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ABSTRACT

A third-order numerical model is developed for global advection transport computation. The multimoment

constrained finite-volume scheme has been implemented to the hexagonal geodesic grid for spherical ge-

ometry. Two kinds of moments (i.e., point value and volume-integrated average) are used as the constraint

conditions to derive the time evolution equations to update the computational variables, which are the values

defined at the specified points over each mesh element in the present model. The numerical model has rig-

orous numerical conservation and third-order accuracy. One of the major merits of the present method is that

it does not explicitly involve numerical quadrature, which leads to great convenience in accurately computing

curved geometry and source terms. The present paper provides an accurate and practical formulation for

advection calculation in the hexagonal-type geodesic grid.

1. Introduction

Geodesic grids enjoy computational efficiency and

overall accuracy from the quasi-global uniformity of mesh

spacing, and thus have become increasing popular in the

community of global modeling for atmospheric and oce-

anic dynamics. Some of these models are found in

Williamson (1968), Sadourny et al. (1968), Stuhne and

Peltier (1999), Tomita et al. (2001), Majewski et al. (2002),

Bonaventura and Ringler (2005), Giraldo (2006), Ii and

Xiao (2010), and Ringler et al. (2010), among others. Two

kinds of control volumes or mesh elements (i.e., triangular

Delaunay tessellation and hexagonal Voronoi tessella-

tion), can be straightforwardly generated for constructing

finite-volume schemes for the geodesic grids. Since both

triangular and hexagonal meshes on the sphere have the

nature of unstructured grids where the coordinate has to

be locally defined and is not continuous at cell boundaries,

the conventional high-order reconstructions devised for

structured grids cannot be directly applied. The high-order

conventional finite-volume method, which uses the cell-

integrated value only as the computational variable,

usually needs to generate multidimensional interpolation

over a cluster of mesh cells, which are not always chosen

in the most optimized way, and even worse, choice of the

stencil might result in computational instability in some

cases for the triangular mesh elements (Friedrich 1998;

Weller et al. 2009). Efforts have been so far reported

to improve the advection calculation on the hexagonal

geodesic grid (Lipscomb and Ringler 2005; Miura 2007;

Skamarock and Menchaca 2010). To our knowledge, the

existing finite-volume schemes of flux form that make use

of the cell-integrated average as the computational vari-

able possess second-order accuracy at most. Our previous

studies show that locally increasing the degrees of free-

dom (DOFs) is a practical and efficient alternative to

construct high-order schemes (Ii et al. 2005; Ii and Xiao
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2010; Akoh et al. 2010). Compared to the triangular

Delaunay tessellation, the hexagonal Voronoi tessella-

tion is more attractive in global grid uniformity, ar-

rangement of local DOFs for reconstruction, as well as

the accuracy and robustness in the flux computation.

In this paper, we present a third-order finite-volume

formulation on the hexagonal geodesic grid for global

advection transport by using the multimoment con-

strained finite-volume (MCV) method (Ii and Xiao 2009).

Point values at the vertices and the center of each hexagon

are used as the computational variables that provide the

local DOFs for constructing the piecewise 2D interpolation

function. The prognostic equations to update the compu-

tational variables are derived from a set of constraint

conditions in terms of two kinds of moments (i.e., the values

at the vertices are computed from the point-wise derivative

Riemann solver and the cell-averaged value is updated

from a finite-volume formulation in flux form and is thus

rigorously conserved). Given enough DOFs over each

hexagonal mesh cell, the predicted point values are only

defined at the vertexes unlike the triangular tessellation

in Ii and Xiao (2010) where the values at the edge center

are also treated as the prognostic variable for a third-

order scheme.

Section 2 describes the MCV formulation on the hex-

agonal grid of planar geometry. The implementation on

the geodesic hexagonal grid is presented in section 3.

Numerical tests that verify the present scheme are re-

ported in section 4 followed by the conclusions in section 5.

2. MCV scheme on planar hexagonal grid

As shown in Fig. 1, seven local DOFs (denoted by

solid circles) [i.e., f
im

(m 5 1, 7)] are defined for a hex-

agonal element C
i
, which are located at six vertices

from Pi1
to Pi6

(counterclockwise) and element center Pi7
.

The hexagonal element is compassed by six boundary

edges (i.e., l1 to l6). Six auxiliary point values (PVs; de-

noted by solid triangles) (i.e., Pi8
to Pi13

) are defined at

midpoints of boundary edges.

The single-cell-based quadratic polynomial can be

constructed based on seven local DOFs within element

C
i

as

Fi(x, y) 5 c00
i 1 c10

i x 1 c01
i y 1 c11

i xy 1 c20
i x2 1 c02

i y2

1 c12
i (x2y 1 xy2). (1)

The coefficients are determined by solving equation

set Ac 5 b, where A is a 7 3 7 matrix with the mth row

vector as

am 5 [1, xi
m

, yi
m

, xi
m

yi
m

, x2
i
m

, y2
i
m

, x2
i
m

yi
m

1 xi
m

y2
i
m

], (2)

where (xim
,yim

) is the location of point Pim
, vector c

consists of the coefficients in the interpolation function

Fi(x, y) as

c 5 [c00
i , c10

i , c01
i , c11

i , c20
i , c02

i , c12
i ]T, (3)

and vector b consists of DOFs as

b 5 [fi
1
, fi

2
, fi

3
, fi

4
, fi

5
, fi

6
, fi

7
]T. (4)

Two kinds of moments are adopted as the constraint

conditions: the PV moment defined as

pfi
m

(t) 5 f(xi
m

, yi
m

, t), (m 5 1, 6) (5)

and the volume-integrated average (VIA) moment de-

fined as

Vfi(t) 5
1

Ai

ð
s

f(x, y, t) ds, (6)

where Ai is the area of hexagonal element Ci.

