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The fluid flow in the lacunar–canalicular system of bone is an essential mechanical stimulation on the osteo-
cyte networks. Due to the complexity of human physical activities, the fluid shear stress on osteocyte bodies
and processes consists of both steady and oscillatory components. In this study, we investigated and compared
the intracellular calcium ([Ca2+]i) responses of osteocytic networks under steady and oscillatory fluid flows.
An in vitro osteocytic network was built with MLO-Y4 osteocyte-like cells using micro-patterning techniques
to simulate the in vivo orderly organization of osteocyte networks. Sinusoidal oscillating fluid flow or unidirec-
tional steady flow was applied on the cell surface with 2 Pa peak shear stress. It was found that the osteocytic
networks were significantly more responsive to steady flow than to oscillatory flow. The osteocytes can release
more calcium peaks with higher magnitudes at a faster speed under steady flow stimulation. The [Ca2+]i sig-
naling transients under the steady and oscillatory flows have significantly different spatiotemporal characters,
but a similar responsive percentage of cells. Further signaling pathway studies using inhibitors showed that
endoplasmic reticulum (ER) calcium store, extracellular calcium source, ATP, PGE2 and NO related pathways
play similar roles in the [Ca2+]i signaling of osteocytes under either steady or oscillating flow. The spatiotem-
poral characteristics of [Ca2+]i transients under oscillating fluid flow are affected more profoundly by pharma-
cological treatments than under the steady flow. Our findings support the hypothesis that the [Ca2+]i
responses of osteocytic networks are significantly dependent on the profiles of fluid flow.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Osteocyte networks in bone tissue can sense various mechanical
stimuli generated by physical activities and act as an coordinator in
the bone remodeling process by regulating both osteoclast and oste-
oblast activities [1–3]. The heterogeneous deformation across bone
tissue induced by mechanical loading creates fluid pressure gradients
in the lacunar–canalicular system (LCS), where the osteocytes reside
in. This pressure gradient generates fluid flow across the LCS, which
can induce shear stresses up to 5 Pa upon the osteocyte membrane
and processes [4–6]. Fluid flow is regarded as an essential mechani-
cal stimulation in the mechanobiology of osteocytes. Due to the ver-
satile nature of human daily activities, the profiles of mechanical
loading on bones are complex. Therefore the fluid flow upon osteo-
cytes could be a combination of various patterns, including oscillat-
ing fluid flow and unidirectional flow. The oscillating flow is often
correlated to cyclic movement of the skeletal system such as walk-
ing and running. The unidirectional steady flow can represent a
physiological but unusual mechanical stimulus, e.g., a posture
al Engineering, Columbia Uni-
venue, New York, NY 10027,

rights reserved.
change of the human body from sitting to standing [7]. Previous
studies showed that the mechanically adaptive responses of bone
are dominated by “abnormal” strain changes under unusual loading
rather than by the numerous cycles of “normal” loadings [8]. There-
fore osteocytes respond more actively to new patterns or types of
mechanical loadings than to ordinary mechanical stimulation. Oste-
ocytes are known to be able to differentiate the temporal pattern
of flow stimulation with distinct biochemical activities to regulate
bone remodeling [1,9,10].

Little is known about the mechanobiology effects of different fluid
flow profiles on osteocytic networks. To date there has only been one
study that compared the responses of osteoblastic cells under the
stimuli of steady and oscillatory flows [7]. Significant difference in
calcium signaling was revealed in osteoblasts under two flow pat-
terns. The oscillating flow, assumed to be the major stimulation on
bone cells, was a much less potent stimulator than the steady flow
on osteoblastic cells. We recently found that osteocytic networks, as
the dedicated mechanical sensors in bone, are much more sensitive
to fluid shear stress than the osteoblasts [11]. The intracellular
calcium ([Ca2+]i) signaling of osteocytes showed significantly differ-
ent spatiotemporal characteristics with osteoblasts. Unlike the oste-
oblasts on bone surfaces, osteocyte networks are directly situated
inside the LCS. Therefore it is important to understand and compare
the responses of osteocytes under different flow patterns, which are
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associated with mechanical loading profiles on bone and further af-
fect the bone remodeling process.

