
Journal of Crystal Growth 340 (2012) 190–196
Contents lists available at SciVerse ScienceDirect
Journal of Crystal Growth
0022-02

doi:10.1

n Corr

E-m
journal homepage: www.elsevier.com/locate/jcrysgro
Role of characteristic modes in the dynamics of wave pattern
in the Czochralski oxide crystal growth
C.J. Jing a,c,n, C.X. Jia b, K. Li c, H. Arima d

a College of Architecture and Environment, Sichuan University, Chengdu 610064, China
b Sichuan College of Architectural Technology, Deyang 618000, Sichuan, China
c Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
d Institute of Ocean Energy, Saga University, Saga 840-8502, Japan
a r t i c l e i n f o

Article history:

Received 10 May 2011

Received in revised form

2 December 2011

Accepted 5 December 2011
Communicated by J.J. Derby
laminar. The governing equations of the melt flows were solved by a block-structured boundary-fitted-
Available online 13 December 2011

Keywords:

A1. Characteristic mode

A1. Fluid flows

A1. Proper orthogonal decomposition

A1. Wave pattern

A2. Czochralski method

B1. Oxides
48/$ - see front matter & 2011 Elsevier B.V. A

016/j.jcrysgro.2011.12.033

esponding author. Tel./fax: þ86 28 85226855

ail address: chengjunjing@126.com (C.J. Jing)
a b s t r a c t

Wave pattern is a flow pattern observed on the free surface of oxide melt in the Czockralski crucible.

Wave pattern exhibits regular folds in the azimuthal direction. In this paper three-dimensional flows of

the LiNbO3 melt in a Czockralski crucible of radius rc¼100 mm and crystal radius rs¼50 mm were

investigated. The crucible is still and the crystal is rotating at a rate Os. The flow is assumed to be

coordinate method. Massive numerical simulations were first conducted to obtain several stable

n-folded wave patterns by changing aspect ratio A¼h/rc and Os, where h is the depth of the oxide melt.

The proper orthogonal decomposition was then applied to extract the characteristic modes of the

n-folded original wave patterns. The spatial feature of the characteristic modes and the role of the

characteristic modes in the dynamic process of the original wave patterns were finally analyzed. Some

interesting conclusions are obtained. The characteristic modes of the wave patterns show strong spatial

feature. The characteristic modes have more folds in the azimuthal direction than the original wave

patterns; the characteristic modes appear in group; with the increase of group order, the number

of folds in the azimuthal direction is increased regularly by n for the n-folded original wave pattern.

The study of the dynamic process shows that the original wave pattern is a traveling wave, which is

formed by the dominant characteristic modes.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

In the Czochralski crystal growth system the so-called wave
patterns were observed in the 1980s [1–8]. The patterns appear
on the free surface of oxide melt in the Czochralski crucible.
Concerning the wave patterns, Jones made a lot of experimental
studies [1–4], Seidl et al. [5], Enger et al. [6], Kumar et al. [7] and
Jing et al. [8] reported some theoretical models and numerical
simulations. These studies focused on the macroscopic flow
patterns. Jones reproduced the wave patterns by a ‘cold model’
experiment and investigated the mechanism of the wave pat-
terns. The general conclusions are that the wave patterns result
from the baroclinic instability. Theoretical investigations such as
the works of Enger et al. [6] and Jing et al. [8] mainly focused on
the evolution and the three-dimensional spatial structures of the
wave patterns by numerical simulations. There are few studies on
the characteristic modes of the wave patterns. The characteristic
modes are the modes, which construct the wave patterns.
ll rights reserved.
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Between the original wave pattern and the characteristic modes
must exist a tight connection. In order to better understand the
wave patterns it is very helpful to reveal the features and the roles
of the characteristic modes of the wave patterns. In addition, it is
attractive to clarify the formation dynamics of the wave patterns
from the characteristic modes. Therefore, it is necessary to
investigate the roles of the characteristic modes in the wave
patterns. In this paper, numerous massive simulations were first
conducted to obtain some stable wave patterns, and then use of
proper orthogonal decomposition was made to extract the char-
acteristic modes of the obtained wave patterns. Finally the spatial
features of the characteristic modes and the roles of the char-
acteristic modes in the dynamics of wave patterns were investi-
gated and summarized.
2. Numerical simulation of wave pattern

