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Abstract A steady-state thermo-contact model of a rigid insulated cylinder of radius R sliding on a finite
graded elastic layer is studied, whose Young’s modulus, thermal conductivity coefficient and thermal expan-
sion coefficient vary exponentially in the thickness direction. The transfer matrix method and Fourier integral
transform technique are used to obtain a Cauchy-type singular integral equation for the contact stresses. Numer-
ical calculation yields the interface traction and temperature distributions below the rigid punch. It shows that
crack damage in the finite graded layer due to the frictional sliding can be prevented by several alternative ways,
such as decreasing the shear modulus ratio of the surface to the bottom, decreasing the friction coefficient,
increasing the thickness of the finite graded layer, increasing the thermal conductivity coefficient ratio of the
surface to the bottom or increasing the sliding velocity. The finding should be very useful for the design of
novel graded materials with potential applications in aerospace, tribology, coatings, etc.

1 Introduction

Functionally graded materials (FGMs) are special multiphase composites with continuously varying volume
fractions in the thickness direction and consequently complex thermo-mechanical properties [1]. Used as coat-
ings and interfacial zones, FGMs are found experimentally to reduce thermally and mechanically induced
stresses, which result from the material mismatch [2]. Controlled gradients in material properties can also
improve surface mechanical ones, such as contact damage and surface adhesion. The elastic properties of a
graded material were measured by Suresh et al. [3,4], Jorgensen et al. [5], and Krumova et al. [6] experimen-
tally with the indentation method. The elastic modulus of such a graded material can be denoted by different
variation laws to describe the graded properties in the thickness direction, such as an exponential or a power
law.

As a basis of the contact mechanics for graded materials, an axis-symmetric model of a graded half-space
subjected to a concentrated force or an axis-symmetric indenter was considered by Giannakopoulos and Suresh
[7,8]. The results show that controlling gradient variations of the substrate could alter the contact tractions,
even lead to a compressive Hertzian crack at the contact edges. The same conclusions were further made via
spherical indentation experiments and FEM simulations [9–11]. Closed-form solutions to a two-dimensional
contact between a rigid cylinder and an elastic graded half-space were given by Giannakopoulos and Pallot
[12]. Guler and Erdogan [1,13,14] investigated a frictional contact model between a rigid punch and a substrate
coated with FGM and the one between two deformable elastic solids with graded coatings. Linear multilayered
models were used to analyze the plane and axis-symmetric contact problems of FGM [15,16]. Receding contact
between a graded coating and a homogeneous substrate as well as a partial slip contact was investigated by
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El-Borgi et al. [17] and Elloumi et al. [18]. Choi and Paulino [19] analyzed the coupled crack/contact model
for a coating/substrate system with graded properties.

All the above models on graded materials belong to Hertz-type ones. Several typical studies should be
mentioned for the adhesive contact of graded materials. A plane strain adhesive contact model of a rigid cyl-
inder on an elastic graded substrate was discussed by Giannakopoulos and Pallot [12]. Chen et al. [20] further
studied the corresponding axis-symmetric model and gave a very simple closed-form analytical solution for
the contact of a rigid sphere on a graded elastic half-space. The problem with a flaw tolerant adhesive interface
between a rigid punch and a graded half-space was investigated by Chen and Chen [21]. Non-slipping plane
strain and axis-symmetric adhesive contact models were further analyzed by Jin and Guo [22] and Guo et al.
[23].

Neither the above Hertz-type contact models nor adhesive ones considered thermal effects. However, it is
well known that heat may show significant influence on the contact interface. Frictional heating generation will
be a subject of concern to us when conventional ferrous materials are used in automotive brakes and clutches
[24–27]. When brakes are applied to a moving system, the kinetic energy will be transformed into heat energy,
which does not dissipate fast enough into the air stream. As a result, high temperatures and thermal stresses
will produce disadvantageous effects such as surface cracks or permanent distortions [28,29]. The pressure
between contact surfaces may also be affected by the thermal effect. Due to the urgent requirement of avoiding
contact damage in industries, FGMs are an alternative to replace conventional materials.

Extensive studies on the thermoelastic contact problem of conventional homogeneous materials have been
done [30–35]. Barber and his collaborators [36,37] have shown that, for a thermoelastic contact model, pro-
nounced differences from an isothermal one can be found. Steady sliding of a conducting cylinder over an
insulating half-plane always results in a narrower contact width comparing to the isothermal problem. Fur-
thermore, they studied the contact problem of an insulating rigid flat-ended punch on a thermally conducting
half-plane and analyzed a more general problem of a thermal conducting cylinder sliding over the surface of
an elastic half-plane with different thermal properties [38]. An interesting phenomenon is that, when sufficient
frictional heat is produced between two contacting bodies, the two solids may separate from each other due to
the thermal effect [39,40], which has been successfully explained by Afferrante and Ciavarella [41,42].

Very limited literature is available concerning thermoelastic contacts for FGMs. Barik et al. [28] consid-
ered the contact problem of a functionally graded heat-conducting punch and a rigid insulated half-space. Choi
and Paulino [43] analyzed the thermoelastic contact of a flat punch sliding over a sandwich structure, that is,
a homogeneous coating on a homogeneous half-space with a graded interlayer. Liu et al. [35] investigated a
thermoelastic sliding frictional contact model of a graded coated half-plane, in which the effects of the gradient
index, Peclet number and the friction coefficient on the thermoelastic contact features are discussed in detail.

