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Abstract Thermocapillary migration of a planar non-deformable droplet in flow fields with two uniform tem-
perature gradients at moderate and large Marangoni numbers is studied numerically by using the front-tracking
method. It is observed that the thermocapillary motion of planar droplets in the uniform temperature gradi-
ents is steady at moderate Marangoni numbers, but unsteady at large Marangoni numbers. The instantaneous
migration velocity at a fixed migration distance decreases with increasing Marangoni numbers. The simulation
results of the thermocapillary droplet migration at large Marangoni numbers are found in qualitative agree-
ment with those of experimental investigations. Moreover, the results concerned with steady and unsteady
migration processes are further confirmed by comparing the variations of temperature fields inside and outside
the droplet. It is evident that at large Marangoni numbers the weak transport of thermal energy from outside
of the droplet into inside cannot satisfy the condition of a steady migration process, which implies that the
advection around the droplet is a more significant mechanism for heat transfer across/around the droplet at
large Ma numbers. Furthermore, from the condition of overall steady-state energy balance in the flow domain,
the thermal flux across its surface is studied for a steady thermocapillary droplet migration in a flow field
with uniform temperature gradient. By using the asymptotic expansion method, a non-conservative integral
thermal flux across the surface is identified in the steady thermocapillary droplet migration at large Marangoni
numbers. This non-conservative flux may well result from the invalid assumption of a quasi-steady state, which
indicates that the thermocapillary droplet migration at large Marangoni numbers cannot reach a steady state
and is thus an unsteady process.

1 Introduction

The transport phenomenon of droplets/bubbles in a liquid is a very important topic for both fundamental
hydrodynamics and practical applications such as production of pure materials in manufacturing industry and
mass transfer in chemical engineering. Under normal gravity, the motion of droplet/bubbles results from the
buoyancy when the densities of two fluids are different. With fast development of space exploration, the studies
on the physical mechanism of droplet/bubble migration phenomena under reduced gravity become more and
more important. In this case, the buoyant effect vanishes, the droplet/bubble moves as a result of the variance
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of the interface tension. Thus, in the microgravity environment, a droplet/bubble suspended in an ambient
fluid will move in the direction of the temperature gradient due to thermocapillary force [1]. Thermocapillary
motion of a single droplet was firstly examined both theoretically and experimentally by Young et al. [2]. They
gave an analytical prediction on its migration speed in the limit case of zero Reynolds (Re) and zero Marangoni
(Ma) numbers, which is called the YGB model. Since then, the thermocapillary migration of a bubble has been
studied extensively by a series of theoretical analyses [3–6], numerical simulations [7–10] and experimental
investigations [11]. In the mean time, several numerical techniques for treating the two-phase flow, such as the
front-tracking method [12,13] and the level-set method [14], have also been developed, which may provide
effective techniques to directly investigate thermocapillary migration processes of bubbles or droplets [15–18],
interfacial mass transfer [19,20] and interfacial flows with soluble surfactants [21,22].

For the migration of a droplet, the experimental result for the migration speed at small Re numbers obtained
by Braun et al. [23] agrees with the YGB model. To include small inertial effects, the YGB model analysis was
extended to the range of small Ma numbers [24]. For finite Ma numbers, several numerical simulations on the
three-dimensional thermocapillary motion of non-deformable and deformable droplets were reported by Wang
et al. [25] and Haj-Hariri et al. [17], respectively. They used the front-tracking and level-set methods to catch
the interface and investigate the effects of physical parameters on migration speeds and mobility, respectively.
For large Ma numbers, Balasubramanian and Subramanian [26] used thermal boundary layers and found that
the migration speed of a droplet increased with increasing Ma number, which is in qualitative agreement
with corresponding numerical simulations [27]. Both the theoretical analysis and numerical simulation are
based on the assumptions of quasi-steady state and non-deformation of the droplet. However, the experimental
results of Hadland et al. [11] and Xie et al. [28] were not in qualitative agreement with the above theoretical and
numerical results, and it was shown that the droplet migration speed non-dimensionalized by the YGB velocity
decreased as Ma number increased. The experiment investigation was completed in several ranges of large Ma
numbers, where the droplet migration was in an accelerating state and did not reach a steady one. Recently, a
numerical investigation based on an axisymmetric droplet model [29,30] found that the steady thermocapillary
migration process did exist in a laboratory coordinate system and verified the above experimental results for
the case of large Ma numbers, however, the effects of Capillary numbers were not given in the calculations.
Owing to the invariance theory under transformation between two inertia frames, the above numerical result in
a laboratory coordinate frame, i.e., the steady migration speed of the droplet decreases as Ma increases, should
be in agreement with the theoretical and numerical results in a reference frame moving with the steady droplet
velocity [26,27]. However, this seems impossible. Moreover, Herrmann et al. [18] adopted a numerical method
to investigate the thermocapillary motion of deformable droplets and indicated that for large Ma numbers the
assumption of quasi-steady state was not valid. Therefore, the thermocapillary droplet migration at large Ma
numbers is still a topic to be studied with emphasis laid on its physical mechanism.

The planar or cylindrical droplet/bubble as a simple model has been extensively used to study its dynamical
mechanism [31–33]. In this paper, we use the front-tracking method to numerically study the thermocapillary
migration of a non-deformable planar droplet in the liquids at moderate and large Ma numbers and analyze
in detail the relation of the migration velocity to the temperature distribution inside and outside the droplet.
Moreover, by using asymptotic analysis, we investigate the continuity of thermal flux across the surface based
on the overall energy balance of the droplet and analyze the existence of quasi-steady migration of the droplet
at large Ma numbers.