2.1. Physical model

The geometry of the problem to be studied is depicted in
Fig. 1(a). The cylindrical crucible is static and the crystal is

www.elsevier.com/locate/jcrysgro
www.elsevier.com/locate/jcrysgro
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Fig. 1. Coordinate system (a) and block-structured grid (b).

Table 1

Transport variable F, dimensionless parameter RF, source term SF and Sn

F in mass,

momentum and energy equations (see Eqs. (1) and (6)).

Variable F RF SF Sn

F

Mass 1 N 0 0

Momentum(j-th comp.) Uj Re
�
@P

@Xj
þF �

@xk

@Xj

@P

@xk
þF

Energy T PrRe 0 0

where F ¼
Gr

Re2
dj3ðT�1Þ.
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rotating at Os rpm. The radius and height of the crucible are rc and h,
respectively. The radius of the crystal is rs. The free surface of the
melt and the melt/crystal interface were treated as flat. The oxide
melt was assumed to be an incompressible Newtonian Boussinesq
fluid. The temperature of the melt/crystal interface was main-
tained at the melting point, Tm. The heat loss from the free surface
of the melt was assumed to be due to radiation alone to an
ambient temperature, Ta. The sidewall of the crucible was heated
by a constant and uniform heat flux, qc . The bottom of the crucible
was adiabatic. The no-slip condition was used for all physical
boundaries of the melt. The free surface was considered to be free
of stresses.
2.2. Mathematical formulation and numerical method

The dimensionless governing equations for the melt flow in
the Cartesian coordinates can be generally written as [8]

@F
@t þ

@UiF
@Xi

� �
�

1

RF

@

@Xi

@F
@Xi

� �
¼ SF, ð1Þ

where F denotes a general transport variable, Xi the i-th Cartesian
coordinate, Ui the i-th Cartesian velocity component, t the time,
SF the source of F and RF a dimensionless parameter. Table 1
gives the values of F, SF and RF for all transport equations used in
the model. In contrast to what is reported by Basu et al. [9], the
dissipative terms due to viscous effects were neglected in the
energy equation. In Table 1, P is the pressure and T is the
temperature of the melt. The definition of the dimensionless
parameters are Gr¼ gbTmr3

c =n2, Pr¼ n=a and Re¼ uref rc=n, where
g is the gravitational acceleration, b is the coefficient of volu-
metric thermal expansion, m is the dynamic viscosity, n is the
kinematic viscosity, a is the thermal diffusivity and uref is the
characteristic velocity.

The boundary conditions can be written as:
At the melt/crystal interface:

U1 ¼�ResRsiny=Re, U2 ¼ ResRcosy=Re, U3 ¼ 0, T ¼ 1 ð2Þ

where R¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

1þX2
2

q
and y¼ tan�1ðX2=X1Þ.
At the free surface:

@Ui=@X3 ¼ 0, i¼ 1, 2, U3 ¼ 0, �@T=@X3 ¼ RradðT
4
�T4

aÞ ð3Þ

At the sidewall of the crucible:

Ui ¼ 0, i¼ 1,2,3, @T=@n¼ qc ð4Þ

At the bottom of the crucible:

Ui ¼ 0, i¼ 1,2,3, @T=@X3 ¼ 0 ð5Þ

where n denotes the normal distance to the boundary. The
dimensionless parameters are Res ¼ r2

cos=n and Rrad ¼ esT3
mrc=l,

where os¼2pOs/60 is the angular velocity of the crystal, e is the
emissivity, s is the Stefan-Boltzmann constant and l is the
thermal conductivity.