In the above thermal-contact models, an infinite half-space is always involved. In fact, natural objects have
finite scales. In addition, contact solutions to a problem with a half-space can be achieved from the model with
a finite substrate, if the thickness of the substrate tends to be infinite, while the solution to the problem with a
half-space cannot be reduced generally to the one with a finite substrate. Therefore, it is necessary to establish
mechanical models with finite scales and consider the boundary effects on the mechanical properties [44–47].

The present paper is aimed to develop a thermo-elastic contact model of a finite graded layer, which has so
far largely been limited to an infinite graded half-space. In our model, the rigid punch is insulated and slides
on the surface of the finite graded layer with heat generated in the contact region due to the interface friction.
Due to the finite thickness of the graded layer, boundary effects will be paid much attention in the following
analysis.

2 Formulation of the thermal-elastic contact model

To investigate the boundary effect on the contact properties, we consider a plane strain contact model as shown
in Fig. 1. A rigid cylindrical punch of radius R contacts a finite graded layer of thickness h, which is fixed on
a rigid foundation. The layer is assumed to be elastic and thermal conducting. The rigid insulated cylinder is
subjected to a normal force P and moves from the left to the right with a constant velocity V , which yields a
frictional tangential force Q in the contact region abiding by the Coulomb-type law

Q = μf P, (1)

where μf is the friction coefficient and assumed to be a constant.
The problem is formulated in a coordinate system (x ,y), where the y-axis is fixed on the punch and moves

with the punch. It follows that the contact region, that is, −b ≤ x ≤ a will remain stationary with respect to
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Fig. 1 Schematic of a plane strain thermoelastic contact model involving a rigid cylindrical punch of contact width (a + b) sliding
at a speed V on a finite graded layer of thickness h fixed on a rigid foundation. Heat transfer due to friction at the contact interface
is considered with a heat flux qf

the punch. Due to the sliding motion of the punch, a frictional heat flux qf is generated in the contact area,
which is assumed to flow only into the graded layer.

The thermal conductivity coefficient k(y), shear modulus μ(y), and the thermal expansion coefficient α(y)
of the graded layer are assumed to vary with the layer thickness according to different exponential laws as
follows:

k2 (y) = k1eδy, μ2 (y) = μ1eβy, α2 (y) = α1eγ y, 0 ≤ y ≤ h, (2)

δ = 1

h
ln

(
k3

k1

)
, β = 1

h
ln

(
μ3

μ1

)
, γ = 1

h
ln

(
α3

α1

)
, (3)

where the subscript “1” denotes the surface of the graded layer y = 0, “2” denotes the inside region and “3”
the lower boundary y = h. The Poisson’s ratio ν of the graded layer is assumed to be a constant.

u(x, y) and v(x, y) are displacement components in the x- and y-directions, respectively. T (x, y) is the
temperature field measured from a referenced stress-free temperature. The constitutive relations for the graded
layer in terms of u(x, y), v(x, y) and T (x, y) can be given as

σxx = μ2

κ − 1

[
(1 + κ)

∂u

∂x
+ (3 − κ)

∂v

∂y
− 4α∗

2 T

]
, (4a)

σyy = μ2

κ − 1

[
(1 + κ)

∂v

∂y
+ (3 − κ)

∂u

∂x
− 4α∗

2 T

]
, (4b)

τxy = μ2

[
∂u

∂y
+ ∂v

∂x

]
. (4c)

where κ = 3 − 4ν, α∗
j = (1 + ν) α j , ( j = 1, 2, 3) for a plane strain problem and κ = (3 − ν)/(1 + ν), α∗

j =
α j , ( j = 1, 2, 3) for a plane stress one.

According to Barik et al. [28], Choi and Paulino [43], Jang and Ahn [29], Pauk [31], and Zhou and Lee
[48], the steady-state heat conduction equation of the graded layer can be given as

∂2T

∂x2 + ∂2T

∂y2 + δ
∂T

∂y
= 0. (5)

In the present thermal-elastic sliding-contact problem, we only consider the sliding velocity much slower than
the Rayleigh wave speed of the graded layer. Thus, the inertia effects could be neglected [35,49], which leads
to the following equilibrium equations:
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∇2u + 2

κ − 1

(
∂2u

∂x2 + ∂2v

∂x∂y

)
+ β

(
∂u

∂y
+ ∂v

∂x

)
= 4α∗

2eγ y

κ − 1

∂T

∂x
, (6a)

∇2v + 2

κ − 1

(
∂2v

∂y2 + ∂2u

∂x∂y

)
+ β

κ − 1

[
(1 + κ)

∂v

∂y
+ (3 − κ)

∂u

∂x

]

= 4α∗
2eγ y

κ − 1

[
(β + γ ) T + ∂T

∂y

]
. (6b)

The governing equations for the present model consist of Eqs. (5) and (6). For a special case of a homogeneous
layer, we have δ = 0, β = 0, γ = 0.