2 Governing equations

Consider the thermocapillary migration of a planar droplet in a continuous phase fluid of infinite extent under a
uniform temperature gradient G. Gravity and deformation of the droplet shape are ignored. Two-dimensional
continuity, momentum and energy equations for the continuous phase fluid and the droplet in a laboratory
coordinate system are written as follows:

∂ρi

∂t
+ ∇ · (ρi vi ) = 0,

∂ρi vi

∂t
+ ∇ · (ρi vi vi ) = −∇ pi + ∇ · μi (∇vi + ∇T vi ) + Fσ , (1)

∂Ti

∂t
+ ∇ · (vi Ti ) = κi

ki
∇ · (ki∇Ti ),
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Thermocapillary migration of a planar droplet 611

where vi and Ti are velocity and temperature, respectively. Fσ is the surface tension force acting on the interface.
ρi , μi , ki , κi represent density, dynamic viscosity, thermal conductivity, and thermal diffusivity, respectively.
Symbols with subscript 1 and 2 denote physical coefficients of the continuous fluid and the droplet, respectively.
The solutions of Eqs. (1) have to satisfy the boundary conditions at infinity,

v1 = 0, T1 → T0 + Gz, (2)

where T0 is the undisturbed temperature of the continuous phase, and the boundary conditions at the interface
(rb, zb) of the two fluids

v1(rb, zb, t) = v2(rb, zb, t),

T1(rb, zb, t) = T2(rb, zb, t), (3)

k1
∂T1

∂n
(rb, zb, t) = k2

∂T2

∂n
(rb, zb, t),

where n is a unit vector normal to the interface. In the modeling assumptions, both fluids are immiscible, and
the physical properties are constant. The equations of state for density, viscosity, heat conduction, and heat
diffusivity are written as follows:

dρi

dt
= dμi

dt
= dki

dt
= dκi

dt
= 0. (4)

The reference velocity is defined as

vo = −σT G R0/μ1, (5)

where R0 is the radius of the droplet, and σT (= dσ/dT ) is the change rate of interfacial tension with tempera-
ture. By taking R0, vo and G R0 as the characteristic quantities to make coordinates, velocity and temperature
dimensionless, Eqs. (1) are rewritten in the following non-dimensional form:

∇ · vi = 0,

∂ρi vi

∂t
+ ∇ · (ρi vi vi ) = −∇ pi + 1

Re
∇ · μi (∇vi + ∇vT

i ) + fσ , (6)

∂Ti

∂t
+ ∇ · (vi Ti ) = 1

Ma

κi

ki
∇ · (ki∇Ti ),

where the physical coefficients are non-dimensionlized by the characteristic quantities of a continuous fluid
and fσ = Fσ R0/ρ1v

2
0. The boundary conditions (2) and (3) are non-dimensionlized as

v1 = 0, T1 → T0 + z (7)

at infinity, and

v1(rb, zb, t) = v2(rb, zb, t),

T1(rb, zb, t) = T2(rb, zb, t), (8)

k1
∂T1

∂n
(rb, zb, t) = k2

∂T2

∂n
(rb, zb, t)

at the interface between two fluids. The Reynolds number and Marangoni number are defined as

Re = ρ1v0 R0

μ1
, Ma = v0 R0

κ1
= Pr Re, (9)

where Pr = μ1/ρ1κ1 is the Prandtl (Pr) number. In what follows, the undisturbed temperature T0 and non-
dimensional physical parameters (ρ1 = μ1 = k1 = κ1 = 1) of the continuous phase are reduced for simplicity,
except when otherwise indicated.
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612 Z.-B. Wu, W.-R. Hu

3 Numerical simulation of thermocapillary droplet migration at moderate and large Ma numbers

3.1 Models and numerical methods

As shown schematically in Fig. 1, the symmetric axis of the container is taken as the z-axis. A droplet is placed
initially at the center of the coordinates and then moved along the z-axis. Thus, the solution of Eqs. (6) should
satisfy the following initial conditions in the whole domain x ∈ [x0, x1] and z ∈ [z0, z1]:

vi = 0, Ti = z, (10)

and non-slip/periodic boundary conditions at the top and bottom walls/the horizontal boundaries:

v1(x, z0) = v1(x, z1) = 0, T1(x, z0) = z0, T1(x, z1) = z1,

v1(x0, z) = v1(x1, z), T1(x0, z) = T1(x1, z). (11)

In the computation, we use a fixed regular staggered MAC grid in the computational domain. To discretize
Eqs. (6), we adopt a second-order central difference scheme for the spatial variables and an explicit predic-
tor-corrector second-order scheme for time integration. The predictor-corrector method is a combination of
the explicit Euler and the implicit trapezoidal methods to obtain an explicit technique with better convergence
characteristic. In the method, the solution at time step n + 1 is predicted by using the explicit Euler method

φ
†
n+1 = φn + f (tn, φ

n)�t, (12)

where † indicates that this is not the final value of the solution at tn+1. Rather, the solution is corrected by
applying the trapezoid rule

φn+1 = φn + 1

2

[
f (tn, φ) + f (tn+1, φ

†
n+1)

]
�t. (13)

To achieve the second-order accurate time integration of the velocity and temperature fields in Eqs. (6), we
employ the Chorin’s projection method to outline the first-order Euler integration in (12) as follows.