In deriving the above equations, the characteristic length,
velocity, temperature, pressure and time are, respectively,

lref ¼ rc , uref ¼ n=rc , Tref ¼ Tm, Pref ¼ ru2
ref , tref ¼ lref =uref

2.3. Block-structured grid

Owing to the several advantages discussed in [9], a block-
structured grid [10–12] with matching/nonoverlapping interfaces
was adopted in the present study. The domain was divided into
five blocks and each block was further subdivided into finite
control volumes. The top view of the block-structured grid is
shown in Fig. 1(b), where the bold lines show the borders
between the two blocks. The actually used grids are twice as fine
as those shown in Fig. 1(b) and the number of the total control
volumes is 476160. For the vertical direction, each block has the
identical non-uniform grid assignment.
2.4. Governing equations in curvilinear coordinates

Because of the nonorthogonality of the grids and the curvi-
linear boundaries, the boundary-fitted-coordinate method (BFC)
[13,14] was adopted. The governing equation, Eq. (1), in the
physical space (Xi, i¼1,2,3) was first transformed to the computa-
tional space (xi, i¼1,2,3) and takes the following form after the
coordinate transformation [10,11].

@F
@t þ

1

J

@Un

kF
@zk

� �
�

1

RF

1

J

@

@xk
Jgkl

@F
@xl

� �
¼ Sn

F, ð6Þ

Where

J¼
@ðX1,X2,X3Þ

@ðx1,x2,x3Þ
and gkl ¼

@xk

@Xi

@xl

@Xi

J is the Jacobian matrix and gkl is the metric tensor.
In Eq.(6), Un

k is the contravariant velocity, which is defined as

Un

k ¼ JUj@xk=@Xj: ð7Þ

Sn

F is the source term after the coordinate transformation and
is given in Table 1.
2.5. Estimation of the metrics

Unlike the commonly used method, we applied the shape
function used in the finite element method to estimate the
derivatives related to the coordinate transformation qXi/qxj, of
which Xi was expressed as Xi ¼

P8
n ¼ 1 jnðx1,x2,x3ÞX

n
i , i¼1,2,3.

jn(x1,x2,x3) is the shape function and subscript n denotes the
corner points of the control volume. This method was found to be
able to improve the accuracy of the Jacobian matrix and the
metric tensor.
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2.6. Discretization and numerical method

Eq. (6) was discretized using a fully conservative finite-volume
method with a non-staggered arrangement of the variables
[15,16]. Central difference was used for all spatial derivatives
and first-order forward difference for the time derivatives. For the
convective term, QUICK scheme [17] was applied. Based on the
continuity equation, a pressure-correction equation is derived
according to SIMPLE algorithm [18]. To ensure the correct
coupling of pressure and velocity fields, the well-known momen-
tum interpolation technique of Rhie and Chow [15] was applied.
The time interval Dt¼1.123�10�5(Dt¼0.01s) was tested to be
suitable. The thermophysical properties of the LiNbO3 melt are
listed in Ref. [8].

2.7. Simulation of wave patterns

In order to obtain calculation conditions under which a stable
wave pattern occurs, we conducted numerous numerical calcula-
tions. Table 2 shows the calculation cases we conducted. In the
table, A is the aspect ratio, which is defined as A¼h/rc and n is the
number of the folds of the wave patterns. It should be noted that
n indicates the number of folds of all temporarily appeared wave
patterns independently of the time that the wave patterns last.
The so-called ‘temporarily appeared’ wave patterns mean that the
patterns appear at least once during the flow development. For
our purpose only the stable patterns are desirable and acceptable.
The stable two-folded, three-folded and four-folded wave pat-
terns obtained in our calculations are indicated by an underlined
number in Table 2. Fig. 2 shows the representative two-folded,
three-folded and four-folded wave patterns. What is shown in
Fig. 2 is a snapshot of temperature distribution on the melt free
surface. The wave patterns indeed rotate with the crystal but at a
much lower rotation rate. During the rotation, the patterns may
have a slight deformation but the number of the folds does not
change.
Table 2
Number of folds n of the wave patterns at various sets of aspect ratio A and crystal

rotation rate Os (rpm). The underlined numbers indicate the cases of stable wave

patterns; the other numbers correspond to temporarily appeared wave patterns.