From (1), the following relation holds between local

DOFs and constraint conditions:

fim
5 Pf i

m

(m 5 1, 6)
8><
>:fi

7
5 a7

Vfi 2 �
6

m51
(am

Pfi
m

)

, (7)

where coefficients a1 to a7 are derived by integrating (1)

over the hexagonal element Ci.

FIG. 1. Configuration of DOFs and constraint conditions in two

dimensions for building the third-order MCV scheme.

942 M O N T H L Y W E A T H E R R E V I E W VOLUME 140



Auxiliary PVs defined at midpoints of boundary edges

are not independent DOFs. They are evaluated at each

time marching step by spatial reconstruction (1) and

used in updating PV and VIA constraints.

On planar hexagonal grid, we develop the third-order

MCV scheme for the 2D transport equation:

›tf 1 $ � f 5 0, (8)

where f 5 (e, f ) 5 (uf, yf) is the vector of flux function,

and v 5 (u, y) is the velocity.

Considering the point Pl in Fig. 2, we describe the up-

dating procedure for the PV moment defined here. The

governing equation of the differential form is adopted,

which is written as

›t(
Pfl) 5 2(›xe)l 2 (›yf )l. (9)

The derivatives of fluxes are computed by solving

derivative Riemann problem at point Pl. The formula-

tions used in Ii and Xiao (2009) are adopted as

(›xe)l 5
1

2
[(›xe)2

l
1 (›xe)1

l
]

1
1

2
SIGN(1, u)[(›xe)2

l
2 (›xe)1

l
] (10)

and

(›yf )l 5
1

2
[(›yf )2

l
1 (›yf )1

l
]

1
1

2
SIGN(1, y)[(›yf )2

l
2 (›yf )1

l
], (11)

where superscript ‘‘2’’ denote the left and lower cells

and ‘‘1’’ denote right and upper cells, and SIGN(a, b)

returns the absolute value of a and the sign of b, which

follows the syntax of FORTRAN.

The derivatives of any variable at vertex Pl are com-

puted from the local reconstruction over the corre-

sponding cell. For sake of brevity, we consider element

C
k

in Fig. 2 to give the formulations for evaluating the

derivatives. Local coordinates (j, h) are constructed by

choosing two boundary edges of cell Ck, which intersect

at point Pl. The derivatives of variable c with respect to

local coordinates (j, h) are then evaluated using the

point-wise values at points P1, P2, Pl, P3, and P4. In local

coordinate system, the locations of these points are (21,

0), (20.5, 0), (0, 0), (0, 0.5), and (0, 1), respectively. The

derivatives with respect to j and h are calculated as

(›
j
c)l 5 c1 2 4c2 1 3cl (12)

and

(›
h

c)l 5 23cl 1 4c3 2 c4, (13)

where c denotes the flux functions e and f, as well as the

global coordinate x and y. Both c2 and c3 are the values

at the centers of the edges as shown in Fig. 2. For trans-

ported field, they are computed by averaging the values

from the interpolation functions cell wisely constructed

over the two adjacent cells as

f2 5
1

2
[Fk(x2) 1 Fn(x2)] and

f3 5
1

2
[Fk(x3) 1 Fm(x3)]. (14)

The values of fluxes at centers of edges are then obtained

as

e2 5 u2f2, f2 5 y2f2, e3 5 u3f3 and

f3 5 y3f3. (15)

Given the derivatives in local curvilinear coordinates,

the derivatives with respect to x and y are obtained through

the chain rule as

›xe 5 ›xj›
j
e 1 ›xh›

h
e

›yf 5 ›yj›
j

f 1 ›yh›
h

f , (16)

where derivatives of j and h with respect to x and y are

obtained by

FIG. 2. Updating the PV moment on the hexagonal grid.

MARCH 2012 C H E N E T A L . 943



"
›xj ›xh

›yj ›yh

#
5

"
›

j
x ›

j
y

›
h

x ›
h

y

#21

(17)

and the terms in right-hand side are already obtained

using (12) and (13).

Integrating transport equation (8) over control volume

Ci, the flux-form formulation is obtained to update VIA

moment as

›t(
Vfi) 5 2

1

Ai

�
6

m51

ð
l
m

f � nl
m

dl, (18)

where lm ( m 5 1, 6) are boundary edges compassing the

control volume C
i

as shown in Fig. 1, nlm is the outward

normal unit of edge lm, nlm 5 (1/jlmj)(yim11
2 yim , xim 2

xim11
), and jl

m
j5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xim11

2 xim )2 1 (yim11
2 yim )2

q
denotes

the length of edge lm.