Since both fluids are assumed immiscible, all physical coefficients are discontinuous across the interface.
The interface is captured and updated by the front-tracking method [12,13]. When the interface is moved to a
new position, the density field is updated. The interface is considered to have a finite width so that the density
across the interface is continuous. Here, a weighting function suggested by Peskin [34] is adopted as

wi j (rp) = d(x p − i�x)d(z p − j�z) (14)

x

z

o

x0 x1
z0

z1

Fig. 1 Schematic of the computation domain for a planar droplet migration. The top and bottom walls are non-slip boundaries,
and the left and right boundaries are periodic ones
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Thermocapillary migration of a planar droplet 613

where

d(r) =
{

(1/4�r)[1 + cos(πr/2h)], |r | < 2�r,
0, |r | ≥ 2�r, (15)

and (x p, z p) is the interface node. Once the density is updated, the velocity field will be computed by Chorin’s
projection method, which is divided into two steps. One is a prediction step, where the effect of the pressure
is ignored,

ρn+1
i v∗

i − ρn
i vn

i

�t
= −∇ · (ρn

i vn
i vn

i ) + 1

Re
∇ · μn

i (∇vn
i + ∇T vn

i ) + fσ . (16)

Another is a correction step in terms of the pressure gradient,

ρn+1
i vn+1

i − ρn+1
i v∗

i

�t
= −∇ pn+1

i , (17)

where the pressure is obtained by solving the following Poisson equation:

∇ · 1

ρn+1
i

∇ pn+1
i = 1

�t
∇ · v∗

i . (18)

In solving Eq. (18), we use the successive over relaxation iteration method to get pn+1
i . When the pressure

is obtained, the corrected velocity field vn+1
i is determined from Eq. (17). Similarly, the energy equation is

discretized in the form

T n+1
i − T n

i

�t
= −∇ · (vn+1

i T n
i ) + 1

Ma

κn
i

kn
i
∇ · (kn

i ∇T n
i ). (19)

In terms of the corrected velocity field vn+1
i , the temperature field T n+1

i is determined. Until now, by using

the projection method, the first-order time integration φ
†
n+1 of the velocity, pressure, and temperature fields is

completed. In the mean time, other physical coefficients (μ, k, κ) across the interface at the time step n + 1
are also updated to have the same distribution as the density. Repeating the above process, we get a second
first-order accurate solution φ

††
n+2 at time step n + 2 based on the first-order accurate solution φ

†
n+1,

φ
††
n+2 = φ

†
n+1 + f

(
tn+1, φ

†
n+1

)
�t. (20)

Finally, the solution for the second-order time integration is obtained as follows:

φn+1 =
(
φn + φ

††
n+2

)
/2. (21)

Since the droplet in the migration process is assumed non-deformable, the vertical area average velocity in the
droplet is taken as the droplet migration velocity Vz . The nodes of interface are moved with this velocity at
each time step.

In solving Eq. (16), the surface tension force fσ is determined by referring to the temperature field. In
general, the surface tension force on a short front element is defined as

δFσ =
∫

�s

∂

∂s
(σ t)ds = (σ t)2 − (σ t)1 = �21(σ t), (22)

where t is a unit tangent vector, s is the arc length along the interface. σ is the surface tension coefficient
written as

σ = σ0 + σT T, (23)
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614 Z.-B. Wu, W.-R. Hu

where σ0 is the surface tension coefficient at a reference temperature T0, and σT is a negative constant for most
fluids. By using the above characteristic quantities, the non-dimensional surface tension force is written in the
form of body force as

δfσ = δFσ (R0/ρ1v
2
0)/(R2

0δxδz),

= �21(σ t)/ρ1v
2
0 R0δxδz, (24)

= �21[(σ0/v0μ1 − T )t]/Reδxδz,

= �21[(1/Ca − T )t]/Reδxδz,

where Ca(=v0μ1/σ0) is the Capillary number. To calculate the surface tension force fσ , the surface temperature
on the interface is firstly obtained by interpolating values on the grid points. The tangent vector is computed
from a Lagrangian interpolation polynomial fitting through four interface nodes. Then, the surface tension
force on the interface is distributed to the grid points by means of the weighting function (14).

3.2 Results and analysis

To check the sensitivity of the results to grid refinements, we perform calculations for a planar droplet migration
at Re = 5, Ma = 20, Ca = 0.01666 and ρ2 = μ2 = k2 = κ2 = 0.5 using the method described above. The
computational domain is chosen as 4 × 8. Based on 64 × 128, 96 × 192, and 128 × 256 grid points, i.e., 16,
24, and 32 grid points per droplet radius, the time evolution of the droplet migration velocity is calculated and
plotted in Fig. 2. The migration velocity curve seems to converge when the grid becomes finer. The difference
in the migration velocities computed with 24 and 32 grid points per droplet radius is very small (about 1.5%).
In the following calculations, we fix 24 grid points per droplet radius as the grid resolution. To further validate
our code, we compare the current computation results with Nas and Tryggvason’s [15], where the deformation
of the droplet is considered. In Fig. 3, it is observed that both results have the same trends and the migration
velocities are close together.