Os 12 14 15 16 18 20 25

A n

0.2 3 3, 4 2,3,4 – – – 2,4

0.5 2,3 2,4 2,3,4,5 – 2,4 4 –

0.8 – – – 4,5 2,3,4,5 4 4,5,6

1 – 2,3,4 2,3,4,6 2,3,4,6 2,3,4 2,3,4,5 4,5,6

Fig. 2. Instantaneous temperature fields expressed through the contours of

temperature for the typical two-folded wave pattern (a), three-folded wave

pattern (b) and four-folded wave pattern (c). These patterns are obtained at

(a) A¼0.5, Os¼12 rpm, (b) A¼0.5, Os¼15 rpm, (c) A¼1, Os¼25 rpm. The Grashof

number and the Prandtl number are Gr¼2.02�107 and Pr¼13.6, respectively,

which correspond to the physical property of the LiNbO3 melt.
3. The spatial characteristic modes of the wave patterns

3.1. The way of obtaining the characteristic modes

The way to obtain the characteristic modes of the wave
patterns is proper orthogonal decomposition (POD). Since the
initial work of Lumley [19], POD has been widely applied to
analysis of flows. Especially after Sirovich [20,21] proposed a so-
called method of snapshots, the use of POD to extract the
characteristic modes of a complicated flow becomes feasible.
The method of snapshots, which is applied to our problem is
presented in a practical way in the following [22,23].

The state variable that we choose is the temperature field,
T(x,t). The temperature field is decomposed into time-averaged
parts, TðxÞ, and time-varying parts, T

0

(x,t), i.e.,

Tðx,tÞ ¼ TðxÞþT 0ðx,tÞ ð8Þ

From the time-varying temperature field, we construct the
two-time correlation matrix,Cm,n, as

Cm,n ¼
1

N

Z
D
ðT 0ðx,tmÞ � T 0ðx,tnÞÞdx, m,n¼ 1,2,. . .,N ð9Þ

where N is the number of the snapshots of the temperature field
and D is the flow domain.

By calculating the eigenvalues li associated to the above
matrix, and their corresponding eigenvectors Am

i , m¼1,N, which
gives

Cm,nAn
i ¼ liA

m
i , ð10Þ

we can obtain the characteristic modes Yi(x) (here normalized) as
linear combinations of the time-varying parts,

YiðxÞ ¼
XN

m ¼ 1

A0mi T 0ðx,tmÞ, ð11Þ

where A0mi ¼ Am
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
liN

PN
m ¼ 1 ðA

m
i Þ

2
q

.
The time-varying parts T

0

(x,t) can then be expressed in terms
of the characteristic modes as

T 0ðx,tÞ ¼
XM
i ¼ 1

aiðtÞYiðxÞ ð12Þ

where ai(t) are coefficients depending on time, and Mare the
numbers of the first most important characteristic modes
retained in the expansion. When M¼N, the original temperature
field can be reproduced exactly, with

aiðtÞ ¼ am
i ¼NliA

0m
i : ð13Þ

Usually, M is much smaller than the number of snapshots, N.
It is chosen so that the set of the characteristic modes captures
most of the fluctuation energy. For example in Sirovich [20,21], the
choice is made by taking x499%, where x�

PM
i ¼ 1 li=

PN
i ¼ 1 li,

meaning that the first M characteristic modes capture more than
99% of the fluctuation thermal energy.