2.1 Mechanical boundary conditions

For a plane strain model with a cylindrical punch, the normal displacement within the contact area is

u (x, 0) = δ0 − x2

2R
,

∂u (x, 0)

∂x
= − x

R
, −b ≤ x ≤ a, (7)

where δ0 is the vertical translation of the rigid cylindrical punch and x2/2R comes from the parabolic assump-
tion of the rigid cylinder profile [50]. Usually, the effect of gravity is neglected [43,51]. The normal and
tangential tractions beneath the punch abide by the Coulomb friction law and the applied indentation force P
equal to the integral of the interface normal stress, that is,

σxy (x, 0) = μfσyy (x, 0) , −b ≤ x ≤ a, (8)
a∫

−b

σyy (x, 0) dx = −P, −b ≤ x ≤ a. (9)

Outside the contact region, the normal and tangential stresses vanish, that is, a free boundary,

σyy (x, 0) = σxy (x, 0) = 0, x < −b, x > a. (10)

It is assumed that the graded layer is fixed on a rigid substrate. Thus, the boundary condition of the normal
and tangential displacements at y = h can be expressed as

u (x, h) = v (x, h) = 0. (11)

2.2 Thermal boundary conditions

In view of the fact that the frictional heat flows only into the graded layer through the contact area without any
loss to the surroundings [37], the problem is treated within the linear thermoelasticity framework. According
to Joachim-Ajao and Barber [52], the heat flux generated by the tangential traction inside the contact area is
modeled to equal the generating rate of frictional heat,

k1
∂T (x, 0)

∂y
= −qf(x), −b ≤ x ≤ a, (12)

where qf(x) is the heat flux depending on the sliding velocity V , the friction coefficient μf and the interface
normal stress σyy ,

qf(x) = −μf V σyy (x, 0) . (13)

The area outside the contact region is thermally insulated, that is,

k1
∂T (x, 0)

∂y
= 0, x < −b, x > a. (14)

It is assumed that the temperature on the lower surface of the graded layer is identical to the environmental
one. Then, the relative temperature at y = h can be written as

T (x, h) = 0, |x | < ∞. (15)
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2.3 Temperature and displacement fields

In order to solve the thermoelastic governing equations in Eqs. (5) and (6) and obtain the temperature and
displacement fields, the Fourier integral transform method, as a standard technique, can be employed.

Transform with respect to x in Eq. (5) leads to the temperature field,

T (x, y) = 1

2π

+∞∫
−∞

2∑
j=1

A j e
λ j y−isx ds, (16)

where s is a transform variable, i2 = −1 and λi (s) ( j = 1, 2) are given as

λ1 = − δ

2
+

√
δ2

4
+ s2, λ2 = − δ

2
−

√
δ2

4
+ s2. (17)

A j (s) , j = 1, 2, as unknown functions, can be determined by the thermal and interface boundary conditions
in Eqs. (12)–(15):

A1 = q̄feλ2h

λ1eλ2h − λ2eλ1h
, A2 = q̄feλ1h

λ2eλ1h − λ1eλ2h
, (18)

where

q̄f (s) = −
a∫

−b

qf (ξ)

k1
eisξ dξ . (19)

Using the Fourier integral transform method, Eqs. (6a) and (6b) yield the displacement fields

u = 1

2π

+∞∫
−∞

4∑
j=1

B j e
m j y−isx ds + 4α∗

2eγ y

κ − 1

i

2π

+∞∫
−∞

2∑
j=1

A j
� j

� j
eλ j y−isx ds, (20)

v = − i

2π

+∞∫
−∞

4∑
j=1

B j Fj e
m j y−isx ds + 4α∗

2eγ y

κ − 1

1

2π

+∞∫
−∞

2∑
j=1

A j
� j

� j
eλ j y−isx ds, (21)

where

� j = s
(
β + γ + λ j

) [
W j + 2β

(
κ − 2

κ − 1

)]
− s D j , (22a)

� j = (
β + γ + λ j

) [(
κ − 1

κ + 1

)
D j − 4κs2

κ2 − 1

]
+ s2W j , (22b)

� j =
[(

κ − 1

κ + 1

)
D j − 4κs2

κ2 − 1

]
D j + s2

[
W j + 2β

(
κ − 2

κ − 1

)]
W j , (22c)

and

D j =
(

κ + 1

κ − 1

) (
γ + λ j

) (
β + γ + λ j

) − s2, (23a)

W j = 2
(
γ + λ j

) + β (3 − κ)

κ − 1
. (23b)

B j (s) in Eqs. (20) and (21) is an arbitrary unknown, which can be determined by the mechanical boundary
conditions in Eqs. (8)–(11). m j (s) is the root of the following characteristic equation:

(
m2 − s2 + βm

)2 +
(

3 − κ

1 + κ

)
s2β2 = 0. (24)
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Solving Eq. (24) results in

m j = −β

2
+

√
β2

4
+ s2 − i (−1) j βs

(
3 − κ

1 + κ

)1/2

, Re
(
m j

)
> 0, j = 1, 2, (25a)

m j = −β

2
−

√
β2

4
+ s2 + i (−1) j βs

(
3 − κ

1 + κ

)1/2

, Re
(
m j

)
< 0, j = 3, 4, (25b)

and Fj (s) can be expressed as a function of m j (s) as follows:

Fj =
(κ − 1)

(
m2

j + βm j

)
− s2 (κ + 1)

s
[
2m j + β (κ − 1)

] ( j = 1, . . . , 4) . (26)

3 Transfer matrix approach for the problem

In order to find the displacements of a graded layer subjected to arbitrary tractions and heat flux, a transfer
matrix approach can be employed.