In the following calculations, we adopt the silicone oil of nominal viscosity 5cst and the FC-75 Fluorinert
liquid, i.e., the working media in the space experiment [28], as the continuous phase fluid and the droplet,
respectively. The physical parameters of the continuous fluid and the droplet at temperature 25◦C are given
in Table 1. σT is fixed as −0.044 dyn/cmK [28], and σ0 ≈ 6 dyn/cm [35] is adopted. From the values of
the continuous fluid parameters, the Pr number and the capillary length λ0 = √

σ0/ρ1g0 (with the earth’s
gravity g0 = 980 cm/s2) are determined as 67.8 and 0.08 cm, respectively. Most of the droplets in the space
experiment [28] have R0 ≥ λ0, which refers to the domination of the gravitational effect to the droplet shapes
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128 X 256
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Fig. 2 Droplet migration velocity versus non-dimensional time for three grid resolutions 64 × 128, 96 × 192, and 128 × 256 at
a fixed domain 4 × 8 under Re = 5, Ma = 20, Ca = 0.01666 and ρ2/ρ1 = μ2/μ1 = k2/k1 = κ2/κ1 = 0.5
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Fig. 3 Time evolution of the droplet migration velocity for grid resolution 96×192 and its comparison with Nas and Tryggvason’s
result [15] for the same parameters as given in Fig. 2

Table 1 Physical parameters of the continuous fluid (5cst silicone oil) and the droplet (FC-75) at temperature 25◦C, which are
the working media in the space experiment [28]

ρ (g/cm3) μ (10−2dyns/cm2) k (W/mK) κ (10−4cm2/s)

Silicone oil 0.91 4.268 0.111 6.915
FC-75 1.77 1.416 0.063 2.018

on the earth. However, in the microgravity environment(the effective gravity ge is about O(10−6) of g0), the
gravitational effect is neglected(R0 
 λe), so the droplet shapes are dominated by the capillary effect. The
computational domain is chosen as {x, z} ∈ {[−4, 4], [−4, 16]} and the resolution is fixed at 192 × 480. The
initial droplet is placed at the position (0,0), and the time step is 0.0002.

3.2.1 Flow field with the temperature gradient G = 12 K/cm

In the space experiments with G = 12 K/cm [28], Re and Ma lie, respectively, in the ranges of 4.5–302.6
and 145–5,525, their specific values depending on R0. To simulate the experimental processes, the physical
coefficients in the droplet migration processes are determined by changing R0. The correspondence of Re,
Ma, and Ca to R0 is presented in Table 2, where Re is in a range of moderate values and Ma have both mod-
erate and large numbers. Figure 4 displays the time evolution of droplet migration velocities for five sets of
non-dimensional coefficients. In the present range of Ma, the migration velocities versus time have complex
behaviors, which can be classified into three types based on the curve characters. At Ma = 44.7 (Re = 0.66),
the initial migration velocity increases sharply before t = 3 and then drops to approach a steady value. For
Ma = 402.5–1118.1(Re = 5.93–16.5), the initial accelerating process has a smaller peak value as Ma increases.
After the increasing–decreasing oscillation process, the terminal droplet migration velocity increases with time,

Table 2 Correspondence of non-dimensional parameters Re, Ma, and Ca to the droplet radius R0 for the droplet migration in a
flow field with the temperature gradient G = 12 K/cm

R0(cm) Re Ma Ca

0.05 0.66 44.7 0.0044
0.15 5.93 402.5 0.013
0.25 16.5 1118.1 0.022
0.35 32.3 2191.6 0.031
0.45 53.4 3622.8 0.040
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Fig. 4 Droplet migration velocity in a flow field with the temperature gradient G = 12 K/cm versus non-dimensional time at
Ma = 44.7, 402.5, 1,118.1, 2,191.6, and 3,622.8
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Fig. 5 Instantaneous thermocapillary migration velocity of the droplet in a flow field with the temperature gradient G = 12 K/cm
at a fixed migration distance lz = 1/1.5/2 cm denoted by diamonds/deltas/squares versus large Ma numbers. The experimental
results [28] rescaled by VYGB/v0 = 2/[(2 + 3μ2/μ1)(2 + k2/k1)] are plotted and denoted by circles

i.e., the droplet migration is in an accelerating state. The slope of the curve increases as Ma increases. For
Ma = 2191.6–3622.8 (Re = 32.3–53.4), the droplet migration velocity increases monotonously with time and
decreases with increasing Ma. We can thus conclude that in the time frame under investigation the thermo-
capillary droplet migration is steady at moderate Ma numbers, but becomes unsteady at large Ma numbers. In
the two space experiments, Figs. 4 of [11] and [28] showed that the whole migration processes were unsteady
and did not reach any steady state. Even a plateau appears in the curve of migration velocity vs migration
distance, the migration process seems to be an accelerating one after the slow varying period. To further com-
pare with the experimental investigation [28], we take several fixed migration distances lz and determine the
relation between instantaneous non-dimensional migration velocity Vz and Ma numbers. The numerical and
experimental results are plotted in Fig. 5, from which it is evident that both the numerical and experimental
migration velocities of droplet decrease as Ma increases in the range of large Ma numbers. Hence, at large Ma
numbers, the above simulation results are in qualitative agreement with those of experimental investigations
[11,28].
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(b)(a)

Fig. 6 Computed velocity fields at t = 20 under R0 = 0.25 cm, Re = 16.5, Ma = 1,118.1 in (a) the laboratory coordinate frame
and (b) the reference frame moving with the droplet

^
z

Fig. 7 Streamlines in a reference frame moving with the droplet under R0 = 0.25 cm, Re = 16.5, Ma = 1,118.1. Their time
evolution is displayed in 5 small figures from left to right. The non-dimensional time is chosen as 3, 10, 20, 40, and 60, respectively

In order to understand the phenomena exhibited in droplet migration processes, it is important to analyze the
evolution of the velocity and temperature fields. Figure 6 displays the computed velocity fields at t = 20 in both
the laboratory coordinate frame and the reference frame moving with the droplet at Re = 16.5 (Ma = 1,118.1).
In the laboratory coordinate frame, the streamlines for a moving droplet are closed and symmetric about the
z-axis. In the reference frame, when the external streamlines go around the droplet, a pair of vortices is formed
inside the droplet. It is evident that in the reference frame recirculation flows in both the continuous phase fluid
and the droplet are driven by the surface tension force generated by the temperature gradient along the surface.
In Fig. 7, we depict the pattern evolution of streamlines with time in a reference frame moving with the droplet
at Re = 16.5 (Ma = 1,118.1). Initially, there appear two vortices symmetric about the vertical diameter. Along
with the rising of the droplet, the pair of vortices in the droplet is kept, but the vortex centers are moving up. In
the whole process, the basic types of streamlines for both the internal and external motions are not changed.
For moderate Re numbers, both the convection and viscous terms in the momentum equation have important
effects on the fluid flow. The external flow just passes around the droplet and does not separate from the droplet
surface, and thus the computed velocity fields are similar in the range of moderate Re numbers.