3.2. The characteristic modes of the two-folded wave pattern

We first chose the two-folded wave pattern as shown in
Fig. 2(a) to investigate the characteristic modes and their spatial
feature. The sample covering several quasi-periods was chosen
first. Then for the chosen sample, the number of snapshots, N, was
determined by its effect on the eigenvalues of the two-time
correlation matrix. The eigenvalues tend to be fixed with the
increase of N. The number of snapshots, N, for the chosen sample,
may be changed by changing the inter-snapshot interval. In this
study it was found that N¼100 is enough (the variance of the
most important eigenvalues is less than about 5%). The time
evolution of the temperature during the sample duration at a



Table 3
Eigenvalues of the most energetic modes and their cumulative contribution to the

original two-folded wave pattern at A¼0.5 and Os¼12 rpm. The Grashof number

and the Prandtl number are Gr¼2.02�107 and Pr¼13.6, respectively.

Index of the mode Eigenvalue li Cumulative energy

contribution (%)

1 0.3630�10�6 22.436

2 0.3382�10�6 43.343

3 0.1303�10�6 51.398

4 0.1271�10�6 59.253

5 0.5059�10�7 62.380

6 0.4658�10�7 65.259

7 0.3541�10�7 67.448

8 0.3456�10�7 68.584

9 0.2528�10�7 71.146

10 0.1995�10�7 72.380

20 0.1105�10�7 80.484

50 0.4596�10�8 92.898

80 0.2214�10�8 99.064

100 0.1304�10�8 100.00
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monitoring point on the melt free surface (R¼0.75, y¼0) is
shown in Fig. 3.

Fig. 4 shows the first six characteristic modes, Yi(x), for the
two-folded original wave pattern (n¼2, Fig. 2(a)). In each case,
the contours of the perturbation temperature field, T

0

(x,t), at the
free surface are plotted. Positive (negative) perturbations are
plotted as solid (dotted) lines. We see that the characteristic
modes exhibit clear spatial features. If we define an elementary
pattern as an area in which the temperature perturbation has
neighboring positive and negative contributions, we see that:
(1) the characteristic modes may contain more elementary
patterns than the number of folds in the original wave pattern,
(2) the characteristic modes appear in groups (Fig. 4(a) and
(b) show the first group, Fig. 4(c) and (d) the second group and,
Fig. 4(e) and (f) the third group), and pair of two similar
characteristic modes appears as i-th group, and (3) the wave
number of the i-th group’s characteristic modes (li) is given as
li¼n� i (in the case n¼2). On the other hand, in the radial
direction the number of the elementary patterns is also increased
with the group order but the regularity is not as clear as in the
azimuthal direction.

The characteristic modes give different contributions to the
original pattern. From Table 3 it can be seen again clearly that the
characteristic modes appear in group. The first group (characteristic
modes 1 and 2) contributes about 22% and 21%, the second group
(characteristic modes 3 and 4) contributes about 8.0% and 7.8%, the
Fig. 3. Time evolution of the dimensionless temperature T at a monitoring point

on the melt free surface (R¼0.75, y¼0) for the two-folded wave pattern as shown

in Fig. 2(a).

Fig. 4. Contours of temperature for the first six characteristic modes of the two-

folded wave pattern. The characteristic modes are obtained by POD from a sample

composed of N¼100 snapshots of temperature field.

Fig. 5. Time evolution of the dimensionless temperature T at a monitoring point

on the melt free surface (R¼0.75, y¼0) for the three-folded wave pattern as

shown in Fig. 2(b).
third group (characteristic modes 5 and 6) contributes about 3.1%
and 2.8% to the total fluctuation energy, respectively. With the
increase of the group order, the contribution is decreased, and the
first ten characteristic modes capture almost 72% of the total energy.
99% of the feature of the two-folded wave pattern shown in
Fig. 2(a) may be captured by the first 80 characteristic modes.
3.3. The characteristic modes of the three-folded wave pattern

The number of snapshots chosen to extract the characteristic
modes for the three-folded wave pattern is also N¼100 and the
time evolution of the temperature during the sample duration at
the monitoring point is shown in Fig. 5. We see that the sample
covers more than one rotation period of the three-folded wave
pattern.