From the general solutions in Eqs. (20) and (21) and the constitutive relations in Eqs. (4a–c), the displace-
ments and tractions of the graded layer can be written in a Fourier-transformed domain as

f (s, y) = � (s, y) a (s) + fT (s, y) , (27)

where f (s, y) is a state vector containing physical variables that need to be determined for the given con-
stituents, a (s) is a vector for the four unknowns in the general solutions of the present thermoelastic contact
problem as follows:

f (s, y) = {
v̄ (s, y)/i, ū (s, y) , σ̄yy (s, y)/i, τ̄xy (s, y)

}T
, (28)

a (s) = {B1 (s) , B2 (s) , B3 (s) , B4 (s)}T . (29)

� (s, y) is a 4 × 4 matrix, which is a function of not only the variables s and y, but also elastic param-
eters of the constituents. fT (s, y) is a vector representing the non-isothermal effect originating from the
non-homogeneous part of the governing equations (20) and (21).

At the bottom interface y = h, we have

f (s, h) = � (s, h) a (s) + fT (s, h) , (30)

where

f (s, h) = {
0, 0, σ̄yy (s, h)/i, τ̄xy (s, h)

}T
. (31)

On the upper surface of the graded layer y = 0, we have

f (s, 0) = � (s, 0) a (s) + fT (s, 0) , (32)

where

f (s, 0) = {
v̄ (s, 0)/i, ū (s, 0) , σ̄yy (s, 0)/i, τ̄xy (s, 0)

}
, (33)

Here, σ̄yy (s, 0) and τ̄xy (s, 0) denote the transformed normal and tangential tractions on the upper surface of
the graded layer. Therefore

σ̄yy (s, 0) =
a∫

−b

σyy (x, 0) eisx dx,τ̄xy (s, 0) =
a∫

−b

τxy (x, 0) eisx dx. (34)

Eliminating the unknown vector a (s) in Eqs. (30) and (32) yields

f (s, 0) = G (s) f (s, h) + r0, (35)
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where G (s) is a 4 × 4 transfer matrix connecting the upper and the lower surfaces of the graded layer and
r0 (s) is a vector of length four involving the thermal loading,

G (s) = � (s, 0)�-1 (s, h) , (36a)

r0 = −ir (s) q̄f = −� (s, 0) �−1 (s, h) fT (s, h) + fT (s, 0) , (36b)

The superscript “−1” denotes the inverse of a matrix.
Thus, the transformed surface displacements ū (s, 0) and v̄ (s, 0) can be achieved in terms of the trans-

formed surface tractions σ̄yy (s, 0) , τ̄xy (s, 0), and the heat flux q̄f . Inverse Fourier transform leads to the
following integral equations, where the surface displacements are functions of the surface tractions,

v (x, 0) = 1

2π

+∞∫
−∞

[
N11 (s) σ̄yy (s, 0) + iN12 (s) τ̄xy (s, 0) + L1 (s) q̄f

]
e−isx ds, |x | < +∞, (37)

u (x, 0) = 1

2π

+∞∫
−∞

[−iN21 (s) σ̄yy (s, 0) + N22 (s) τ̄xy (s, 0) − iL2 (s) q̄f
]

e−isx ds, |x | < +∞, (38)

where N jk (s) ( j, k = 1, 2) are elements of a 2 × 2 matrix N (s); L j (s) ( j = 1, 2) are those of a vector of two
units in length L (s),

N (s) =
[

G13 G14
G23 G24

] [
G33 G34
G43 G44

]−1

, (39)

L (s) =
{

r1
r2

}
−

[
G13 G14
G23 G24

] [
G33 G34
G43 G44

]−1 {
r3
r4

}
. (40)

It is found that N (s) depends only on the elastic parameters of the constituents of the graded layer, while L (s)
depends on thermoelastic parameters of such constituents.

4 Solution of the integral equations

Considering Eqs. (19) and (34) and differentiating with respect to the variable x , the integral equations (37)
and (38) can be rewritten as

∂v (x, 0)

∂x
= − 1

2π

+a∫
−b

[
iI11 (x, r) σyy (r, 0) − I12 (x, r) τxy (r, 0) + iI13 (x, r) qf (r)

]
dr, (41)

∂u (x, 0)

∂x
= − 1

2π

+a∫
−b

[
I21 (x, r) σyy (r, 0) + iI22 (x, r) τxy (r, 0) + I23 (x, r) qf (r)

]
dr, (42)

where the kernels are

I jk (x, r) =
+∞∫

−∞
s N jk (s) eis(r−x)ds, j = 1, 2, k = 1, 2, (43)

I j3 (x, r) = − 1

k1

+∞∫
−∞

sL j (s) eis(r−x)ds, j = 1, 2. (44)
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For a large value of |s|, we have the following asymptotic solutions:

lim|s|→∞ s N11 = �11
s

|s| , lim|s|→∞ s N22 = �22
s

|s| , (45a)

lim|s|→∞ s N12 = �12, lim|s|→∞ s N21 = �21, (45b)

lim|s|→∞ sL1 = lim|s|→∞ sL2 = 0, (45c)

where �11 = �22 = − (κ+1)
4μ1

and �12 = �21 = − (κ−1)
4μ1

.
After separating the leading terms from the kernels in Eq. (45) and using the following generalized functions

∞∫
0

sin [s (r − x)]ds = 1

r − x
,

∞∫
0

cos [s (r − x)]ds = πδ (r − x) , (46)

where δ (·) is the Dirac delta function, Eqs. (41) and (42) can be written as

∂v (x, 0)

∂x
= �12τxy (x, 0) + 1

π

a∫
−b

�11

r − x
σyy (r, 0) dr

+ 1

π

a∫
−b

[
K11 (x, r) σyy (r, 0) + K12 (x, r) τxy (r, 0) − 1

k1
K13 (x, r) qf (r)