Intracellular calcium [Ca2+]i signaling is one of the earliest re-
sponses in bone cells under mechanical stimulation that initiates a
number of essential downstream signaling pathways, e.g., ATP and
PGE2 release, and is typically observed to oscillate dramatically within
seconds after mechanical stimulation [4,12–15]. This ubiquitous sig-
naling molecule plays a critical role in a wide variety of physiological
processes in bone cells including proliferation, differentiation, and
cell responses to mechanical stimuli [16–18]. The calcium wave prop-
agation across neighboring cells acts as an effective mechanism for
the cell–cell communication in bone cell networks [14,19,20]. The
characters of [Ca2+]i signaling of bone cells are shown to be depen-
dent on the mechanical loading profiles [21]. We have shown that os-
teocytes can release multiple spike-like [Ca2+]i peaks under
unidirectional fluid flow, up to 17 [Ca2+]i peaks during a 9-minute
flow stimulation. The spatiotemporal properties of the [Ca2+]i tran-
sients are also found to be dependent on the magnitude of fluid
flow. Therefore [Ca2+]i oscillations of osteocytes can be employed
as a sensitive signaling pathway to represent the cell responses with
different external mechanical stimuli.

The fluid flow induced elevation of cytosolic calcium comes main-
ly from two sources: intracellular stores (e.g., endoplasmic reticulum,
ER) and the extracellular environment [13,22]. The release of ER cal-
cium store is mainly regulated by the inositol trisphosphate (IP3)
pathway, which can be initiated by the activation of purinergic recep-
tors on the cell membrane [16,17]. After the cytosolic calcium concen-
tration is elevated to a critical level by intra/extracellular sources, the
depleted intracellular calcium stores tend to recover their calcium
reservation to original levels and become ready for the next release
of calcium [16,23]. When a bone cell is under fluid flow induced
shear stress, the activation of gap junction hemichannels (connexin
43) induces ATP efflux from the cytosol to the pericellular environ-
ment [24]. Extracellular ATP can elicit a significant [Ca2+]i response
by binding to the purinergic membrane receptors [25]. Fluid shear
stress can also prompt the induction of COX-2 protein and further
PGE2 release in osteoblast-like cells [41]. It was previously reported
that fluid shear stress can elicit nitric oxide production in osteocytes
and osteoblasts accompanied by an increased expression of nitric
oxide synthase (NOS) [26,27]. Nitric oxide modulates [Ca2+]i signal-
ing via a cyclic guanosine monophosphate (cGMP) dependent path-
way [28] or nitrosylation of proteins [29]. Moreover, nitric oxide
could directly contribute to the [Ca2+]i release via triggering of an in-
flux pathway that is, in part, responsible for the refilling of internal
calcium stores [30].

Most studies of bone cell mechanotransduction under oscillatory
flow used monolayer osteoblastic cells [7,31–34]. The osteocytes, un-
like the osteoblasts residing on the bone surface, are embedded inside
the mineralized bone tissue with a regular pattern. The intercellular
spacing and the topology of connection dendrites of osteocytes are
relatively regular across the tissue. The osteocytes are connected
into an extensive network through the gap junctions on processes.
Gap junctions are membrane-spanning channels, where each pair of
connexons (i.e. hemichannels) forms a cylinder with a pore in the
center through which small molecules (b1 kDa) can pass from one
cell to another [35]. It is widely accepted that this intercellular con-
nection plays a significant role in coordinating bone cell network ac-
tivities. Messenger molecules mentioned previously, such as IP3 and
calcium, can directly transfer between the neighboring cells through
gap junctions and thereby mediate propagation of [Ca2+]i signaling
in bone cells [20,36]. The [Ca2+]i signaling of osteocytes within a con-
trolled cell network connected by gap junctions under different flow
stimuli has yet to be obtained experimentally.

In this study, we hypothesize that the [Ca2+]i signaling of
osteocytic networks is dependent on the profiles of fluid flow.
[Ca2+]i response was employed as the primary outcome variable to
compare the physiological responses of in vitro osteocytic networks
under steady and oscillatory fluid flows. The roles of several essential
[Ca2+]i signaling pathways of osteocytic networks were also investi-
gated and compared under two different flow profiles using pharma-
cological inhibitors.