Fig. 6 shows the first nine characteristic modes, Yi(x), for the
three-folded original wave pattern (n¼3, Fig. 2(b)). We see that
the characteristic modes also have a clear spatial feature. The
feature is same as that for the two-folded wave pattern. But in
this case the first group contains three characteristic modes. For
the other groups, each group contains two characteristic modes
(in pair). The wave number of the i-th group’s characteristic
modes (li) is given still as li¼n� i (in the case n¼3). In the radial
direction, the number of the elementary patterns is increased
with the group order but the regularity is not clear.



Fig. 6. Contours of temperature for the first nine characteristic modes of the

three-folded wave pattern. The characteristic modes are obtained by POD from a

sample composed of N¼100 snapshots of temperature field.

Table 4
Eigenvalues of the most energetic modes and their cumulative contribution to the

original three-folded wave pattern at A¼0.5 and Os¼15 rpm. The Grashof number

and the Prandtl number are Gr¼2.02�107 and Pr¼13.6, respectively.

Index of

the mode
Eigenvalue li Cumulative energy

contribution (%).

1 0.5028�10�6 29.237

2 0.3157�10�6 47.595

3 0.3067�10�6 65.429

4 0.1032�10�6 71.430

5 0.9686�10�7 77.062

6 0.4551�10�7 79.708

7 0.4486�10�7 82.316

8 0.2422�10�7 83.725

9 0.2403�10�7 85.122

10 0.1501�10�7 85.995

20 0.6075�10�8 91.040

50 0.2155�10�8 97.186

80 0.7248�10�9 99.520

100 0.2054�10�9 100.00

Fig. 7. Time evolution of the dimensionless temperature T at a monitoring point

on the melt free surface (R¼0.75, y¼0) for the four-folded wave pattern as shown

in Fig. 2(c).

Fig. 8. Contours of temperature for the first six characteristic modes of the four-

folded wave pattern. The characteristic modes are obtained by POD from a sample

composed of N¼100 snapshots of temperature field.
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From Table 4 it can be seen again that the characteristic modes
appear in group. The first characteristic mode contribute to about
29%, and the second and third characteristic mode (first group)
contribute to about 18%, the characteristic modes 4 and 5 (second
group) contribute to about 6%, the characteristic modes 6 and 7
(third group) contribute to about 2.6%, and the characteristic
modes 8 and 9 (fourth group) contribute to about 1.4%. With the
increase of the group order, the contribution decreases and the
differences between the groups decrease as well. The first nine
characteristic modes capture about 85% of the total energy, or,
85% of the feature of the three-folded wave pattern shown in
Fig. 2(b) may be captured by the first nine characteristic modes.
If 99.5% of the feature of the three-folded wave pattern shown in
Fig. 2(a) is wanted to be captured, 80 characteristic modes are
needed.
3.4. The characteristic modes of the four-folded wave pattern

Fig. 7 shows the time evolution of the temperature at the
monitoring point for the four-folded wave pattern. Only the time
period over which a sample of N¼100 snapshots has been
extracted is shown. Fig. 8 shows the first six characteristic modes
for the four-folded original wave pattern (n¼4, Fig. 2(c)). It can be
seen that in this case the characteristic modes appear basically by
groups of two, for example, Fig. 8(a) and (b) show the first group,
Fig. 8(c) and (d) show the second group, Fig. 8(e) and (f) show the
third group. The characteristic modes 1 and 2 have four elemen-
tary patterns in the azimuthal direction. A similar azimuthal
dependence is found for the characteristic modes 3 and 4, but
they have two elementary patterns in the radial direction. Finally,
the characteristic modes 5 and 6 have eight elementary patterns
in the azimuthal direction and two in the radial direction.

