathematical basic schemes (the first order up-
wind scheme, the second order central schemes) are
reconstructed as a power-series of grid intervals; us-
ing the convective-diffusion equation itself, the high-
order fluid mechanics relation is obtained; by eliminat-
ing truncated error terms in the modified differential
equation of the reconstructed scheme, the coefficients
in the power-series are determined and finally the nu-
merical perturbation algorithms are obtained.

Due to its physical preserving idea, and larger
stable range and better accuracy than the original
scheme, the numerical perturbation algorithm was ap-
plied to reconstruct various schemes,[4−6] and formed
the high order perturbation difference scheme[2] and
perturbation finite volume scheme[3,7,8] systems. Re-

cently, based on the second order central difference
scheme, Gao[9] proposed a stable perturbation finite
difference scheme (here it is called the high reso-
lution numerical perturbation (NP) scheme) for the
convective-diffusion equation. First, the second order
difference schemes for both the convective and dif-
fusion terms are split into two parts with upstream
and downstream nodes, respectively, then the numer-
ical perturbation is applied to reconstruct the split
schemes. Numerical examples show that the new
scheme is oscillation free even on coarse grids, and
its errors are greatly less than the second order cen-
tral scheme. In this Letter, the natures of the NP
schemes are analyzed, and various numerical cases are
calculated to verify the high performance of the NP
schemes.

A general convective diffusion equation can be
written as

𝑢
𝜕𝜑

𝜕𝑥
= 𝜇

𝜕2𝜑

𝜕𝑥2
, (1)

where 𝑢, 𝜑 and 𝜇 denote the velocity, the transfer
variable and the diffusion coefficient, respectively. If
the second order central difference schemes are used
to discretize both the convective and diffusion terms
in Eq. (1), the discretized equation is written as

𝑢𝑖

2∆𝑥
(𝜑𝑖+1 − 𝜑𝑖−1) =

𝜇

∆𝑥2
(𝜑𝑖+1 − 2𝜑𝑖 + 𝜑𝑖−1) . (2)

As mentioned previously, the second order central
difference scheme (2) generates an oscillation if the so-
lution contains a large gradient or a discontinuity. The
numerical perturbation algorithm aims at eliminating
the non-physical numerical oscillation and obtaining
a higher accurate solution. For completeness, the nu-
merical perturbation algorithm[9] is briefly introduced.
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First, Eq. (2) is rewritten as[︁ 𝑢𝑖

2∆𝑥
(𝜑𝑖 − 𝜑𝑖−1) +

𝜇

∆𝑥2
(𝜑𝑖 − 𝜑𝑖−1)

]︁
+
[︁ 𝑢𝑖

2∆𝑥
(𝜑𝑖+1 − 𝜑𝑖) −

𝜇

∆𝑥2
(𝜑𝑖+1 − 𝜑𝑖)

]︁
= 0.

(3)

The numerical perturbation scheme is written as[︂
𝑢𝑖𝐺

+
𝑖

2∆𝑥
(𝜑𝑖 − 𝜑𝑖−1) +

𝜇

∆𝑥2
(𝜑𝑖 − 𝜑𝑖−1)

]︂
+

[︂
𝑢𝑖𝐺

−
𝑖

2∆𝑥
(𝜑𝑖+1 − 𝜑𝑖) −

𝜇

∆𝑥2
(𝜑𝑖+1 − 𝜑𝑖)

]︂
= 0.

(4)

The functions 𝐺±
𝑖 is the power series of grid interval

∆𝑥,

𝐺±
𝑖 = 1 +

𝑁∑︁
𝑛=1

𝑎±𝑛 ∆𝑥𝑛. (5)

Using the convective-diffusion equation (1) and freez-
ing the coefficient of the convective term, we can ob-
tain the approximate relation of high order derivatives
of the transfer variable 𝜑 as follows:

𝜕𝑛𝜑

𝜕𝑥𝑛
=

(︂
𝑢𝑖

𝜇

)︂𝑛−1
𝜕𝜑

𝜕𝑥
. (6)

We combined the Taylor series expansion and the
method of undetermined coefficients (here, notice that
the terms of (∆𝑥)−1 and (∆𝑥)0 are eliminated by the
corrected Eq. (4) and the convective-diffusion equation
(2), respectively; 𝐺+

𝑖 and 𝐺−
𝑖 are dependent on the

first and the second parts of (4), respectively), coeffi-
cients 𝑎±𝑛 are obtained as

𝑎±2𝑛 = 0, 𝑛 = 1, 2, . . . ,

𝑎+1 = −𝑎−1 =
1

3!

