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Friction coefficient and error test via micro-rotation mechanics model
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Abstract An air pressure-loading mode incorporated into the friction apparatus is firstly applied
to coatings tribology involving large load, automation, stepless and continuous loading processes.
A novel measurement principle is proposed and a micro-rotation mechanics model was developed
for high precision measurement of friction coefficient. By properly designing and locating two
sensors real-time monitoring the normal and friction forces, the troublesome influences in friction
measurement is considerably relieved which come from surface characteristics of coatings of the
samples in traditional friction test processes. By calculation and analysis, the max rotation angle
θmax = 0.001 8◦ is gained, which indicates that the measurement error of the apparatus is greatly
reduced. The whole system error is about 1.15% given by finite element method and indication error
of the least square fitting of measurements. c© 2012 The Chinese Society of Theoretical and Applied
Mechanics. [doi:10.1063/2.1202107]
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Friction apparatus is a professional equipment test-
ing and evaluating tribological characteristics.1,2 With
the development of friction testers, different types
of loading and corresponding measurement princi-
ples emerge consecutively.3–5 Development of computer
technology also is beneficial for the test operation of
high-precision testers.6 Traditional load methods are
commonly adopted in testers, such as weight, servo sys-
tems, hydraulic systems, and so on. Most of the ex-
isted testers consider the positive pressure as a con-
stant, ignoring the influences of the coatings, surface
characteristics.7 While testers run at high speed, the
traditional loading type of standard weight would pro-
duce vibration, and the error would amount up to 25%
according to statistics.8 To reduce the impact of fluc-
tuations, air pressure-loading is introduced and sensors
are used to monitor simultaneously the changes of pres-
sure and friction in a real-time manner, obtaining an
instantaneous coefficient of friction.

The results show that the friction was measured
by mechanical amplification, such as torque amplifica-
tion pendulum rod amplification. Amplification princi-
ples measure the friction coefficient with certain error.9

Meanwhile, with development of coatings technologies,
analysis of the behavior of surfaces in contact and theo-
retical basis for the prediction of surfaces characteristics
are needed.7 There are few studies focused on tribolog-
ical behaviors of coatings with real-time simultaneous
monitoring of normal and friction forces.10,11 So a new
mechanics model is proposed in the present paper for
micro-rotation measurement based on the air pressure-
loading method. The system error of apparatus was
analyzed by model calculation and indication error of
the least square fitting of measurement. Furthermore,
given the fluctuation error, collecting error and other
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Fig. 1. Schematic diagram of the air pressure-loading fric-
tion apparatus.

factors, comprehensive calculations give the overall sys-
tem error.

Figure 1 shows the schematic diagram of the air
pressure-loading friction apparatus. The apparatus in-
cludes five main parts: loading part, transmission part,
clamping part, signal acquisition and data processing.
Measurement system consists of two sensors monitoring
pressure and friction, respectively. The range of senor is
0–500 N and accuracy is 0.001 N. The accuracy of elec-
tronic valve is 0.002 MPa and the loading gradient is
0.05 N.

As shown in Fig. 1, two sensors are rigidly hinged
on the loading beam, which is directly connected to the
cylinder. A variable frequency motor is used to drive
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the sample holder via belt. In testing process, the elec-
tronic valve controls the cylinder, and the computer ap-
plies loads via the electronic valve. Driven by the motor,
the sample holder can rotate or reciprocate, producing
signal pressure and friction. The computer collects sig-
nals and changes the mode signals into digital signals.
The experiment process is monitored through closed-
loop control.

Surface roughness and mechanical factors of parts
resulted in micro-fluctuation under normal operation
of apparatus. In order to reduce the influence of sur-
face, two sensors were adopted to monitor and execute
dynamic adjustment of the air pressure-loading, which
could accurately collect instantaneous changes of nor-
mal and friction forces, giving precise friction coefficient
under the help of computer. Influences of surface rough-
ness and mechanical factors on friction coefficient were
greatly relieved by incorporating micro-rotation mea-
surement mechanics model with advanced measurement
technology.

Among traditional friction testers, the normal force
was considered as a constant force (weight load). How-
ever, this situation could not reflect the changes of nor-
mal force resulting from contact surface characteristics.
Figure 2(a) shows a scanning electron microscope sur-
face morphology of CrAlSiN coating. It’s easy to un-
derstand that surface characteristics of the structure
film must affect the evaluation of normal force. Figure
2(b) shows tribological mechanism of a contact involv-
ing CrAlSiN coating surface. The assumption of con-
stant force can not reflect the existence of micro-contact
in the friction process and thus cannot meet the require-
ment of the development of modern micro-mechanics.

Most traditional measurement principles were used
for the existent apparatus measured friction by magni-
fying angle, torque, beam distortion and so on. The fric-
tion force was measured by amplification principle with
certain inherent errors.12 Figure 3 shows a comparison
between the weight load and the real-time measured
load, revealing a clear difference between them. There
was a difference δ between weight load and measured
load so that the importance of real-time measured load
for deriving friction coefficient in micro-tribology could
be understood. And thus our apparatus used real-time
monitored normal and friction forces to relieve the trou-
blesome influence on friction measurement which came
from coatings surface characteristics of the sample in
traditional friction test processes.