From Table 5 it can be seen again that the characteristic modes
could be grouped. The first two characteristic modes (first group)
contribute to about 28%, the characteristic modes 3 and 4 (second



Table 5
Eigenvalues of the most energetic modes and their cumulative contribution to the

original four-folded wave pattern at A¼1 and Os¼25 rpm. The Grashof number

and the Prandtl number are Gr¼2.02�107 and Pr¼13.6, respectively.

Index of the mode Eigenvalue li Cumulative energy

contribution (%)

1 0.1141�10�5 28.881

2 0.1120�10�5 57.233

3 0.3192�10�6 65.310

4 0.3036�10�6 72.992

5 0.2179�10�6 78.508

6 0.2060�10�6 83.722

7 0.1465�10�6 87.431

8 0.1131�10�6 90.293

9 0.9514�10�7 92.700

10 0.6181�10�7 94.264

20 0.5786�10�8 99.627

30 0.1476�10�9 99.993

50 0.2619�10�13 100.00

100 0.1846�10�22 100.00

Fig. 9. Time variation of the coefficients ai(t), i¼1,3, for the case of the two-folded

wave pattern.

C.J. Jing et al. / Journal of Crystal Growth 340 (2012) 190–196 195
group) contribute to about 8.0% and 7.6%, the characteristic
modes 5 and 6 (third group) contribute to about 5.5% and 5.2%,
respectively. The first six characteristic modes capture about 83%
of the total energy.
Fig. 10. Contours of the mean temperature field, (a), and the reconstructed

temperature fields, (b)–(f), by POD using Eq. (14) with an increasing number, M,

of characteristic modes at t¼2.5�104Dt(t¼250 s) inside the period shown in Fig. 10.

(b) corresponds to M¼1 (and also M¼2, as a2¼0 at t¼2.5�104Dt (t¼250 s)),

(c)–(f) correspond to M¼3,4,5,6.
4. The dynamic process of wave pattern

The dynamic process mentioned here is not a transition or an
evolution process in the conventional meaning but the built-up of
the wave pattern by the characteristic modes of the perturbation.
First, let us see the mathematical formulation of wave pattern
reconstruction. According to proper orthogonal decomposition,
the temperature field at any time can be obtained by a linear
combination of the characteristic modes as follows.

Tðx,tÞ ¼ TðxÞþT 0ðx,tÞ ¼ TðxÞþ
XM
i ¼ 1

aiðtÞFiðxÞ ð14Þ

where TðxÞ is the mean temperature, which is obtained by
T ðxÞ ¼ ð1=NÞ

PN
i ¼ 1 Tðx,tiÞ, and is only a function of space. M is

the number of the characteristic modes used to reconstruct the
overall temperature field. Fi(x), the i-th characteristic mode, is
only a function of space. For the case of the two-folded wave
pattern, Fi(x), i¼1,6, are shown in Fig. 4. ai(t) denotes an
instantaneous contribution of the i-th characteristic mode to the
overall temperature field and is only a function of time. For the
case of the two-folded wave pattern, ai(t), i¼1,3, is shown in
Fig. 9. We see that the characteristic modes F1 and F2 evolve in
time with the same frequency whereas F3 has a larger frequency,
which is twice that of F1 or F2 and has a smaller contribution.
The phase shift between a1 and a2 is p/2, however, it should be
noted that two periods of a1 and a2 can roughly represent a
2p-rotation of the original two-folded pattern.