The line integration in (18) is computed by three-

point Simpson’s rule as, for example along edge l6,ð
l
6

f � nl
6

dl 5
jl6j
6

(fi
6

1 fi
1

1 4fi
13

) � nl
6
, (19)

where f i6
and f i1

are calculated by PVs defined on ver-

tices directly as

fi
6

5 (ui
6
fi

6
, yi

6
fi

6
), fi

1
5 (ui

1
fi

1
, yi

1
fi

1
), (20)

and f
i13

is obtained by solving Riemann problem in the di-

rection normal to the edge as

fi
13

5
yn

2
[Fi(xi

13
) 1 Fj(xi

13
)] 1

jynj
2

[Fi(xi
13

) 2 Fj(xi
13

)],

(21)

where yn 5 vi13
� nl6

is the velocity component in the out-

ward normal direction and xi13
is the location of point Pi13

.

The same procedure applies to the line integrations along

other edges to get the numerical fluxes required in (18).

Finally, we obtain the evolution equations to update

the computational variables (DOFs) by differentiating

(7) with respect to time as

›tfi
m

5 ›t(
Pf

i
m

) (m 5 1, 6)
8<
:›tfi

7
5 a7›t(

Vfi) 2 �
6

m51
[am›t(

Pfi
m

)].

(22)

The right-hand side of (22) are readily given by the con-

straints on the PV moment (9) and the VIA moment (18).

To achieve the high-order accuracy in time, the Runge–

Kutta scheme is applied to the semidiscrete evolution

equation:

›tf 5 L(f), (23)

whereL represents the spatial discretization given in the

right-hand side of (22). The third-order total variation

diminishing (TVD) Runge–Kutta (Shu 1988) scheme is

applied here as

fn11 5 fn 1 Dt(K1 1 K2 1 4K3), (24)

where

K1 5 L(fn)

K2 5 L(fn 1 k1Dt)

K3 5 L(fn 1
1

4
k1Dt 1

1

4
k2Dt)

.

8>><
>>: (25)

3. MCV scheme on hexagonal geodesic grid

We generate the hexagonal geodesic grid as follows.

First, we construct the icosahedral-triangular grid

following the method used in Ii and Xiao (2010; see ap-

pendix A therein for details). The finer grid is generated

by equally partitioning the edge (L) of the 20 primary

triangles. We denote a grid whose triangular elements

have edge length of L/n by P 5 n. Then the center points

of the neighboring five or six triangles sharing the same

vertex are connected by great-circle arcs, which form

spherical pentagonal or hexagonal elements as shown in

Fig. 3. The vertices shared by these triangles now become

the center points of the new pentagonal or hexagonal el-

ements on which the MCV scheme is implemented.

The local DOFs are configured in the similar way as

the planar case shown in Fig. 1 except that the boundary

edges are great-circle arcs in spherical geometry. At the

same time, special attention must be paid to the 12

pentagonal elements encompassing the 12 vertices of the

20 primary equilateral triangles. For these elements, we

define and use six local DOFs including five at the ver-

tices and one at the cell center.

Spatial reconstruction is implemented in a rotated

longitude–latitude coordinates (l9, u9). The origin of the

rotated grid [(l9, u9) 5 (0, 0)] is located at the center

of the corresponding mesh element. Quadratic poly-

nomials of seven and six DOFs are used for the hex-

agonal and pentagonal elements, respectively.

In hexagonal elements, the interpolation function

Fi(l9, u9) is written as

Fi(l9, u9) 5 c00
i 1 c10

i l9 1 c01
i u9 1 c11

i l9u9

1 c20
i l92 1 c02

i u92 1 c12
i (l92u9 1 l9u92).

(26)
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In pentagonal elements, the interpolation function

Fi(l9, u9) is written as

Fi(l9, u9) 5 c00
i 1 c10

i l9 1 c01
i u9 1 c11

i l9u9

1 c20
i l92 1 c02

i u92. (27)

For mesh element C
i
on the sphere surface, constraint

conditions are defined by introducing the PV moments

at vertices, Pf
im

(t)(m 5 1, M 2 1), and the VIA moment

over the mesh element, Vf
i
(t), where M is the number

of local DOFs.

Similar to the planar case, the relation between local

DOFs and constraint conditions is

fi
m

5 Pf
i
m

(m 5 1, M 2 1),
8<
:fi

M
5 aM

Vfi 2 �
M21

m51
(am

Pfi
m

)
(28)

where coefficients am (m 5 1, M) are determined by

integrating spatial reconstruction polynomial over the

spherical elements. In spherical geometry, the integration

is implemented in local curvilinear coordinates. The de-

tailed numerical procedure is described in appendix B.