Materials and methods

Chemicals

Fetal bovine serum (FBS), calf serum (CS), and penicillin/streptomycin
(P/S) were obtained fromHyclone Laboratories Inc. (Logan, UT). Trypsin/
EDTA, octadecanethiol, dimethyl sulfoxide (DMSO), fibronectin, 18α-
glycyrrhetinic acid (18α-GA), suramin, and thapsigargin (TG) were
obtained from Sigma-Aldrich Co. (St. Louis, MO). Minimum essential
alpha medium (α-MEM), calcium free Dulbecco's modified eagle
medium (DMEM), and calcium-free Hank's balanced salt solution
(HBSS) were obtained from Invitrogen Corporation (Carlsbad, CA).
N-(2-Cyclohexyloxy-4-nitrophenyl) methanesulfonamide (NS-398)
and NG-monomethyl-L-arginine (L-NMMA)were from EMD Chemicals
Inc. (San Diego, CA).

Cell culture and osteocytic network

Osteocyte-like MLO-Y4 cells (a gift from Dr. Lynda Bonewald, Uni-
versity of Missouri-Kansas City, Kansas City, MO) were cultured on
type I rat tail collagen (BD Biosciences, San Jose, CA, USA) coated
Petri-dish in α-MEM supplemented with 5% FBS, 5% CS and 1% P/S
[37]. Cells were maintained at 37 °C and 5% CO2 in a humidified incu-
bator and not allowed to exceed 70–80% confluence in order to main-
tain the dendritic characteristic of MLO-Y4 cell line.

Micro-contact printing and self-assembled monolayer (SAM) sur-
face chemistry technologies were employed to construct in vitro
osteocytic networks to best simulate the osteocyte network in LCS.
The detailed protocol was presented in previous studies [12,38,39].
In brief, a grid mesh cell pattern was printed on a chromium mask,
and then the pattern was replicated to a master, made of positive
photoresist (Shipley 1818, MicroChem Corp., Newton, MA). Polydi-
methylsiloxane (PDMS, Sylgard 184, Dow Corning, Midland, MI)
stamps were made using the master. To build an osteocytic network
on a glass slide, an adhesive SAM (octadecanethiol) was inked onto
a gold coated glass slide with the stamp. Ethylene glycol terminated
SAM solution (HS-C11-EG3; Prochimia, Sopot, Poland) was then
added onto the slide to form a non-adhesive SAM in non-stamped re-
gions, in order to effectively resist cell adhesion. To further improve
the cell attachment on the adhesive SAM inked regions, the glass
slide was incubated in a 1% fibronectin solution for 1 h before cell
seeding. Fibronectin can only attach on the adhesive SAM. After
the monolayer printing, MLO-Y4 cell suspension medium was
dropped onto the slide for cell seeding. Fig. 1A shows a fluorescent
image of a typical osteocytic network, in which each cell resides on
a round island, which is connected with four neighboring islands
through fibronectin coated lines. The cells extend their dendrites
through these lines to establish gap junctions with the neighboring
cells [38].

[Ca2+]i imaging and fluid flow stimulation

To indicate the fluctuation of [Ca2+]i intensity, the osteocytic net-
work was loaded with 10 μM Fura-2 AM (Molecular Probes, Eugene,
OR) for 45 min and then rinsed with fresh working medium
(phenol-red free α-MEM with 2% FBS and 2% CS) three times. The
glass slide with cells was mounted into a parallel plate flow chamber
for laminar fluid flow stimulation tests (Fig. 1B) [13]. The chamber
was mounted on an inverted fluorescent microscope (Olympus IX71,
Melville, NY), and left undisturbed for 15 min, which has been shown