Figure 4 shows the schematic diagram of the micro-
rotation measurement mechanics model. The dotted
line is diagram of a pendulum rod which exhibits tiny
deflection under loading. When the apparatus worked,
friction from the upper and lower samples made the
pendulum rod exhibit very tiny rotation. The pressure
and friction were directly monitored by sensors, because
the deformation of sensors themselves and the rotation
of the pendulum rod were extremely tiny.

As can be seen from Fig. 4, the equilibrium of pen-
dulum rod was affected by three forces (friction force
f , tensile force P and reaction force N ′). The rotation

angle of pendulum rod is θ. From the moment balance
theory we can get

(f cos θ +N ′ sin θ) (l1 + l3 − ∆l) =

P (l1 − l2 tan θ) cos θ. (1)

Equation (1) can be written in the following form

f =
P (l1 − l2 tan θ)

l1 + l3 − ∆l
−N ′ tan θ, (2)

where l = N/λ, N is pressure from apparatus, λ is
deformation constant of the sensors. l1 = 120 mm,
l2 = 80 mm and l3 = 30 mm are structure parame-
ters of the apparatus. From λ = 7.8 × 104 N/mm and
Nmax = 300 N, the maximum deformation of sensor is
lmax = N/λ = 3.8 × 10−3 mm (l1, l2, l3 >> lmax). The
maximum deformation lmax is substituted into the fol-
lowing equation

l21 + (l1 + l2 tan θ)
2

cos2 θ − 2l1 ·
(l1 − l2 tan θ) cos2 θ = a2,

l22 + (l2 + ∆lmax)
2 − 2l2 (l2 + ∆lmax) cos θ = a2. (3)

By software of Matlab 7.0, we can get θmax ≈
0.001 8◦ from Eq. (3). Sites of sensors were optimized
and sensors were very sensitive to the rotation of pen-
dulum rod, therefore, errors of the mechanical part and
the collection part are directly reduced.

As l, l2 tanθ and N ′ tan θ can be ignored and θmax =
0.001 8◦, Eq. (2) is simplified to

f =
Pl1
l1 + l3

. (4)

So the formula of friction coefficient can be written in
the following form

µ =
Pl1

N (l1 + l3)
, (5)

where tensile force P and normal force N were simulta-
neously measured by the two sensors.

Amplification principles of rotating angle or torque
were applied in the existed friction testers, mean-
while they also amplified errors. Our apparatus
adopted micro-rotation measurement principle (θmax =
0.001 8◦), and thus the error was extremely small. Ac-
curate friction coefficient could be obtained by data pro-
cessing. The maximum rotation angle (θmax = 0.001 8◦)
was very small, by calculation we knew that the neglec-
tion of l and l2tanθ did not affect the accuracy of friction
coefficient.

Error of apparatus includes error of measurement
principle, mechanical parts, deformation, signal acqui-
sition and external disturbance.9 In the present appa-
ratus, the error of data acquisition system is main. The
indication error of the least square method was used
to analyze the error of acquisition system. In the least
square method, the measurement value of sensor was
selected as the fitting object, and then the indication
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Fig. 2. (a) Scanning electron microscope surface morphology of CrAlSiN coating and (b) tribological mechanism of a contact
involving CrAlSiN coating surface.

Fig. 3. Comparison of real pressure load with constant
pressure load.

error of the fitting curve was properly transformed, and
finally errors calculation gave acquisition system’s er-
rors. xn is the standard value of input, yn is the cor-
responding measurement value and f (y) is set to be
the fitting curve of the measurement values. Accord-
ing to the least square method, the least square for-

mula for fitting f (y) was ε =
n∑

i=1

[f (yi) − (yi − xi)]
2
.

The essence of the least square method was to mini-
mize ε. Therefore, we could seek the first-order partial
derivatives of all undetermined coefficients of f (y) on
ε and set all values to 0. Equations composed by all
undetermined coefficients of f (y) were got and then
the equations were solved to obtain all undetermined
coefficients, finally the exact expression of f (y) was ob-
tained. We also got relative error (%), which was de-
fined as (yn − f (yn) − xn)/xn × 100%. By using the
above method to calibrate acquisition system and using
Matlab software, the maximum error of the acquisition
system was calculated to be 0.26%. To sum up, the sys-
tem’s overall error was about 1.15% when the apparatus
was under normal operation conditions.

The friction apparatus could achieve large load,
high precision and automation, stepless and continu-
ous load process which was optimized by integrating

Fig. 4. Schematic diagram of the micro-rotation measure-
ment mechanics model.

air pressure-loading, micro-rotation measurement prin-
ciple, advanced control technology and the ball-disc fric-
tion apparatus. The new measurement principle could
significantly reduce the troublesome influence in friction
measurement which came from the sample fluctuations
in traditional friction test processes. Adoption of micro-
rotation measurement principle in design resulted in a
max rotation angle of θmax = 0.001 8◦, and thus the
measurement error of apparatus was greatly reduced.
The overall system error was about 1.15%, derived from
analysis of finite element method and indication error
of the least square fitting of measurements. The results
showed that the apparatus had much higher reliability
and better repeatability, and provided a new and effec-
tive test way to study tribology.
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