𝑢𝑖

𝜇
,

𝑎+3 = −𝑎−3 = − 1

3 × 5!

(︂
𝑢𝑖

𝜇

)︂3

,

𝑎+5 = −𝑎−5 =
1

3 × 7!

(︂
𝑢𝑖

𝜇

)︂5

,

𝑎+7 = −𝑎−7 = − 3

5 × 9!

(︂
𝑢𝑖

𝜇

)︂7

, (7)

· · ·

Hence the (2𝑁 + 1)-th order (since 𝑎±2𝑁 = 0) pertur-
bation scheme is obtained by applying

𝐺±(𝑁) = 1 +

2𝑁−1∑︁
𝑛=1

𝑎±𝑛 ∆𝑥𝑛 (8)

in Eq. (4).
In order to analyze the NP algorithm Eqs. (4) and

(8) conveniently, the perturbation function Eq. (8) can

be written as, for example,

𝐺±(4) = 1 ± 1

3!
𝑅Δ𝑥 ∓ 1

3 × 5!
𝑅3

Δ𝑥

± 1

3 × 7!
𝑅5

Δ𝑥 ∓ 3

5 × 9!
𝑅7

Δ𝑥, (9)

where 𝑅Δ𝑥 = 𝑢𝑖Δ𝑥
𝜇 is the Reynolds grid number.

The numerical perturbation scheme of Eqs. (4) and
(9) has both mechanical and mathematical meanings:

(1) Equation (4) shows the clear upwind charac-
teristic of the convective flow by splitting the spatial
discretization into upstream and downstream parts.

(2) The perturbation functions 𝐺±(𝑁) of Eq. (9)
are the polynomials of the Reynolds grid number,
hence, the properties of NP schemes can be studied
by using the Reynolds grid number.

(3) The spatial grid interval, which is the intrin-
sic small parameter in the numerical calculation, is
used as the perturbation parameter to construct the
numerical perturbation schemes.

(4) The accuracy of NP schemes is the discretiza-
tion accuracy of the whole convective diffusion equa-
tion, while the accuracy of traditional difference
schemes is usually the approximate accuracy of the
first-order or second-order derivative in the equation.

1
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0.25

0
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-Rc

Fig. 1. Perturbation function vs Reynolds grid number.

By analyzing, the properties of the perturbation
function 𝐺±(𝑁) are listed as follows:

(1)
1

2
[𝐺+(𝑁) + 𝐺−(𝑁)] = 1;

(2)

{︂
𝐺+(1) > 𝐺−(1), 𝐺+(3) > 𝐺−(3), if 𝑢𝑖 > 0,

𝐺−(1) > 𝐺+(1), 𝐺−(3) > 𝐺+(3), if 𝑢𝑖 < 0;

(3)

{︂
𝐺+(2) > 𝐺−(2), if 0 < 𝑅Δ𝑥 < 𝑅𝑐 (𝑢𝑖 > 0),

𝐺−(2) > 𝐺+(2), if 0 > 𝑅Δ𝑥 > −𝑅𝑐 (𝑢𝑖 < 0).

Here 𝐺±(4) has the same property as 𝐺±(2), ex-
cept that the 𝑅𝑐 is different. 𝑅𝑐 can be regarded as
a critical grid Reynolds number, which is defined as
a positive minimum value to make 𝐺+(𝑁) = 𝐺−(𝑁).
For example, 𝑅𝑐 =

√
60 is solved for 𝐺±(2).

Figure 1 shows the distribution of the perturba-
tion function 𝐺±(𝑁) vs the Reynolds grid number

104702-2
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𝑅Δ𝑥. The above properties indicate that the third-
and seventh-order NP schemes are upwind dominant,
the fifth- and ninth-order NP schemes are condition-
ally upwind dominant in a proper range of 𝑅Δ𝑥. The
property of upwind dominance is the essential nature
of the NP schemes, hence the NP schemes are essen-
tially oscillation free. If 𝐺±(𝑁) ≥ 0 is required, the
form of NP schemes looks like the weighted scheme of
the first order upstream and downstream schemes.

Several cases are calculated to demonstrate the ef-
ficiency, robustness and high order accuracy of the NP
schemes. In this study, the time dependent method is
applied to obtain the steady solution. The fourth or-
der Runge–Kutta method is used for the time march-
ing.
Table 1. The linear convective diffusion equation for 𝑅𝑒 =
1000.