The PV moments Pf
l

are updated by the equation of

differential form in the 3D Cartesian coordinates (x, y,

z) originated at the sphere center:

›t(
Pfl) 5 2$ � f 5 2(›xe)l 2 (›yf )l 2 (›zg)l, (29)

where f 5 (e, f, g) 5 (uf, yf, wf) is flux vector, and (u, y,

w) is the velocity vector in the 3D Cartesian grid. The

velocity field in the Cartesian grid is connected to that

in the longitude–latitude grid (~u, ~y) through following

relations:

u 5 2~u sinl 2 ~y sinu cosl,

y 5 ~u cosl 2 ~y sinu sinl,

w 5 ~y cosu. (30)

Formulations developed in the previous section can

be extended to 3D case straightforwardly by including

an additional component in the z direction. To update

the PV moment, the derivatives of the flux vector are

computed by solving derivative Riemann problem. In x

and y directions, derivative Riemann problems for flux

functions e and f are written exactly as (10) and (11). In

the z direction, flux function g is computed as

(›zg)l 5
1

2
[(›zg)2

l
1 (›zg)1

l
]

1
1

2
SIGN(1, w)[(›zg)2

l
2 (›zg)1

l
]. (31)

As shown in Fig. 4, for control volume C
k

the local

curvilinear coordinate system (j, h, r) is spanned by two

boundary arcs of the computational cell on the sphere

surface, j and h, as well as the sphere radius r. Given

the values of the transported field (f), the global coor-

dinates (x, y, z) and the flux function vectors (e, f, g) in

3D Cartesian coordinates at the three points along j and

h, respectively, the derivatives with respect to j and h

FIG. 3. The spherical icosahedral-hexagonal geodesic grid.

FIG. 4. Local coordinates on the spherical hexagonal grid.
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are calculated using the three-point formulations (12)

and (13) given in the planar case. Consequently, the

derivatives of flux functions e, f, and g with respect to x,

y, and z are obtained by using the chain rule as

›xe 5 ›xj›
j
e 1 ›xh›

h
e

›yf 5 ›yj›
j
f 1 ›yh›

h
f

›zg 5 ›zj›
j
g 1 ›zh›

h
g, (32)

where ›re, ›rf, and ›rg are omitted since the flow is re-

stricted along the surface of sphere.

Similar to the planar case, the metric terms on in right-

hand side of (32) are obtained as follows:

2
64 ›xj ›xh ›xr

›yj ›yh ›yr

›zj ›zh ›zr

3
75 5

2
64 ›

j
x ›

j
y ›

j
z

›
h

x ›
h

y ›
h

z

›rx ›ry ›rz

3
75

21

, (33)

where ›rx, ›ry, and ›rz are analytically given as xl/R, yl/R

and zl/R with R being the radius of sphere and (xl, yl, zl)

being the location of point Pl in 3D Cartesian grid.

Given the point values of the transported quantity and

the velocity field at the vertices and the edge centers, the

VIA moment is updated by a flux-form formulation for

the mesh element on the sphere surface:

›t(
Vfi) 5 2

1

Ai

�
M21

m51

ð
l
m

f � nl
m

dl. (34)

When the cell element (Fig. 1) lies on a spherical sur-

face, edge segment l6, for example, should be treated as a

piece of the great-circle arc. The length of l6 is the curved

distance between point Pi6
5 (li6

, ui6
) and Pi1

5 (li1
, ui1

),

which is computed by

jl6j 5 Rarccos[sinui
6

sinui
1

1 cosui
6

cosui
1

cos(li
1
2 li

6
)].

(35)

The outward normal unit n of the great-circle arc P
i6

P
i1

is obtained by

nl
6

5 2
OPi

6

��!
3 OPi

1

��!
jOPi

6

��!
3 OPi

1
j

���! , (36)

where point O is the origin of Cartesian grid (center of

sphere).

Numerical flux across arc l6 is computed by

ð
l
6

f �nl
6
dl 5

jl6j
6

(nl
6
�vi

1
fi

1
1 nl

6
� vi

6
fi

6
1 4nl

6
�vi

13
fi

13
),

(37)

where f
i13

is evaluated using the reconstruction polynomial

in the upstream element, which is found according to the

sign of the velocity component in the outward normal di-

rection y
n

5 v
i13
� n

l6
.

Analogously, the time evolution equations of the

DOFs are obtained by differentiating (28) with respect

to time t and substituting (29) and (34) to the right-hand

FIG. 5. The planar regular hexagonal grid with a resolution of

10 3 10.

TABLE 1. Convergence test on refining planar regular hexagonal grids.

Grid

l1 l2 l‘

Error Order Error Order Error Order

10 2.6795 3 1022 — 2.6802 3 1022 — 2.7119 3 1022 —

20 3.0786 3 1023 3.12 3.0753 3 1023 3.12 3.1034 3 1023 3.13

40 3.7517 3 1024 3.04 3.7518 3 1024 3.04 3.7795 3 1024 3.04

80 4.6628 3 1025 3.01 4.6626 3 1025 3.01 4.6917 3 1025 3.01

160 5.8218 3 1026 3.00 5.8217 3 1026 3.00 5.8544 3 1026 3.00

946 M O N T H L Y W E A T H E R R E V I E W VOLUME 140



sides of the resulting equations. Then the semidiscrete

ordinary differential equation (ODE) is solved by the

third-order Runge–Kutta scheme shown before.

It is revealed from our previous studies that numerical

schemes based on multimoment concepts allow larger

Courant–Friedrichs–Lewy (CFL) numbers for stability

and are more efficient compared to other numerical

methods given the same number of DOFs. Moreover, since

there is not any numerical quadrature involved in the MCV

method, it is more attractive not only in computational

simplicity and efficiency, but also in accurately dealing with

the curved surface.

For real applications, an effective limiter should be

devised to remove the spurious oscillations when the

transported field has large gradients or discontinuities.