]
dr, (47a)

∂u (x, 0)

∂x
= −�21σyy (x, 0) + 1

π

a∫
−b

�22

r − x
τxy (r, 0) dr

− 1

π

a∫
−b

[
K21 (x, r) σyy (r, 0) − K22 (x, r) τxy (r, 0) − 1

k1
K23 (x, r) qf (r)

]
dr, (47b)

where Kmn (x, r) (m, n = 1, 2) are defined as

Kmn (x, r) =
{∫ ∞

0 [s Nmn (s) − �mn] sin [s (r − x)] ds, m = n,∫ ∞
0 [s Nmn (s) − �mn] cos [s (r − x)] ds, m �= n,

(48a)

and

K13 (x, r) =
∞∫

0

sL1 (s) sin [s (r − x)] ds, (48b)

K23 (x, r) =
∞∫

0

sL2 (s) cos [s (r − x)] ds. (48c)

Considering the relations in Eqs. (8) and (13), we have

σyy (x, 0) = −p(x), − b ≤ x ≤ a, (49)

σxy (x, 0) = −μf p(x), − b ≤ x ≤ a, (50)

qf(x) = μf V p(x), − b ≤ x ≤ a, (51)

where p(x) denotes the normal traction in the contact region.
Then, Eq. (47a) can be rewritten as

μf�12 p(x) + 1

π

a∫
−b

�11

r − x
p (r) dr + 1

π

a∫
−b

Q1 (x, r) p (r)dr = g(x), (52)



Thermo-contact mechanics of a rigid cylindrical punch sliding on a finite graded layer 2655

where the bounded kernel Q1 (x, r) is

Q1 (x, r) = K11 (x, r) + μf K12 (x, r) + μf V

k1
K13 (x, r) (53)

and g(x) is given as

g(x) = −∂v (x, 0)

∂x
. (54)

Equation (52) is a standard formula denoting the surface displacements as functions of the surface tractions,
in which the effects of sliding velocity and friction heat are included in the kernel Q1 (x, r).

Introducing the following normalized quantities{
r = a+b

2 η + a−b
2 , x = a+b

2 ξ + a−b
2 , − b < (r, x) < a, − 1 < (η, ξ) < 1,

Q∗ (ξ, η) = a+b
2 Q1 (ξ, η) .

(55)

Equations (52) and (9) can be rewritten as

μf�12 p (ξ) + 1

π

1∫
−1

�11

η − ξ
p (η) dη + 1

π

1∫
−1

Q∗ (ξ, η) p (η)dη = g (ξ) , |ξ | < 1, (56)

1∫
−1

p (ξ)dξ = 2P

a + b
. (57)

Due to the Cauchy-type singular kernel in the integral equation, the solution to Eqs. (56) and (57) can be
expressed as a series expansion such that

p (ξ) = w (ξ)

∞∑
j=0

c j P(β1,β2)
j (ξ), |ξ | < 1, (58)

where w (ξ) = (1 − ξ)β1 (1 + ξ)β2 is a weight function, c j denotes an unknown coefficient, P(β1,β2)
j (·) is a

Jacobi Polynomial corresponding to the weight function w (ξ).
The superscripts β1 and β2 can be determined from the physics of the present model as⎧⎪⎨

⎪⎩
θ > 0 : β1 = 1 − ε

π
, β2 = ε

π

θ = 0 : β1 = 1
2 , β2 = 1

2
θ < 0 : β1 = ε

π
, β2 = 1 − ε

π

(59)

and θ = μf�12
�11

, tan ε = | 1
θ
|.

It is easy to find that β1 and β2, as the index of stress singularity at the leading (x = a) and the trailing
(x = −b) contact edges, respectively, depend on the friction coefficient and Poisson’s ratio. This feature is
similar to that in the corresponding isothermal problem.

Considering the following property of a Jacobi Polynomial,

μf�12w (ξ) P(β1,β2)
j (ξ) + 1

π

1∫
−1

�11

η − ξ
w (η) P(β1,β2)

j (η) dη = − 2�11

sin (πβ1)
P(−β1,−β2)

j+1 (ξ) , |ξ | < 1, (60)

and truncating the series at j = N , then, substituting Eq. (58) into Eqs. (56), (57) leads to

N∑
j=0

[ −2�11

sin (πβ1)
P(−β1,−β2)

j+1 (ξ) + Q∗
j (ξ)

]
c j = g (ξ) , (61)

N∑
j=0

c j

1∫
−1

w (ξ) P(β1,β2)
j (ξ) dξ = 2P

a + b
, (62)
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where

Q∗
j (ξ) = 1

π

1∫
−1

Q∗ (ξ, η)w (η) P(β1,β2)
j (η) dη. (63)

Using the following orthogonality property of a Jacobi Polynomial

1∫
−1

w (ξ) P(β1,β2)
j (ξ) P(β1,β2)

k (ξ) dξ = θ
(β1,β2)
j δ jk, j, k = 0, 1, 2, . . . , (64)

Eqs. (61) and (62) can be recast into a set of linear algebraic equations for c j (0 ≤ j ≤ N − 1),