Fig. 10 shows the mean temperature field and the patterns of
the temperature fields obtained by reconstruction with an
increasing number of characteristic modes at t¼2.5�104Dt
(t¼250s) inside the period shown in Fig. 9. It can be seen that
with the increase of the number of the characteristic modes used
to reconstruct the original pattern, i.e., with the increase of M in
Eq. (14), the reconstructed pattern gets closer to the original
pattern (Fig. 2(a)). From Table 3, we know that the first six
characteristic modes capture about 65% of the total information of
the two-folded pattern; therefore, the original two-folded pattern
cannot be exactly reconstructed with only these six characteristic
modes. On the other hand, for M¼100, the reconstruction is exact.
In the following, let us see the relationships between the
original pattern and the characteristic modes. The two-folded
wave pattern is taken as an example again. Fig. 11(a) and (b)
show the original wave patterns at the instants t1¼2.5�
104Dt (t¼250s) and t2¼3.8�104Dt(t¼380 s), respectively (see
Fig. 9). As expected, we observe a rotation of the two-folded
pattern in the azimuthal direction. On the other hand,
Fig. 11(a) and (b) can be obtained exactly according to Eq. (14)
with M¼100. According to Eq. (14), the temperature field of the
original wave pattern is formed by the mean temperature TðxÞ
(Fig. 10(a)) and the temperature perturbations given by the
characteristic modes (Fig. 4). We will first focus on the two first
characteristic modes F1 and F2. Looking to Fig. 4(a) and (b), we
see that F2 has a similar structure as F1, but this structure
appears to have rotated by a quarter of an elementary pattern, i.e.
by p/4. From Fig. 9, we know that at t1¼2.5�104Dt (t¼250 s),
the main perturbation is given by the first mode F1 (the
contribution of F2 is zero). At t2¼3.8�104Dt¼t1þG/4
(GE5�104Dt is the period for a p-rotation of the folds), the
main perturbation is given by F2 (the contribution of F1 is zero).
So the perturbation appears to have rotated by p/4. It is what we
see in Fig. 11(a) and (b). At t3¼t1þG/2E5�104Dt, we have the
main structure given by �F1 (the contribution of F2 is zero).
The elementary patterns are now those of F1 but with changed
signs, so that the perturbation appears to have rotated by p/2.
At t4¼t1þ3G/4E6.3�104Dt, the main perturbation structure is



Fig. 11. Contours of temperature fields corresponding to t¼2.5�104Dt (t¼250 s)

(a) and t¼3.8�104Dt (t¼380 s) (b) in Fig. 10 for the two-folded wave pattern.

The spatial shift between (a) and (b) is about p/4.

C.J. Jing et al. / Journal of Crystal Growth 340 (2012) 190–196196
given by �F2 (the contribution of F1 is zero). The elementary
patterns are now those of F2 but with changed signs, so that the
perturbation appears to have rotated by 3p/4. We then see that
for the two first characteristic modes, the observed combination
of a spatial shift (rotation of p/4) and a temporal shift (time
signals shifted by G/4) between them induces a traveling wave
behavior. This analysis suggests that the rotation of the wave
pattern is caused by the traveling wave behavior induced by the
different pairs of characteristic modes.

5. Conclusion

Massive three-dimensional numerical simulations of the LiNbO3

melt flow in a Czochralski crucible of radius rc¼100 mm and crystal
radius rs¼50 mm were conducted. Some stable two-, three- and
four-folded wave patterns were obtained numerically. For each
stable wave pattern, proper orthogonal decomposition is applied
to extract the characteristic modes. In this study the characteristic
modes are shown by the perturbation temperature fields of the
original wave patterns. By the analyses of the characteristic modes it
is found that the characteristic modes of the wave patterns show
some general spatial features: the characteristic modes appear in
groups (pairs of modes); the characteristic modes may contain more
elementary patterns than the folds of the original wave pattern; the
number of the elementary patterns is generally increased by n with
the increase of the group order for the n-folded wave pattern. In
addition, the analyses of the dynamic process of the wave pattern
indicate that the rotation of the original wave pattern in the
azimuthal direction can be attributed to the traveling wave behavior
of the characteristic mode pairs. These studies lead to a better
understanding of the wave pattern appearing in the Czochralski
oxide crystal growth.
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