An oscillation-less multimoment scheme has been pro-

posed in Akoh et al. (2010) for triangular unstructured

mesh. To avoid the spurious oscillations, the derivatives

(slopes) at the cell center are introduced as additional

constraints, which are not the predicted variables, but

calculated from the known moments at each time step in

a manner that enforces the monotonicity using the TVD

or total variation bounded (TVB) concept. After adjusting

the shape of local reconstructions by the slope limiter, the

multimoment model can successfully solve the shallow-

water equations with strong shocks. In principle, this

methodology also applies to the present multimoment

model on hexagonal mesh. However, it is more chal-

lenging to devise an effective slope limiter for multimo-

ment models on hexagonal mesh, which has more degrees

of freedom per element. It seems that the limiting pro-

jection based on slope should be of a formulation different

from the triangular mesh case. In this paper, we are aiming

at investigating the feasibility of developing a high-order

model on global hexagonal mesh through multimoment

local reconstruction. The design of a limiting mechanism

for the proposed model is left as an important future work.

4. Numerical tests

In this section, numerical tests are carried out to verify

the performance of the proposed MCV global model.

The third-order accuracy is confirmed by advection

transports of smooth sine wave in both planar and spherical

geometries. Furthermore, the cosine bell advection from

Williamson’s standard test set (Williamson et al. 1992), the

moving vortices test case (Nair and Jablonowski 2008), and

the divergent flow test case (Nair and Lauritzen 2010)

are computed to evaluate the proposed MCV scheme in

comparison with other existing global transport models.

To quantitively evaluate the numerical results, we use

the following normalized error measurements (Williamson

et al. 1992):

l1 5

ð
S
jf 2 fT j dsð

S
jfT j ds

, l2 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
S

(f 2 fT )2 dsð
S

f2
T ds

vuuuuut and

l
‘

5
max(jf 2 fT j)

max(jfT j)
,

(38)

where S is the computational domain and fT is the exact

solution.

When comparing the present scheme with other global

models, we always use the results computed with a similar

number of DOFs.

TABLE 2. Convergence test on refining spherical grids of the rotating advection in the east direction.

Grid

l1 l2 l‘

Error Order Error Order Error Order

2 3.1271 3 1022 — 3.0519 3 1022 — 3.1976 3 1022 —

4 3.7414 3 1023 3.06 3.6765 3 1023 3.05 4.1528 3 1023 2.94

8 4.6959 3 1024 2.99 4.5956 3 1024 3.00 4.8920 3 1024 3.09

16 5.9009 3 1025 2.99 5.7937 3 1025 2.99 6.2809 3 1025 2.96

32 7.4010 3 1026 3.00 7.2853 3 1026 2.99 8.0689 3 1026 2.96

TABLE 3. As in Table 2, but for rotating advection in the northeast direction.

Grid

l1 l2 l‘

Error Order Error Order Error Order

2 3.0034 3 1022 — 3.0047 3 1022 — 3.1911 3 1022 —

4 3.3509 3 1023 3.16 3.2915 3 1023 3.19 3.5327 3 1023 3.18

8 3.9331 3 1024 3.09 3.8325 3 1024 3.10 4.2483 3 1024 3.06

16 4.7593 3 1025 3.05 4.6508 3 1025 3.04 5.1853 3 1025 3.03

32 5.8978 3 1026 3.01 5.7669 3 1026 3.01 6.4712 3 1026 3.00
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a. Convergence rate test

1) TEST IN TWO DIMENSIONS

We calculated the advection of the 2D sine wave on

a regular hexagonal grid in planar geometry. A grid with

resolution of 10 3 10 is shown in Fig. 5. The initial

condition is given as

f(x, y, 0) 5 sin

"
p

2
ffiffiffi
3
p

3
x 1 y

 !#
, (39)

where x 2 [2
ffiffiffi
3
p

/2,
ffiffiffi
3
p

/2], y 2 [21, 1] and u 5
ffiffiffi
3
p

/2,

y 5 1.

The normalized errors of tests on refining grids after

one complete revolution are shown in Table 1, third-

order accuracy is obtained as expected.

2) TESTS ON SPHERICAL ICOSAHEDRAL-
HEXAGONAL GRID

A smooth initial condition used for examining the con-

vergence on sphere is designed as

f(l9, u9) 5 sinl9 cosu9, (40)

where the origin of rotated longitude–latitude coordinates

(l9, u9) is located at (0, a).

The divergence-free velocity field is specified as

(Williamson et al. 1992)

~u 5 u0(cosu cosa 1 sinu cosl sina)

~y 5 2u0 sinl sina
,

�
(41)

TABLE 4. Normalized errors of the cosine bell advection test on

grid P 5 36 in different directions.

a l1 l2 l‘

0 0.3715 3 1021 0.2279 3 1021 0.1809 3 1021

p/4 0.3482 3 1021 0.2143 3 1021 0.1696 3 1021

p/2 0.3586 3 1021 0.2241 3 1021 0.1773 3 1021

FIG. 6. Numerical results of the cosine bell advection test after running in the northeast

direction for one revolution. Shown are height fields (solid) and exact solutions (dashed) on

(top left) grid 9, (top right) grid 18, (bottom left) grid 36, and (bottom right) grid 72. The

contour lines vary from 50 to 950 m by 50 m.
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where ~u and ~y are linear velocity in longitude–latitude

coordinates, u0 5 2pR/(12 days), and a is the angle be-

tween rotation axis and the earth’s axis.