In the range of R0, the fluid flow has behaviors similar to those for moderate Re numbers, but the thermal
transfer exhibits different characters for moderate and large Ma numbers. For moderate Ma numbers, both the
heat convection and the heat conduction have important effects on the energy transfer. Figure 8 displays the
time evolution of isotherms at moderate Ma (Ma = 44.7, Re = 0.66), which corresponds to that of migration
velocities shown in Fig. 4. As given in Eq. (23), the surface tension coefficient decreases with the increasing
of the local temperature. For a temperature field with its gradient in the z direction, the generated surface
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618 Z.-B. Wu, W.-R. Hu

Fig. 8 Isotherms in a laboratory coordinate frame are selected from the computation of the droplet migration under R0 = 0.05 cm,
Re = 0.66, Ma = 44.7. Notation is the same as in Fig. 7

Fig. 9 Same as Fig. 8, except R0 = 0.15 cm, Re = 5.93, Ma = 402.5

tension force is a net force along the surface. At the beginning, the droplet starts to move toward the warm side
under the action of net force. It induces in turn viscous stresses in both fluids, which causes streamlines inside
and outside the droplet to form double vortices and to go around the droplet, respectively. The temperature
field inside the droplet is affected by the two rotating vortices. The horizontal isotherm T = 0 in the droplet
is moving up, as well as bending along the migration direction. Along with the rising of the droplet, both
the internal and external temperature fields around the droplet surface are re-distributed due to the action of
heat convection. In the process, the isotherm T = 0 moves up and approaches the top of the droplet. At
t = 20, a small cap-type isotherm T = 0 is formed within the droplet. Meanwhile, under the action of heat
conduction, the thermal energy is transferred from outside of the droplet to inside, so the temperature inside
the droplet increases. At t = 60, the temperature of cap-type isotherm in the droplet reaches T = 2. Hence,
both the temperature fields inside and outside the droplet increase with time. Only when both the internal
and external temperature fields satisfy linear relations with the same slope does the droplet migration reach
a steady state. For large Ma numbers, the effect of heat convection is stronger than that of heat conduction.
Figure 9 displays the time evolution of isotherms at large Ma (Ma = 402.5, Re = 5.93), which corresponds
to that of the migration velocity shown in Fig. 4. In the initial (accelerating) stage of migration, the evolution
of the isotherms is similar to that shown in Fig. 8. In the following (oscillation) stage of migration, the bent
isotherms in the droplet move to approach the top of the droplet and are converted to pea-type ones and then to
earphone-type ones. In the last (accelerating) stage of migration, the earphone-type isotherms are transformed
into those with two symmetric vortices. In the whole migration process, although the temperature inside the
droplet increases, the temperature of minimal isotherm is still kept at T = 0. It implies that the thermal energy
transfer from outside of the droplet to inside is weaker than that shown in Fig. 8. Figure 10 displays the time
evolution of isotherms at a still larger Ma (Ma = 2,191.6, Re = 32.3), which corresponds to that of the migration
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Fig. 10 Same as Fig. 8, except R0 = 0.35 cm, Re = 32.3, Ma = 2,191.6
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Fig. 11 Time evolution of temperature at point (xc, zc) inside the droplet and point (xc, zc +2) outside the droplet, where (xc, zc)
is the center of the droplet in the laboratory coordinate system

velocity shown in Fig. 4. In the whole (accelerating) process of migration, the initial evolution of the isotherms
is similar to that shown in Fig. 9, except for the slower movement of the isotherms in approaching the top
of the droplet. Then, the pea-type isotherms are converted to earphone-type ones. And finally, the isotherms
with two vortices symmetric about the vertical diameter in the droplet are formed. At t = 60, the fact that
the minimal isotherm T = 0 has larger closed area in the droplet means that the thermal energy transfer from
outside of the droplet to inside is weaker than that shown in Fig. 9. Thus, at large Ma numbers, although the
temperature outside the droplet increases fast as the droplet rises, the temperature inside the droplet has only
a slow increase. The droplet migration does not reach a steady state and is thus an unsteady process.

To further quantitatively depict the steady and unsteady migration processes, we will investigate the time
evolution of temperature fields inside and outside the droplet. Figure 11 displays the temperature at the point
(xc, zc) inside the droplet and the point (xc, zc + 2) outside the droplet in the migration processes, where
(xc, zc) is the center of the droplet in the laboratory coordinate system. It is evident that for the moderate
Ma(=44.9) number time evolution curves of the temperature at these two points after t0 = 20 are approx-
imately linear and parallel. Both the temperatures inside and outside the droplet satisfy the linear relation:
Ti = Ti (t0) + V∞(t − t0), which indicates a steady migration process with the constant velocity Vz = V∞.
However, for large Ma numbers, although the time evolution curves of the temperature inside and outside the
droplet after t0 = 20 are approximately linear, they are not parallel. The slope of the time evolution curve of
the temperature inside the droplet is smaller than that outside the droplet, so the difference of the temperatures
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Fig. 12 Droplet migration velocity in a flow field with the temperature gradient G = 9 K/cm versus non-dimensional time at
Ma = 44.7, 301.9, 838.6, 1,643.7, and 2,717.1

at these two points increases as time increases. It implies that the terminal droplet migration does not reach a
steady state and is thus an unsteady process. Therefore, the advection around the droplet is a more significant
mechanism for heat transfer across/around the droplet at large Ma numbers.