Fig. 1. Micro-patterned osteocytic network, laminar fluid flow chamber, profiles of shear stress stimulation and the definition of spatial–temporal parameters of [Ca2+]i transients.
(A) Fluorescent image of a typical MLO-Y4 cell network used for fluid flow test. The cells were loaded with Fura-2 AM to indicate intracellular calcium ions. Each cell attaches on a
round island and connects with four neighboring cells through functional gap junctions. The round island for cell attachment is 15 μm in diameter, while the cell–cell distance is
50 μm. Each island was connected with four neighboring islands through 2 μm width lines. Scale bar=30 μm. (B) The glass slide with micro-patterned osteocytic network was
mounted in a laminar fluid flow chamber. The flow rate was generated by a high-resolution magnetic gear pump (for steady flow) or a motor driven Hamilton syringe (for oscil-
latory flow) to apply 2 Pa shear stress on the cell surface. The fluid flow rate and shear stress are correlated through Poiseuille's equation. (C) The profiles of shear stress generated
by steady and oscillatory fluid flow. The frequency of oscillatory flow is 1 Hz, and the peak stress is ±2 Pa. (D) Spatiotemporal parameter definition in a typical [Ca2+]i intensity
history of MLO-Y4 cells under fluid flow stimulation. [Ca2+]i responses of bone cells were recorded for 10 min: 1 min for baseline and 9 min during fluid flow stimulation. The
[Ca2+]i intensity was represented by average image intensity inside cell normalized over its baseline level. Number of [Ca2+]i peaks, magnitude of 1st peak m1, time to 1st peak
t1, and relaxation time of 1st peak t2 were defined in this figure.

Fig. 2. A schematic of calcium signaling pathways in osteocytes investigated in present
study. The increase of Ca2+ intensity in cytoplasm has two major sources, the extracel-
lular Ca2+ in medium and intracellular calcium store in ER. Ion channels, such as volt-
age gated calcium channels, ligand gated ion channels and stretch-activated ion
channels can transfer Ca2+ between intra- and extracellular environments. The calci-
um in ER store can be released by activation of IP3 sensitive channels. [Ca2+]i signaling
in bone cells can induce ATP release through hemi-channels on membrane. ATP can
further activate the purinergic receptors which are correlated with PLC and IP3 path-
way. Gap junction between neighboring cells provides a physical channel for small
molecules (e.g., IP3 and Ca2+) to diffuse between two connected cells. As two of the es-
sential signaling pathways involved in bone mechanotransduction, PGE2 and NO path-
ways were investigated to identify their correlations with mechanical loading induced
[Ca2+]i responses.
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to be sufficient for bone cells to recover from mechanical disturbances
and to generate repetitive [Ca2+]i response [40]. The fluorescent images
of the osteocytic network were recorded by a high-speed CCD camera
(ORCA-ER-1394, Hamamatsu Photonics K.K., Hamamatsu City, Japan)
for a 10-minute period, 1 min for baseline and 9 min after the onset of
fluid flow. Fura-2 340 nm/380 nm ratio images were used to obtain
thefluctuation history of [Ca2+]i bymeasuring the average image inten-
sity of each cell using MetaMorph and MetaFluor Imaging Software 7.0
(Molecular Devices, Downingtown, PA). The intensity of [Ca2+]i was
normalized by the baseline of each cell.

To generate steady fluid flow in the laminar flow chamber, a mag-
netic gear pumpwas connected to the chamber with rigid walled tub-
ing to push the fresh working medium through at a desired constant
flow rate. The oscillatory flow was driven by a Hamilton glass syringe
which was connected to a crank-rocker mechanism. The rocker was
driven by a DCmotor rotating at 1 Hz which results in a sinusoidal os-
cillatory laminar flow in the chamber [7]. The shear stress of the
steady flow or peak shear stress of oscillatory flow on cell surfaces
was controlled at 2 Pa. The profiles of oscillatory and steady flow
were illustrated in Fig. 1C.

[Ca2+]i signaling related pathways

To identify the potential cellular mechanisms activated by differ-
ent fluid flow profiles, the osteocytic networks were separated into
eight groups for each flow pattern. With exception to the untreated
and vehicle (DMSO) control groups, the fluid flow experiments
were performed with the presence of six specific pathway inhibi-
tors. Each inhibitor can block a major [Ca2+]i signaling related
pathway in bone cells (Fig. 2). (1) Extracellular calcium depletion:
calcium-free DMEM and calcium-free HBSS were used to replace
the regular medium in flow tests. (2) ER calcium store depletion:
cell networks were incubated in 1 μM thapsigargin medium to
deplete the calcium in the ER store for a half hour before flow
tests [25]. (3) PGE2 blocking: cell networks were treated with
10 μM NS-398 for 24 h before and during the flow test, which

image of Fig.�2


Table 1
Number of analyzed cells in different experimental groups.