Our global model ran on a series of gradually re-

fined grids. Rotations are conducted in east and

northeast directions, corresponding to a 5 0, and p/4.

According to numerical results shown in Tables 2

and 3, third-order accuracy is achieved in spherical

geometry.

b. Cosine bell advection

As the first case of Williamson’s standard test set

(Williamson et al. 1992), cosine bell advection is widely

tested by many existing models. The initial field is spec-

ified as

f(l, u, 0) 5

h0

2

� ��
1 1 cos

pr

r0

� ��
if r , r0

0 otherwise

,

8<
: (42)

where r is the great-circle distance between any point

(l, u) and the initial center (3p/2, 0), other constants are

specified as h0 5 1000 m and r0 5 R/3. The divergence-

free velocity field (41) is adopted.

The computation is carried out on P 5 36 grid with

three rotation directions corresponding to a 5 0, p/4,

and p/2. A time step of 1440 s is adopted in the present

test. The normalized errors after one revolution are given

in Table 4. It is found that the icosahedral-hexagonal

global grid eliminates the polar problems and the nu-

merical results are almost independent of flow directions.

This test was calculated by Miura (2007) and Skamarock

and Menchaca (2010) on the grids with resolution of levels

4, 5, 6, and 7, where total numbers of DOFs are 2562,

10 242, 40 962, and 163 842, respectively. To compare with

their results, we run this test on refined global grids with

P 5 9, 18, 36, and 72. Corresponding numbers of DOFs are

2432, 9722, 38 882, and 155 522, which are a little less than

their calculations. Numerical results of the transported

field and absolute errors after rotating one revolution in

FIG. 7. Numerical results of the cosine bell advection test after running in the northeast

direction for one revolution. Shown are absolute errors on (top left) grid 9, (top right) grid 18,

(bottom left) grid 36, and (bottom right) grid 72. The contour lines vary from 2400 to 200 m by

30 m on grid 9, 280 to 60 m by 7 m on grid 18, 210 to 16 m by 1.3 m on grid 36, and 23.6 to

4.6 m by 0.41 m on grid 72. Negative values are shown by dashed lines.
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the northeast direction on different grids are shown in

Figs. 6 and 7. Distortion and phase error are observed on

the very coarse grid P 5 9. With the increase of grid

resolution, the numerical accuracy for shape and phase

is improved significantly. On the finest grid P 5 72, there

is hardly a visible difference between the numerical re-

sult and the exact solution. Normalized errors on different

grids are shown in Fig. 8. Because of the discontinuity

along the boundary of cosine bell, the convergence rate of

present scheme is about second order. Our results are

better than those given in Miura (2007) without monotone

limiter (see their Fig. 4b). Compared to the recent scheme

of Skamarock and Menchaca (2010), which uses second-

order reconstruction and is more accurate than those in

Miura (2007), our model gives smaller l‘ errors, but larger l2
errors. In Skamarock and Menchaca (2010), the influence

of time step is studied. For the present scheme, however,

our numerical experiments show that the normalized

errors are hardly affected by the time step.

A third-order MCV scheme is devised in Ii and Xiao

(2010) on the icosahedral-triangular grid. They ran this

test on a grid with 37 502 DOFs, almost equivalent to a

P 5 36 grid in terms of DOFs. Numerical results show

that the third-order MCV scheme on hexagonal tessel-

lation produces less numerical error than triangular

tessellation given the same number of DOFs.

c. Moving vortices test

To check our model with a more realistic test case,

we computed the moving vortices test recently pro-

posed in Nair and Jablonowski (2008). In this test, the

transported field deforms around two vortex centers.

Meanwhile, the vortex centers travel along the trajec-

tory of the previous solid rotation test. Detailed con-

figuration of this test is found in Nair and Jablonowski

(2008). In this study, we define the initial condition

with the vortex center located at (3p/2, 0). Three ro-

tation directions are tested, corresponding to a 5 0,

p/4, and p/2.

This test is checked on three refined grids: P 5 9, P 5

18, and P 5 36. Total numbers of DOFs on these three

grids are similar to longitude–latitude grids with re-

solutions of 58, 2.58, and 1.258. The MCV model ran on

FIG. 8. Normalized errors of the cosine bell advection in the

northeast direction on refining grids.

TABLE 5. Normalized errors of the moving vortex test on grid P 5

18 in different directions.

a l1 l2 l‘

0 0.9138 3 1022 0.2531 3 1021 0.1066

p/4 0.8799 3 1022 0.2486 3 1021 0.1107

p/2 0.8810 3 1022 0.2487 3 1021 0.1065

FIG. 9. Numerical results of the moving vortices’ test on grid P 5 36 at day 12. (left) The

height field (contour lines from 0.5 to 1.5 by 0.05) and (right) the absolute error (contour lines

from 20.07 to 0.07 by 0.02).
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P 5 18 grid to day 12 (one complete revolution for

vortex center to return to its original location) in dif-

ferent directions and the normalized errors are given in

Table 5. Numerical results on the spherical icosahedral-

hexagonal grid are almost independent of rotation di-

rections. The numerical result and absolute error of the

transported field on P 5 36 grid with a 5 0 are given in

Fig. 9.