Scheme 𝑁 𝐿∞ error 𝐿∞ order 𝐿1 error 𝐿1 order
2-CD 80 OS

160 OS
320 OS
640 0.8629×10−1 0.1948×10−3

3-NP 80 0.3743 0.7386×10−2

160 0.1479 1.34 0.1083×10−2 2.77
320 0.2996×10−1 2.30 0.1056×10−3 3.36
640 0.3080×10−2 3.28 0.7742×10−5 3.77

5-NP 80 OV
160 OS
320 0.7078×10−2 0.2399×10−4

640 0.1782×10−3 5.31 0.4460×10−6 5.75
7-NP 80 0.8750 0.8639×10−1

160 0.1254 2.80 0.8945×10−3 6.59
320 0.1687×10−2 6.22 0.5771×10−5 7.28
640 0.1080×10−4 7.29 0.2704×10−7 7.74

9-NP 80 OV
160 OS
320 0.4116×10−3 0.1405×10−5

640 0.6611×10−6 9.28 0.1656×10−8 9.73

The linear convective diffusion equation is used as
the first test case and can be written as

𝜕𝑢

𝜕𝑡
+

𝜕𝑢

𝜕𝑥
=

1

𝑅𝑒

𝜕2𝑢

𝜕𝑥2
, 0 ≤ 𝑥 ≤ 1.

The steady state solution is 𝑢(𝑥) = (𝑒𝑅𝑒𝑥 − 1)/(𝑒𝑅𝑒 −
1). The comparison of the third order NP (3-NP) algo-
rithm and the second order central difference scheme
with grid number 𝑁 = 160 is shown in Fig. 2. Near
the large gradient, the second order central scheme
causes dramatic oscillations. The 3-NP scheme is os-
cillation free and agrees well with the exact solution.
Table 1 shows the detailed error comparison of differ-
ent schemes. In this study, OS denotes the oscillatory
solution, OV denotes the overflow happened in the
calculation. It can be seen that, if a large grid inter-
val (means large Reynolds grid number) is used, the
second order central scheme is oscillatory. If 𝑁 = 80
is used, the 𝑅Δ𝑥 equals 12.5, which is larger than 𝑅𝑐

of 𝐺(2) and 𝐺(4), hence the 5-NP and 9-NP schemes

are overflow. If 𝑁 = 160 is used, the 𝑅Δ𝑥 equals to
6.25, which is close to 𝑅𝑐, the 5-NP and 9-NP schemes
are weak upwind dominant and result in a small os-
cillation near the large gradient region. Meanwhile,
with the large Reynolds grid number (for example,
𝑁 = 80), the 7-NP scheme is not necessarily more ac-
curate than the 3-NP scheme. With the grid number
increased, the NP schemes achieve the expected or-
der, for example, the third order, fifth order, seventh
order, and ninth order, respectively.

x

u

Exact

2-CD

3-NP

1

0.5

0

-0.5
0.5 0.6 0.7 0.8 0.9 1.0

Fig. 2. The linear convective diffusion equation for 𝑅𝑒 =
1000.

Table 2. The nonlinear Burgers equation, 𝑅𝑒 = 10.

Scheme 𝑁 𝐿∞ error 𝐿∞ order 𝐿1 error 𝐿1 order
2-CD 80 0.2223×10−2 0.6919×10−3

160 0.5667×10−3 1.97 0.1756×10−3 1.98
320 0.1427×10−3 1.99 0.4404×10−4 2.00
640 0.3517×10−4 2.02 0.1080×10−4 2.03

3-NP 80 0.9514×10−3 0.2498×10−3

160 0.2434×10−3 1.97 0.6341×10−4 1.98
320 0.6093×10−4 2.00 0.1575×10−4 2.01
640 0.1463×10−4 2.06 0.3696×10−5 2.09

7-NP 80 0.9522×10−3 0.2501×10−3

160 0.2434×10−3 1.97 0.6343×10−4 1.98
320 0.6093×10−4 2.00 0.1575×10−4 2.01
640 0.1463×10−4 2.06 0.3696×10−5 2.09

Table 3. The nonlinear Burgers equation for 𝑅𝑒 = 1000.