3.2.2 Flow field with the temperature gradient G = 9 K/cm

In the space experiments with G = 9 K/cm [28], Re and Ma lie, respectively, in the ranges of 3.2–89.8 and 148–
4,103, their specific values depending on R0. To simulate the experimental processes, the physical coefficients
in the droplet migration processes are determined by changing R0. The correspondence of Re, Ma and Ca to
R0 is presented in Table 3, where Re is in a range of moderate values and Ma have both moderate and large
numbers. Figure 12 displays the time evolution of droplet migration velocities for five sets of non-dimensional
coefficients. In the present range of Ma, the curves of migration velocities versus time are classified into three
types based on their characters. At Ma = 33.5 (Re = 0.49), the initial migration velocity increases sharply
near t = 2 and then drops to approach a steady value. For Ma = 301.9–838.6 (Re = 4.45–12.4), after the
increasing–decreasing oscillation process, the droplet migration is in an accelerating state. For Ma = 1,643.6–
2,717.1 (Re = 24.2–40.1), the droplet migration velocity increases monotonously with time and decreases
with increasing Ma. We can thus conclude that in the time frame under investigation the thermocapillary
droplet migration is steady at moderate Ma numbers, but becomes unsteady at large Ma numbers. To further
compare with the experimental investigation [28], we take several fixed migration distances lz and determine
the relation between instantaneous non-dimensional migration velocity Vz and Ma numbers. The numerical
and experimental results are plotted in Fig. 13, from which it is evident that both the numerical and experi-
mental migration velocities of the droplet decrease as Ma increases in the range of large Ma numbers. Hence,
at large Ma numbers, the above simulation results are in qualitative agreement with those of experimental
investigations.

Table 3 Correspondence of non-dimensional parameters Re, Ma, and Ca to the droplet radius R0 for the droplet migration in a
flow field with the temperature gradient G = 9 K/cm

R0(cm) Re Ma Ca

0.05 0.49 33.5 0.0033
0.15 4.45 301.9 0.010
0.25 12.4 838.6 0.017
0.35 24.2 1,643.6 0.023
0.45 40.1 2,717.1 0.030
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Fig. 13 Instantaneous thermocapillary migration velocity of the droplet in a flow field with the temperature gradient G = 9 K/cm
at a fixed migration distance lz = 1/1.5/2 cm denoted by diamonds/deltas/squares versus large Ma numbers. The experimental
results [28] rescaled by VYGB/v0 = 2/[(2 + 3μ2/μ1)(2 + k2/k1)] are plotted and denoted by circles

4 Theoretical analysis of thermocapillary droplet migration at large Ma numbers

4.1 Quasi-steady-state assumption

In general, the surface tension is a linear decreasing function of the local temperature. For a temperature field
with its gradient in the z direction, the generated surface tension force is a net force along the surface, and the
droplet starts to move toward the warm side under the action of net force. When the net force acting on the
droplet at the flow direction is zero, the thermocapillary droplet migration reaches a steady process. However,
due to the variation of physical parameters with the ambient temperature, the migration process may not reach
any steady state. Only when the migration is sufficiently slow that the order of relevant time scale for the
transport process to generate steady velocity and temperature fields is smaller than that for the droplet to move
an appreciable distance, the assumption of the quasi-steady state is valid. It means that after experiencing an
initial unstable migration process the droplet migration may reach a steady state at the time t0 and the position
r0 = z0k, i.e., migrating with a constant droplet migration speed V∞. Using the coordinate transformation
from the laboratory coordinate system to a coordinate system moving with the droplet velocity V∞,

r = r̄ + r0 + V∞(t − t0)k,

vi (r, t) = v̄i (r̄) + V∞k, (25)

Ti (r, t) = T̄i (r̄) + z0 + V∞(t − t0),

the energy equation in Eqs. (6) can be formulated as

V∞ + ∇̄ · (v̄i T̄i ) = 1

Ma

κi

ki
∇̄ · (ki ∇̄ T̄i ) (26)

in a polar coordinate system r̄ = (r̄ , θ). Under the assumption of a non-deformable droplet, the radial coordi-
nate axis is the outer normal vector of the interface. By using the transformation (25), the boundary conditions
(7) and (8) can be, respectively, written as follows:

v̄1 = −V∞k, T̄1 → r̄ cos θ, (27)
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at places far away from the droplet and

ū1n(1, θ) = ū2n(1, θ) = 0,

v̄1s(1, θ) = v̄2s(1, θ),

T̄1(1, θ) = T̄2(1, θ), (28)

∂ T̄1

∂n
(1, θ) = k2

∂ T̄2

∂n
(1, θ)

at the interface of the two fluids. Thus, once the droplet migration reaches a steady state, the above problem
of (6, 7, 8) in the laboratory coordinate system can be described by steady energy equations (26) with bound-
ary conditions (27, 28) in the coordinate system moving with the droplet velocity. This implies the overall
steady-state energy balance with two phases in the flow domain in the co-moving frame of reference.