Time history of normalized l2 and l‘ errors are shown

in Fig. 10. The present model gives competitive results

compared to the finite-volume solution in Nair and

Jablonowski (2008, see their Fig. 7).

Compared with the third-order MCV model on the

icosahedral-triangular grid (Ii and Xiao 2010), the

present model appears to be more accurate. The present

model with 38 882 DOFs (P 5 36) produces results

comparable to those from the icosahedral-triangular

grid with DOFs of 54 002 [see Fig. 9 in Ii and Xiao (2010)

for the normalized errors].

d. Divergent flow test

A divergent flow test was proposed in Nair and

Lauritzen (2010). On a unit sphere, the flow field is given as

~u(l, u, t) 5 2sin2 l

2

� �
sin(2u) cos2u cos

pt

5

	 

~y(l, u, t) 5

1

2
sinl cos3u cos

pt

5

	 
 .

8>><
>>: (43)

The initial fluid density is specified as r 5 1 and initial

tracer concentration is

f 5

b 1 ch1(l, u) if r1 , r0

b 1 ch2(l, u) if r2 , r0

b otherwise

,

8<
: (44)

where b 5 0.1, c 5 0.9, h1, and h2 are two cosine bells

given in (42) with centers at (3p/4,0) and (5p/4,0), other

parameters are h0 5 1 and r0 5 ½.

We solve the flux-form governing equation [Eq. (2) in

Nair and Lauritzen (2010)] to predict the evolution of

tracer density directly. In this test, the tracer density

deforms from circular pattern of cosine bell into a nar-

row stretched band during the first half period of

computation. At half-time t 5 T/2, tracer density field

reaches the extreme deformation. Then the inverse

velocity is applied and finally the tracer density field

will return to its initial shape at t 5 T. This test is

checked on the P 5 36 grid by the third-order MCV

model. Numerical results are shown in Fig. 11 for

tracer density at t 5 0, 2.5(T/2) and 5(T). At t 5 T/2, the

tracer density field is visibly identical to the reference

solution by the Discontinuous Galerkin (DG) model

(see Fig. 3 in Nair and Lauritzen 2010). After one revo-

lution, the shape and phase of two cosine bells are pre-

served well compared with initial condition. Normalized

errors for this test are l1 5 0.8245 3 1022, l2 5 0.1768

3 1021, and l‘ 5 0.3089 3 1021. It is found that the l2
error is comparable to solid rotation of the cosine bell

(shown in Table 4) on the same grid. Similar results are

found in the DG solutions of different test cases [see

Fig. 3 in Nair et al. (2005) for the solid rotation case and

Table 1 in Nair and Lauritzen (2010) for the divergent

flow case]. The present model can accurately deal with

the divergent flow field.

5. Conclusions

We present a third-order advection transport scheme

in spherical geometry by implementing the multimoment

FIG. 10. Normalized errors of the moving vortices’ test on a different grid. (left) Normalized l2 errors and (right) l‘
errors.
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constrained finite-volume method to the hexagonal

geodesic grid. The cell-wisely constructed interpo-

lation is well suited for the unstructured mesh con-

figuration and gives a uniform third-order accuracy

in various numerical tests. Compared to the con-

ventional finite-volume method that requires a wide

stencil for constructing a high-order scheme, the

present scheme uses locally defined DOFs and has

a significant advantage when applied to geodesic

grids.

Our previous studies (Ii and Xiao 2010) show that the

MCV formulation is also promising for dynamic cores.

As a matter of fact, we have developed a shallow-water

model under the same MCV framework for the hexagonal-

type geodesic grid, which will be separately reported

soon. The advection transport model presented in this

FIG. 11. Numerical results of the tracer density of the divergent flow test. Tracer density at (top)

t 5 0, (middle) t 5 2.5, and (bottom) t 5 5.
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paper can be embedded straightforwardly as a part of

such a model. It is noted that the present model can also

be used as an independent module to plug in to models

based on other traditional finite-volume formulations if

a scheme is devised to communicate the values between

the cell center and the vertices.
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APPENDIX A

Accuracy Analysis on VIA Moment

In this section, we prove the third-order accuracy of

the spatial discretization formulation for the VIA mo-

ment. Shown in Fig. A1, we consider the VIA moment
Vfi over control volume Ci. The transport with constant

velocity u, y 5 1 on the planar regular hexagonal ele-

ment is analyzed. Considering the transported field f

(x, y) with enough smoothness, we express its Taylor

expansion in respect to the cell center as

fT(x, y) 5 f7 1 (›xf)7
~x 1 (›yf)7

~y 1
1

2
(›xxf)7

~x2 1
1

2
(›yyf)7

~y2

1 (›xyf)7
~x~y 1

1

6
(›xxxf)7

~x3 1
1

6
(›yyyf)7

~y3 1
1

2
(›xxyf)7

~x2 ~y

1
1

2
(›xyyf)7

~x~y2 1
1

24
(›xxxxf)7

~x4 1
1

24
(›yyyyf)7

~y4 1
1

4
(›xxyyf)7

~x2 ~y2

1
1

6
(›xxxyf)7

~x3 ~y 1
1

6
(›xyyyf)7

~x~y3 1 O(L5), (A1)

where ~x 5 x 2 x7, ~y 5 y 2 y7, and L is the length of the

edge of the hexagonal element.