−2�11

sin (πβ1)
θ

(−β1,−β2)
j c j−1 +

N−1∑
n=0

d jncn = � j , j = 0, 1, 2, . . . , N , (65a)

c0θ
(β1,β2)
0 = 2P

a + b
, (65b)

where c−1 = 0, δ jk is the Kronecker delta function and

θ
(β1,β2)
j =

⎧⎨
⎩

∫ 1
−1 w (ξ)dξ = 2β1+β2+1�(β1+1)�(β2+1)

�(β1+β2+2)
, j = 0,

2β1+β2+1�( j+β1+1)�( j+β2+1)
(2 j+β1+β2+1) j !�( j+β1+β2+1)

, j ≥ 1,

(66)

d jn =
1∫

−1

P(−β1,−β2)
j (ξ) Q∗

j (ξ) (1 + ξ)−β1 (1 − ξ)−β2 dξ, (67)

� j =
1∫

−1

P(−β1,−β2)
j (ξ)g (ξ) (1 + ξ)−β1 (1 − ξ)−β2 dξ. (68)

In addition, the normal contact stress should vanish at both the left and right contact edges due to a Hertzian
contact considered in the present paper,

p (−b) = p (a) = 0, (69)

where a and b are contact lengths as shown in Fig. 1.
For a cylindrical stamp, we have

g (ξ) = 1

2R
[(a + b) ξ + (a − b)] . (70)

It should be noted that for the case of a cylindrical punch, the solution of Eqs. (56) and (57) must satisfy a
consistency condition [53],

1∫
−1

S (ξ)

(1 − ξ)β1 (1 − ξ)β2
dξ = 0, (71)

where

S (ξ) = μf�12 p (ξ) + 1

π

1∫
−1

�11

η − ξ
p (η) dη. (72)

According to Krenk [54], it is easy to prove that Eq. (71) is automatically satisfied in the present problem.
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(a)

(b)

Fig. 2 Distributions of the non-dimensional contact stresses along the contact interface for different shear modulus ratios μ1/μ3
with fixed values v0 = 0.2, (a + b)/h = 1, R/h = 100, μf = 0.5. a For the contact pressure σyy (x, 0)/μ1; b for the in-plane
stress σxx (x, 0)/μ1

Thus, numerical results of the present model can be obtained by solving Eqs. (65a) and (65b). Based on
the solutions of Eqs. (65a) and (65b) and considering Eqs. (49) and (58), we can find σyy (x, 0),

σyy (x, 0) = − (a − x)β1 (b + x)β2
2

a + b

N−1∑
j=0

c j P(β1,β2)
j

(
x − (a − b)/2

(a + b)/2

)
, −b ≤ x ≤ a. (73)

Then, the stress component σxx (x, 0) below the punch can be found from the constitutive relations in
Eqs. (4a)–(4b) and (47b) as

σxx (x, 0)=−p(x)+ 2μf

π

a∫
−b

1

r −x
p (r) dr − 2

π

a∫
−b

1

�22
Q2 (x, r) p (r) dr+ 2α∗

1

�22
T (x, 0) , |x | < ∞, (74)

where

Q2 (x, r) = K21 (x, r) − μf K22 (x, r) + μf V

k1
K23 (x, r) . (75)

5 Results and discussions

In the present paper, a plane strain case is assumed with a constant Poisson’s ratio ν = 0.3. α1/α3 =
0.6903, k1/k3 = 0.1125 and μ1/μ3 = 0.2 are adopted, unless otherwise stated.
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(a)

(b)

Fig. 3 Distributions of the non-dimensional contact stresses along the contact interface for different non-dimensional sliding
speeds v0 with fixed values μ1/μ3 = 0.2, (a + b)/h = 1, R/h = 100, μf = 0.5. a For the contact pressure σyy (x, 0)/μ1;
b for the in-plane stress σxx (x, 0)/μ1

According to Barber and Comninou [55], for a thermoelastic contact problem, an excessive amount of heat
flux between two contact bodies may give rise to a separation of the contacting surfaces, which will change the
compressive contact stress to a tensile one near the contact edges. In order to avoid such an abnormal behavior
and to satisfy the perfect contact condition between the punch and the graded layer, the sliding speed of the
punch should be properly controlled [2,43].

In addition, the integrals in Eqs. (63), (67) and (68) are evaluated based on the Guass-Jacobi rule, while
the improper integrals in Eqs. (48a)–(48c) are calculated by means of the Guass-Legendre quadrature formula
[56] with a 12-term expansion of Jacobi polynomials in Eq. (58), which has been proven to meet the solution
convergence.

5.1 A special case

If the layer thickness in the present model tends to be infinity (i.e., h → ∞) and the thermo effect is neglected,
the problem can be reduced to a special case, that is, a rigid cylindrical punch in contact with an elastic homo-
geneous half-space. Closed-form solutions for the special case can be easily found from the present graded
layer problem. For the reduced special model, Eq. (52) can be simplified as

μf�12 p(x) + 1

π

a∫
−b

�11

r − x
p (r) dr = g(x), (76)

where

g(x) = x

R
. (77)
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(a)

(b)

Fig. 4 Distributions of the non-dimensional contact stresses along the contact interface for different friction coefficients μf with
fixed values μ1/μ3 = 0.2, v0 = 0.2, (a + b)/h = 1, R/h = 100. a For the contact pressure σyy (x, 0)/μ1; b for the in-plane
stress σxx (x, 0)/μ1

Solving Eq. (76) leads to the closed-form solutions

σyy (x, 0)

μ1
= − 4

κ + 1

sin πβ1

R
(a − x)β1 (x + b)β2 , (78)

σxx (x, 0)

μ1
= − 4

κ + 1

sin πβ1

R
×

{
(a − x)β1 (x + b)β2 + μf

π
L0, −b ≤ x ≤ a,

μf
π

L0, x < −b, x > a,
(79)

where

L0(x) = π

sin πβ1

⎧⎨
⎩

−2 (a − x)β1 (−x − b)β2 − 2x + a − b + (β1 − β2) (a + b), x < −b,

2 (a − x)β1 (x + b)β2 cos πβ1 − 2x + a − b + (β1 − β2) (a + b), −b ≤ x ≤ a,

2 (x − a)β1 (x + b)β2 − 2x + a − b + (β1 − β2) (a + b), x > a,

(80)

and

a = β2

β1
b. (81)

All the results for the special case are consistent with those in [14].