4.2 Non-conservative integral thermal flux across the droplet surface at large Ma numbers

To analyze the energy equations with a small parameter ε = 1/
√

V∞Ma, Eqs. (26) are rewritten as

1 + ∇̄ · (v̄1T̄1) = ε2∇̄ · (∇̄ T̄1), (29)

1 + ∇̄ · (v̄2T̄2) = ε2κ2∇̄ · (∇̄ T̄2), (30)

where both the velocity fields v̄i in the surrounding fluids and in the droplet are rescaled by V∞.
To confirm the overall steady-state energy balance of two phases in the flow domain with respect to the

co-moving frame of reference, we have to integrate Eqs. (29, 30) with an asymptotic expansion of the outer
temperature field at infinity with respect to the small parameter ε. To determine the asymptotic behavior of T̄1
at r̄ � 1, we rewrite Eq. (29) as follows:

1 + ū1
∂ T̄1

∂ r̄
+ v̄1

r̄

∂ T̄1

∂θ
= ε2�̄T̄1. (31)

Letting

ū1 = ū0
1 + o(1),

v̄1 = v̄0
1 + o(1), (32)

T̄1 = T̄ 0
1 + o(1),

we have the energy equation to leading order

1 + ū0
1
∂ T̄ 0

1

∂ r̄
+ v̄0

1

r̄

∂ T̄ 0
1

∂θ
= 0. (33)

By using the characteristic line method, the primary approximation of the outer temperature field in the con-
tinuous phase is derived as

T̄1 = r̄ cos θ +
r̄∫

∞
(v̄0

1 sin θ − ū0
1 cos θ − 1)/ū0

1|
dr̃ + o(1), (34)

where 
 ∼ (r̄ − 1/r̄) sin θ . For moderate Re numbers, the velocity fields in Eq. (34) can be described by
the potential flows. By using the scaled inviscid velocity field in the continuous phase flow passing a circular
cylinder [36]

ū0
1 = − cos θ

(
1 − 1

r̄2

)
,

v̄0
1 = sin θ

(
1 + 1

r̄2

)
,

(35)
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Eq. (34) is written as

T̄1 = r̄ cos θ +
∞∫

r̄

1

r̃2 − 1

2
2/(r̃ − 1/r̃)2 − 1

±√
1 − 
2/(r̃ − 1/r̃)2

|
dr̃ + o(1), (36)

where 
[= sin θ(r̄ − 1/r̄)] is the streamfunction of the continuous phase, the symbol “+” before the integral
is so determined as to preserve the monotonously increasing trend of T̄1(r̄ , 0) with r̄(>1) in the continuous
phase, and the symbol “±” in the integral depends on the value of θ (the symbol “+”/“−” corresponds to
θ ∈ [0, π/2)/[π/2, π)). At r̄ � 1, Eq. (36) can be expressed as

T̄1 ≈ r̄ cos θ +
∞∫

r̄

1

r̃2

2
2/r̃2 − 1

±√
1 − 
2/r̃2

|
dr̃ + o(1)

= r̄ cos θ − 1

r̄
cos θ + o(1), (37)

where 
 ≈ sin θ r̄ .
In physics, the thermocapillary migration of a planar droplet has the mirror symmetry about the coordinate

axis θ = 0 or π , so the overall energy balance in the whole flow domain θ ∈ [0, 2π) can be generated by
combining the energy balance in two connected flow domains θ ∈ [0, π) and θ̂ ∈ [0, π) through the trans-
formation θ̂ = 2π − θ . Integrating Eqs. (29, 30) in the continuous phase domain (r̄ ∈ [1, r̄∞], θ ∈ [0, 2π])
and within the droplet region (r̄ ∈ [0, 1], θ ∈ [0, 2π]) and then transforming them to linear integration on the
droplet surface and the surface at infinity by using Green’s formula, we have

π(r̄2∞ − 1) +
∮

ū1n T̄1|r̄∞ds −
∮

ū1n T̄1|1ds = ε2
(∮

∂ T̄1

∂n
|r̄∞ds −

∮
∂ T̄1

∂n
|1ds

)
(38)

and

π +
∮

ū2n T̄2|1ds = ε2κ2

∮
∂ T̄2

∂n
|1ds. (39)

Using the normal velocity boundary condition at the interface in (28) and the temperature field at infinity in
(37), we can derive

∮
∂ T̄1

∂n
|1ds = − π

ε2

(
1 − 1

r̄2∞

)
+ o

(
1

ε2

)
≈ − π

ε2 (40)

and
∮

∂ T̄2

∂n
|1ds = π

κ2ε2 . (41)

To analyze the thermal flux near the boundary, we write the integrals of Eqs. (40, 41) in their discretization

forms and simplify the expressions in terms of the mirror symmetrical relationship ∂ T̄i
∂ r̄ |1,θ = ∂ T̄i

∂ r̄ |1,2π−θ as

∮
∂ T̄1

∂n
|1ds =

2π∫

0

∂ T̄1

∂ r̄
|1dθ =

N∑
i=1

∂ T̄1

∂ r̄
|1�θ = 2

N/2∑
i=1

∂ T̄1

∂ r̄
|1�θ < 0 (42)

and

∮
∂ T̄2

∂n
|1ds =

2π∫

0

∂ T̄2

∂ r̄
|1dθ =

N∑
i=1

∂ T̄2

∂ r̄
|1�θ = 2

N/2∑
i=1

∂ T̄2

∂ r̄
|1�θ > 0, (43)
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where �θ = 2π/N . And thus we arrive at a conclusion that there must be some interface points θi ∈ [0, π]
where the following equation holds:

∂ T̄1

∂ r̄
(1, θi ) < 0 <

∂ T̄2

∂ r̄
(1, θi ), (44)

or some interface points θi and θ j ∈ [0, π] where the following equations hold:

0 <
∂ T̄1

∂ r̄
(1, θi ) <

∂ T̄2

∂ r̄
(1, θi ),

∂ T̄1

∂ r̄
(1, θ j ) <

∂ T̄2

∂ r̄
(1, θ j ) < 0. (45)

Physically, this means that near these points θi the thermal energy is transferred from the interface to outside
(the surrounding fluid) as well as from the interface to inside (the droplet) or near these points θi /θ j the trans-
ference of thermal energy from outside/the interface to the interface/outside is weaker/stronger than that from
the interface/inside to inside/the interface. On the one hand, if Eq. (44) can satisfy the thermal flux boundary
condition in Eqs. (28), thermal sources inside the interface will be introduced to balance the transference of
thermal energy. On the other hand, if Eqs. (45) can satisfy the thermal flux boundary condition in Eqs. (28),
thermal sinks inside the interface or thermal sources in the droplet will be introduced to decrease the transfer-
ence of thermal energy from the interface to outside or increase the transference of thermal energy from inside
to the interface. Since there are absolutely no thermal sources or sinks inside the interface or thermal sources
in the droplet, the above transport processes of thermal energy near the interface seem impossible. It means
that the thermal flux across the droplet surface is non-conservative. Moreover, from Eqs. (40, 41), we have

∮ [
k2

∂ T̄2

∂ r̄
|1 − ∂ T̄1

∂ r̄
|1

]
ds = π

ε2

(
1 + k2

κ2

)
= π

(
1 + k2

κ2

)
V∞Ma. (46)

Since both k2 and κ2 are positive, we have

k2

∮
∂ T̄2

∂ r̄
|1ds �

∮
∂ T̄1

∂ r̄
|1ds. (47)

From Eqs. (28), we obtain the equivalent integral thermal flux at the boundary

∮
∂ T̄1

∂ r̄
|1ds = k2

∮
∂ T̄2

∂ r̄
|1ds. (48)

So, if the thermal flux boundary condition in Eqs. (28) is satisfied, Eq. (47) should be reduced to Eq. (48),
which seems impossible. It is termed as a non-conservative integral thermal flux across the surface for the
steady thermocapillary droplet migration at large Ma numbers. This implies the overall steady-state energy
unbalance of two phases in the flow domain in the co-moving frame of reference.

Equation (47) indicates that at large Ma numbers the integral thermal flux across the surface within the
droplet is larger than the surface thermal flux with respect to the continuous phase fluid. However, it should
be noted that the droplet migration is, at that time, still in an unsteady state. In the analytical and numerical
results [26,27], the steady migration velocity (in direct proportion to Ma) is large at high Ma numbers. Under
the condition of large migration velocity, it is unlikely that the order of relevant time scale for the transport
process to generate steady velocity and temperature fields is smaller than that for the droplet to move an
appreciable distance. So, due to the variation of physical parameters with the ambient temperature, a steady
migration process may not be reached. Both experimental results in Fig. 4a, b of [11] and Fig. 4b, d of [28]
clearly display that the thermocapillary droplet migration at large Ma numbers is in an accelerating state and
does not reach any steady one. Moreover, numerical simulations of the thermocapillary motion of deformable
and non-deformable droplets in [18] and the above Sect. 3 indicate that the assumption of quasi-steady state
is not valid for large Ma numbers. Thus, it is clear that the invalid assumption of quasi-steady state for the
thermocapillary droplet migration process is a reasonable explanation for the non-conservative integral thermal
flux across the droplet surface.
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5 Conclusion and discussions

In this paper, numerical studies are carried out for thermocapillary migration of a planar non-deformable
droplet in two uniform temperature gradients at moderate and large Ma numbers by using the front-tracking
method. Some calculations at moderate and large Ma numbers are performed to analyze the thermocapillary
migration for droplets with different sizes. In the range of droplet radius under study, Re takes moderate values,
and thus the computed flow fields are similar. There appear different types of migration processes in the time
frame under investigation depending on the values of Ma, which varies within a large range. At moderate Ma
numbers, after an increase–decrease process in the time evolution of the droplet velocity, the droplet migration
reaches a steady state. In the range of large Ma numbers, the oscillation process in the time evolution of the
droplet velocity is transformed into a monotonous accelerating process as Ma increases. The terminal drop-
let migration is in an acceleration process and does not reach any steady state. The instantaneous migration
velocity at a fixed migration distance decreases with increasing Ma number. The numerical simulation results
are in qualitative agreement with experimental ones.

Moreover, in comparing the variations of temperature fields inside and outside the droplet, it is evident
that at large Ma numbers the weak transport of thermal energy from outside of the droplet into inside cannot
meet the requirement put forward by the steady migration process, which implies that the advection around
the droplet is a more significant mechanism for heat transfer across/around the droplet at large Ma numbers.

Furthermore, from the condition of overall steady-state energy balance in the flow domain, we have iden-
tified a non-conservative integral thermal flux across the surface for a steady thermocapillary drop migration
in a uniform temperature gradient at large Ma (Re) numbers. It may well result from the invalid assumption of
quasi-steady state, and this conclusion implies that the thermocapillary drop migration at large Ma (Re) cannot
reach any steady state and is thus an unsteady process.

We emphasize that all of the above numerical and theoretical results about the thermocapillary migration
system of droplets involve assumptions of planar non-deformable interfaces and are subject to constant physical
parameters. As mentioned in Sect. 1, the simple modeling is easily applied to explore the dynamical mechanism
of droplets, but has potential drawbacks to reproduce the experimental results [28]. The extension to the more
realistic case of three-dimensional deformable droplets migrating in a flow field with temperature-dependance
physical parameters remains to be implemented.
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