𝑁
2-CD 3-NP 7-NP

𝐿∞ 𝐿1 𝐿∞ 𝐿1

80 OS 0.4688 0.2720×10−1 0.7099 0.2713
160 OS 0.2848 0.5511×10−2 0.4374 0.2872×10−1

320 OS 0.1200 0.8816×10−3 0.8439×10−1 0.6077×10−3

640 OS 0.4734×10−2 0.2220×10−4 0.3154×10−1 0.1031×10−3

The nonlinear Burgers equation is the second test
case. It is written as

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
=

1

𝑅𝑒

𝜕2𝑢

𝜕𝑥2
, 𝑎 ≤ 𝑥 ≤ 𝑏, (10)

𝑢(𝑎) = tanh(−𝑎𝑅𝑒/2), 𝑢(𝑏) = tanh(−𝑏𝑅𝑒/2). (11)

The steady state solution of Eq. (10) with boundary
condition (11) is 𝑢(𝑥) = tanh(−𝑥𝑅𝑒/2). At 𝑥 = 0, the
shock is formed with a large 𝑅𝑒 number. In our com-
putation, 𝑎 = −1, 𝑏 = 1 are used. Based on the analy-
sis of the 5th-order and 9th-order NP schemes, which
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are conditionally upwind dominant, and the numeri-
cal results of previous cases, only the 3rd-order and
the 7th-order schemes are considered for this case.

x

u

Exact

2-CD

3-NP

6

4

2

0

-4

-6

-2

-0.5 -0.25 0 0.25 0.5

Fig. 3. Nonlinear Burgers equation for 𝑅𝑒=1000.
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-1 -0.9 -0.8 -0.7 -0.6-0.5

x

-1 -0.9 -0.8 -0.7 -0.6-0.5

Fig. 4. Variable coefficients convective diffusion equation
for 𝑅𝑒 = 1000.

First, the case with 𝑅𝑒 = 10 is tested. Table 2
gives the errors. Since the small Reynolds number is
used, all tested schemes obtain good results. It can
also be seen that the errors of the NP schemes are
no more than one half of the second central scheme.
Then, the case with 𝑅𝑒 = 1000 is calculated, and the
errors are given in Table 3. The second order central
scheme is oscillatory even with the finest grid number
of 𝑁 = 640. The NP schemes are oscillation free.
Figure 3 gives the comparison of the second order
central scheme and the third order NP scheme with
𝑅𝑒 = 1000 and 𝑁 = 160.

It is worth mentioning that, for this nonlinear case,
the relation of high order derivatives (6) is approxi-
mate, hence the results of the high order (7th-order)
NP scheme are almost the same as the low order (3rd-
order) NP scheme. Hence, for the other cases in this
paper, only the 2-CD scheme and the 3-NP scheme
are compared.

The variable coefficients convective diffusion equa-
tion, i.e.

𝜕𝑢

𝜕𝑡
+ 𝑥

𝜕𝑢

𝜕𝑥
=

1

𝑅𝑒

𝜕2𝑢

𝜕𝑥2
, −1 ≤ 𝑥 ≤ 1,

under the boundary conditions

𝑢(−1) = 1, 𝑢(1) = −1,

is the third test case. The comparison of the steady
state solution with 𝑅𝑒 = 1000 and 𝑁 = 160 is given
in Fig. 4. Here the exact solution is the result calcu-
lated by the third order NP scheme with 𝑁 = 1000.
The second central scheme is still oscillatory, while the
third order NP scheme obtains a good solution.

The convective diffusion equation with source
terms is the fourth test case,

𝜕𝑢

𝜕𝑡
+

𝜕𝑢

𝜕𝑥
=

1

𝑅𝑒

𝜕2𝑢

𝜕𝑥2
+ 𝜖𝜋2 sin(𝜋𝑥) + 𝜋 cos(𝜋𝑥),

0 ≤ 𝑥 ≤ 1.

The exact solution is given by 𝑢(𝑥) = sin(𝜋𝑥)+(𝑒𝑥/𝜖−
1)/(𝑒1/𝜖 − 1), where 𝜖 = 1/𝑅𝑒. Table 4 gives the com-
parison of errors. The 2-CD scheme is oscillatory, even
the mesh of 𝑁 = 320 is used. The 3-NP scheme is
oscillation free, and it reaches the second order for
both 𝐿∞ and 𝐿1 norms. Figure 5 plots the results
of 𝑅𝑒 = 1000 and 𝑁 = 320. This case shows that
the NP scheme can also solve the convective diffusion
equation with source terms very well.
Table 4. The convective diffusion equation with source terms
for 𝑅𝑒 = 1000.