5.2 Variations of the stress distribution for different parameters

From the governing equations (4)–(6) and boundary conditions (7)–(15), one can see that the solu-
tions of the present problem depend on the ratio of shear modulus μ1/μ3, dimensionless sliding speed
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(a)

(b)

Fig. 5 Distributions of the non-dimensional contact stresses along the contact interface for different non-dimensional layer thick-
ness h/(a + b) with fixed values μ1/μ3 = 0.2, v0 = 0.2, μf = 0.5, h/R = 0.01. a For the contact pressure σyy (x, 0)/μ1; b for
the in-plane stress σxx (x, 0)/μ1

v0 = μ1α
∗
1 V a/k1 (κ + 1), the friction coefficient μf and the dimensionless thickness of the graded layer

h/(a + b) (or the dimensionless width of contact region (a + b)/h).
Figure 2a, b shows the distributions of the non-dimensional interface contact pressure σyy/μ1 and the in-

plane surface stress σxx/μ1, respectively, in which we take (a + b)/h = 1, μf = 0.5, R/h = 100, v0 = 0.2
and different ratios of shear modulus μ1/μ3. It is easy to find that a larger ratio of shear modulus μ1/μ3
results in a smaller magnitude of contact pressure in Fig. 2a, which agrees with the fact that an object with a
small effective elastic modulus is easy to indent. Figure 2b clearly shows a bounded and continuous in-plane
surface stress at both contact edges under a cylindrical stamp, which is different from that in a flat punch
case. From Fig. 2b, one can see that, with an increasing μ1/μ3, the in-plane tensile surface stress behind the
trailing edge improves, while the compressive one in front of the leading edge reduces. The tensile in-plane
surface stress tends to induce crack initiation, which will inevitably lead to sliding surface damage. The results
are qualitatively consistent with the experimental ones [9,57], where frictional sliding experiments between a
steel sphere and an alumina-glass graded composite were carried out. It was found that a graded material with
a 40 vol % soft glass phase at the surface could sustain a load as high as the homogeneous alumina without
developing any “herringbone” crack.

The effect of the dimensionless sliding speed v0 = μ1α
∗
1 V a/k1 (κ + 1) on the distribution of contact

stresses is shown in Fig. 3 with (a + b)/h = 1, μf = 0.5, R/h = 100. The result of v0 = 0.0 is also shown
for comparison, which corresponds to the case without thermal effect. In Fig. 3a, the maximum of the contact
stress σyy increases and the curves tend to be skew as v0 increases. It is easy to conclude that for the same
normal loading, a steady sliding of an insulating cylinder over a graded thermo-elastic layer always results in
a contact width narrower than that in the corresponding isothermal case. The result shows qualitative agree-
ment with that in Barber [36]. Furthermore, Fig. 3b shows that the maximum tensile stress σxx occurs at the
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(a)

(b)

Fig. 6 Distributions of the non-dimensional contact stresses along the contact interface for different thermal conductivity ratios
k1/k3 with fixed values μ1/μ3 = 0.2, v0 = 0.2, μf = 0.5, (a + b)/h = 1, R/h = 100. a For the contact pressure σyy (x, 0)/μ1;
b for the in-plane stress σxx (x, 0)/μ1

trailing edge (x = −b) and decreases with an increasing v0, which indicates a suppression tendency of the
aforementioned surface crack. This phenomenon is consistent with that in [58], where it was found that the
thermal effects reduced the in-plane tensile stress due to a compressive surface stress induced by the thermal
effect alone. Therefore, the thermocontact damage can be suppressed by tuning the sliding speed v0.

When the friction coefficient μf changes from 0.0 to 0.8, variations of the contact stress under the punch
are shown in Fig. 4. One can see that, with an increasing friction coefficient μf , the tensile stress σxx increases
sharply at the trailing edge, which indicates that a small friction coefficient is helpful to relieve thermoelastic
contact damage.

Distributions of the contact pressure and the in-plane stress with different non-dimensional thickness of the
graded layer h/(a + b) are shown in Fig. 5a, b. Under a cylindrical punch, a decreasing ratio of h/(a + b) leads
to a large normal pressure. Moreover, the maximum tensile stress σxx increases with a decreasing h/(a + b)
implies that surface cracking happens more easily for a thinner layer case. The finding is consistent with that
in Choi and Paulino [43] qualitatively, where the thermoelastic contact of a flat punch sliding over a sandwich
structure, that is, a homogeneous coating on a homogeneous half-space with a graded interlayer, is considered.
Furthermore, the effect of the layer thickness on the tensile stress seems much stronger in the present model
than that with a graded interlayer [43].