The flux function is then computed as fT 5 vf(x, y) 5

ifT(x, y) 1 jfT(x, y). When an analytical integration

of the flux function along the boundary edges is ap-

plied, the net flux across the boundary of element Ci

reads as

DfT 5
3
ffiffiffi
3
p

2
L2[(›xf)7 1 (›yf)7] 1

5
ffiffiffi
3
p

32
L4[(›xxxf)7

1 (›yyyf)7 1 (›xxyf)7 1 (›xyyf)7] 1 O(L6).

(A2)

We show next that the formulation of the numeri-

cal flux in our model results in an approximation

coincidence with the leading terms of the exact net flux

given in (A2).

In the present scheme, the numerical flux is com-

puted by the three-point Simpson’s rule, where the

values at the middle points of boundary edges are

interpolated from the local seven-point reconstruc-

tions of the upstream elements. For the given veloc-

ity, the value of the transported field at point P21 is

computed from the interpolation function on Cm, and

analogously P22 from C
n
, P23 ; P25 from C

i
, and P26

from C
l
. All these middle point values, as well as the

numerical net flux, are then expressed in terms of the

point values at P1 to P20 (i.e., the predicted variables

in the present scheme). The net numerical flux finally

reads as

DfN 5 L

�
2

1

12
2

5

3
ffiffiffi
3
p

� �
f1 1 2

2

3
2

43

48
ffiffiffi
3
p

� �
f2 1 2

19

24
1

2

3
ffiffiffi
3
p

� �
f3 1 2

1

12
1

13

8
ffiffiffi
3
p

� �
f4 1

19

24
1

1

2
ffiffiffi
3
p

� �
f5

1
2

3
2

35

48
ffiffiffi
3
p

� �
f6 1

1

6
1

1

2
ffiffiffi
3
p

� �
f7 1

5

48
ffiffiffi
3
p f8 1 2

1

24
1

1

48
ffiffiffi
3
p

� �
f9 1

1

24
2

1

48
ffiffiffi
3
p

� �
f10 1

7

24
ffiffiffi
3
p f11

1
1

12
2

1

4
ffiffiffi
3
p

� �
f12 1 2

1

24
2

1

48
ffiffiffi
3
p

� �
f13 1

1

24
1

1

48
ffiffiffi
3
p

� �
f14 1

1

12
1

13

48
ffiffiffi
3
p

� �
f15 1 2

1

12
2

1

4
ffiffiffi
3
p

� �
f16

2
1

6
ffiffiffi
3
p f17 1

1

6
ffiffiffi
3
p f18 1

1

12
1

1

6
ffiffiffi
3
p

� �
f19 1

1

6
f20

�
. (A3)
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Substitute fi 5 fT (xi, yi), (i 5 1 to 20), into (A3), the

numerical net flux is recast into

DfN 5
3
ffiffiffi
3
p

2
L2[(›xf)7 1 (›yf)7] 1

5
ffiffiffi
3
p

32
L4[(›xxxf)7

1 (›yyyf)7 1 (›xxyf)7 1 (›xyyf)7] 1 O(L5),

(A4)

which reveals that the net numerical flux in the present

scheme results in a fifth-order truncation error.

From the constraint to update the VIA moment (18)

and recall the area of the regular hexagonal cell Ci, Ai 5

(3/2)L2, we arrive at

›t(
Vfi) 5 2

1

Ai

DfN 1 O(L3). (A5)

APPENDIX B

Surface Integration over the Spherical-Hexagonal
Element

Shown in Fig. B1, the hexagonal element Ci is first di-

vided into six subtriangles, denoted by Ci
m

(m 5 1, 6), by

simply connecting the vertices and centroid. Then the

surface integration over a spherical-hexagonal element

can be computed with the formulations derived in Ii and

Xiao (2010) for the spherical triangles. To maintain high-

order accuracy, we sample seven points for each tri-

angular area (Ci
m

) (i.e., three vertices, three midpoints of

boundary edges, and the centroid of the triangle). The

values at the three midpoints of the boundary edges and

the centroid are computed from the reconstruction

polynomial (26). The surface-integrated average of the

transported field f over triangle C
im

can be obtained in

the local coordinate as

Vfi
m

5
1

Ai
m

�
7

n51
(anjJjnfn), (B1)

where

a1, a2, a3 5
1

40
, a4, a5, a6 5

1

15
, a7 5

9

40
, (B2)

and jJjn is the point-wisely defined Jacobian of the

transformation, which is computed by

jJj 5 R2 cosujl
j
u

h
2 l

h
u

j
j. (B3)

The area of the spherical triangle is

Ai
m

5 �
7

n51
(anjJjn). (B4)

Then the surface-integrated average of the transported

field over the hexagonal element can be obtained by

summing up those of the six triangular areas as

Vfi 5

�
6

m51
(Ai

m

Vfi
m

)

�
6

m51
Ai

m

. (B5)

FIG. A1. Control volumes for accuracy analysis on the VIA

moment.

FIG. B1. Surface integration over the spherical hexagonal element.
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Surface integration over the pentagonal elements is

conducted using the same method, except that the ele-

ment is divided into five triangular areas.
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