Scheme N 𝐿∞ error 𝐿∞ order 𝐿1 error 𝐿1 order
2-CD 80 0.7182(OS) 0.3158×10−1

160 0.5127(OS) 0.49 0.6531×10−2 2.27
320 0.2613(OS) 0.97 0.1005×10−2 2.70
640 0.8629×10−1 1.60 0.1973×10−3 2.35

3-NP 80 0.3256 0.4167×10−1

160 0.1309 1.32 0.1058×10−1 1.98
320 0.2529×10−1 2.37 0.2575×10−2 2.04
640 0.2081×10−2 3.60 0.6327×10−3 2.03

x

u

Exact

2-CD

3-NP

1

0.6

0.8

0.4

0.2

0

-0.2

0 0.2 0.4 0.6 0.8 1.0

Fig. 5. Convective diffusion equation with source terms
for 𝑅𝑒=1000.

The two-dimensional nonlinear Burgers equation
is the fifth test case,

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑢

𝜕𝑢

𝜕𝑦
=

1

𝑅𝑒

(︁𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2

)︁
,

− 1 ≤ 𝑥, 𝑦 ≤ 1.
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For the two-dimensional convective diffusion equation,
combined with the spatial splitting method, the nu-
merical perturbation procedure of Eqs. (4) and (9) is
applied in each spatial direction with its correspond-
ing Reynolds grid number. The exact solution is given
by 𝑢(𝑥, 𝑦) = tanh(−𝑅𝑒(𝑥 + 𝑦)/2). The second order
central scheme is overflow even the grid of 320 × 320
is used. Table 5 gives the errors of the 3-NP scheme.
Figure 6 is the solution obtained by the 3-NP scheme
with the grid of 160 × 160.
Table 5. Two-dimensional nonlinear Burgers equation for
𝑅𝑒 = 1000.

𝑁𝑥 ×𝑁𝑦 2-CD 3-NP
𝐿∞ 𝐿1 𝐿∞ 𝐿1

40× 40 OV 0.6420 0.1434
80× 80 OV 0.4688 0.2597×10−1

160× 160 OV 0.2848 0.5440×10−2

320× 320 OV 0.1213 0.8887×10−3

1

1

1

0.5

0.5
0.5

0

0

0

-0.5

-0.5

-0.5

-1

-1

-1

u

x

y

Fig. 6. Two-dimensional nonlinear Burgers equation for
𝑅𝑒 = 1000 in the 3-NP scheme.

Finally, the two-dimensional linear convective dif-
fusion equation with variable coefficients is calculated,

𝜕𝑢

𝜕𝑡
+
(︁
𝑦 − 1

2

)︁𝜕𝑢
𝜕𝑥

+
(︁
𝑥− 1

2

)︁𝜕𝑢
𝜕𝑦

=
1

𝑅𝑒

(︁𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2

)︁
,

− 1 ≤ 𝑥, 𝑦 ≤ 1.

The exact solution is given by 𝑢(𝑥, 𝑦) = exp[𝑅𝑒(𝑥 −
1
2 )(𝑦− 1

2 )]. The case with 𝑅𝑒 = 40 is calculated. Since
the Reynolds grid number is small relatively, the 2-
CD scheme and the 3-NP scheme can run in this case.
However, the errors given in Table 6 show that the
second central scheme gives unacceptable results even
with the mesh of 160 × 160, while the third order NP
scheme obtains a very good solution and it achieves

third order accuracy. Figure 7 is the solution calcu-
lated by the 3-NP scheme with mesh of 80 × 80.
Table 6. Two-dimensional convective diffusion equation with
variable coefficients for 𝑅𝑒 = 40.

𝑁𝑥 ×𝑁𝑦
2-CD 3-NP

𝐿∞ 𝐿1 𝐿∞ 𝐿1

40× 40 0.3740×102 0.1028×101 0.1199 0.2856×10−2

80× 80 0.1077×102 0.2758 0.8903×10−2 0.2022×10−3

160× 160 0.2774×101 0.7072×10−1 0.5997×10−3 0.1354×10−4
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Fig. 7. Two-dimensional convective diffusion equation
with variable coefficients for 𝑅𝑒 = 40 in the 3-NP scheme.

In summary, the nature of upwind dominance or
conditionally upwind dominance of the NP schemes is
presented and verified. It is this nature that makes
the NP schemes essentially non-oscillatory schemes in
the large gradient region or near discontinuity even
with a large Reynolds grid number. Various numeri-
cal examples show that the NP schemes are not only
efficient and robust, but also more accurate than the
original second order central scheme. The applica-
tion to fluid dynamics Navier–Stokes equations and
the multi-nodes NP reconstruction algorithm are cur-
rently underway and will be reported elsewhere.
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