Figures 6 and 7 are given in order to show the influence of thermal parameters on the mechanical field. The
non-dimensional thermal conductivity coefficient k1/k3 and thermal expansion coefficient α1/α3 are chosen
as variables, respectively. From Fig. 6a, one can see that an increasing ratio k1/k3 leads to a large load for
a fixed (a + b)/h. Besides, it is interesting to find that, in Fig. 6b, the in-plane stress substantially becomes
compressive with an increasing k1/k3, especially that behind the trailing edge (x = −b). It can be inferred that
a higher thermal conductivity at the contact surface can prevent effectively the graded layer from crack damage
during sliding friction. While Fig. 7a, b shows that the distributions of the contact pressure and in-plane stress
seem insensitive to the variation of the non-dimensional thermal parameter α1/α3.
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(a)

(b)

Fig. 7 Distributions of the non-dimensional contact stresses along the contact interface for different thermal expansion coef-
ficients α1/α3 with fixed values μ1/μ3 = 0.2, v0 = 0.2, μf = 0.5, (a + b)/h = 1, R/h = 100. a For the contact pressure
σyy (x, 0)/μ1; b for the in-plane stress σxx (x, 0)/μ1

Fig. 8 Distributions of the non-dimensional temperature T/T0 in the contact region for different non-dimensional sliding speeds
v0 with fixed values μ1/μ3 = 0.2, (a + b)/h = 1, R/h = 100 and μf = 0.5, where T0 = μ∗σ0k1(κ+1)

k∗μ1α∗
1

5.3 Characteristics of the surface temperature distribution

The surface temperature can be achieved with the help of the surface stresses. Figures 8, 9 and 10 present the
influences of relative sliding speed v0, friction coefficient μf and the dimensionless thickness of the graded
layer h/(a + b) on the dimensionless surface temperature distributions T/T0, where T0 = μ∗σ0k1(κ+1)

k∗μ1α
∗
1

and

μ∗ is a typical value of friction coefficient, k∗ a typical value of the thermal conductivity coefficient. In the
following numerical analysis, we choose μ∗ = 0.5 and k∗ = 0.5, respectively.
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Fig. 9 Distributions of the non-dimensional temperature T/T0 in the contact region for different friction coefficients μf with
fixed values μ1/μ3 = 0.2, (a + b)/h = 1, R/h = 100 and v0 = 0.2, where T0 = μ∗σ0k1(κ+1)

k∗μ1α∗
1

Fig. 10 Distributions of the non-dimensional temperature T/T0 in the contact region for different non-dimensional layer thickness
h/(a + b) with fixed values μ1/μ3 = 0.2, μf = 0.5, h/R = 0.01 and v0 = 0.2, where T0 = μ∗σ0k1(κ+1)

k∗μ1α∗
1

Figure 8 shows the influence of v0 on the distribution of the dimensionless surface temperature, from
which one can see that the maximum surface temperature occurs near the center of the contact region due
to the maximum contact stress. The surface temperature increases significantly when v0 increases, which is
because of a greater v0 corresponding to much more heat flux generating on the contact surface. Figure 9 plots
the influence of the friction coefficient μf on the distribution of the dimensionless surface temperature. It is
shown that with an increasing friction coefficient, the maximum surface temperature increases sharply, which
is also attributed to the increase of heat flux generation. In addition, the influence of the normalized thickness
of graded layer h/(a + b) on the distribution of the surface temperature is exhibited in Fig. 10, where the
increase of h/(a + b) induces an increasing dimensionless temperature. The increase of h/(a + b) results in a
decreasing material gradation parameter δ, which leads to a smaller ratio of the thermal conductivity coefficient
k2/k1. Thus, it is much slower for the heat generated on the contact surface to flow into the graded layer, which
results in an increasing surface temperature T/T0 with an increasing thickness of the graded layer.

6 Conclusions

The features of thermo-elastic contact between a cylindrical punch and a finite graded layer are investigated.
The elastic modulus, thermal conductivity coefficient and the thermal expansion coefficient of the finite graded
layer vary according to different exponential laws in the thickness direction. The effects of frictional heat, fric-
tion coefficient, relative sliding speed and the thickness of the graded layer on the distributions of the contact
pressure, the in-plane surface stress and the surface temperature are mainly considered. It is found that the
in-plane tensile stress on the contact interface is largely responsible for the sliding-contact surface damage,
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which increases with an increasing μ1/μ3, while it decreases with a decreasing friction coefficient, increasing
sliding speed and layer thickness or an increasing thermal conductivity coefficient. During sliding, the surface
temperature near the center of the contact area is slightly higher than the other regions, which increases sig-
nificantly with an increasing relative sliding speed, friction coefficient and the layer thickness. Comparing to
the existing literatures for a homogeneous half-space, finite boundary conditions in the present model show
noteworthy influences on the stress and temperature distributions in the contact region.

It is found that, in order to prevent a finite graded layer from crack damage efficiently due to a sliding
contact, several alterative methods can be adopted reasonably, such as decreasing the ratio of the surface shear
modulus to the bottom one μ1/μ3, increasing the ratio of the surface thermal conductivity coefficient to the
bottom one k1/k3, increasing the relative sliding speed or decreasing the friction coefficient μf . The results in
the present paper should be useful for the design of novel graded materials in practical applications.

Acknowledgments The work reported here is supported by NSFC through Grants #10972220, #11125211, #11021262 and
Nano-973-Project #2012CB937500.
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