Pathway Untreated NO ATP Ca2+ free Vehicle PGE2 GJ ER store

Oscillatory 412 394 225 152 396 398 323 134
Steady 441 131 95 66 151 139 125 111

Fig. 3. A set of typical [Ca2+]i responses of MLO-Y4 cells under steady and oscillatory
fluid flow stimulations. The flow starts at the 60th second and lasts for 9 min in both
tests.

Fig. 4. Comparison of spatiotemporal characteristics of the first [Ca2+]i peaks in
MLO-Y4 cells under oscillatory and steady fluid flow: (A) percentage of responsive
cells, (B) average number of [Ca2+]i peaks, (C) magnitude of the 1st [Ca2+]i peaks,
and (D) time from onset of fluid flow to reach the 1st [Ca2+]i peak (*: pb0.05).

469X.L. Lu et al. / Bone 51 (2012) 466–473
can selectively inhibit the COX-2 enzyme activity and further block
the PGE2 release [41]. (4) NO blocking: 100 μM L-NMMA was intro-
duced into the cell culture medium one day before seeding the
cells on slides and continuously presented in medium afterwards.
L-NMMA inhibits the production of nitric oxide via competitively
inhibiting all three isoforms of nitric oxide synthase (NOS) [42]. (5)
Gap junction blocking: 75 μM 18α-GA, a reversible gap junction
blocker which binds to membrane proteins and causes disassembly
of gap junction plaques [43], was supplied in fluid flow medium to
investigate the roles of gap junction in calcium wave propagation
[36]. (6) Extracellular ATP pathway blocking: 100 μM suramin, a
general P2 purinergic receptor blocker, was applied to the cell
networks 30 min prior to fluid flow stimulation [44]. The concen-
trations of above agents were selected according to the relevant lit-
erature where they have been demonstrated to be effective on
bone cells. We have used both 18α-GA and NS-398 in bone explant
studies for long term (up to 4 weeks) and have not observed oste-
ocyte cell death [53]. Each individual group included more than
three slides with patterned cell networks. The numbers of total ana-
lyzed cells in each group were summarized in Table 1.

Data analysis and statistics

A cell was defined as responsive to the fluid flow stimulation if it
released a calcium spike with a magnitude four times higher than
its fluctuations during the period of baseline measurement [45]. Re-
sponsive percentage of cells in each group was defined as the number
of responsive cells divided by the total number of analyzed cells in the
group. To quantitatively analyze the spatial-temporal characteristics
of the [Ca2+]i transients, a set of parameters was defined as shown
in Fig. 1D. The number of [Ca2+]i peaks during the stimulation period,
the magnitude of the 1st [Ca2+]i peak, and the time to reach the first
peak after the onset of fluid flow were measured and compared be-
tween different groups. Student t-tests were used to determine sig-
nificant difference of spatiotemporal parameters between oscillatory
and steady flows. One-way analysis of variance (ANOVA) with
Bonferroni's post hoc analysis was performed to determine statistical
differences between mean values of different pathway inhibited
groups. L-NMMA, suramin and Ca2+ free medium treated groups
were compared with the untreated group. Since NS398, 18α-GA and
thapsigargin were originally dissolved in DMSO, the results from
these three groups were compared with those of DMSO vehicle con-
trol group. All data reported are mean±standard deviation of the
values of all responsive cells. Statistical significance was defined as
pb0.05.

Results

A set of typical [Ca2+]i transients of MLO-Y4 cells under oscillatory
and steady fluid flow stimulation is shown in Fig. 3. Both flow pat-
terns induced prominent [Ca2+]i oscillations in MLO-Y4 cells. Under
oscillating flow stimulation, the cell released a [Ca2+]i peak at the
onset of flow and a few weaker peaks afterwards with reduced mag-
nitudes. Under steady flow stimulation, MLO-Y4 cells tended to re-
lease repetitive and spike-like [Ca2+]i peaks with no attenuation in
magnitude. A single cell can release up to 17 [Ca2+]i peaks in 9 min
under steady flow, but at most 6 [Ca2+]i peaks under oscillating flow.

The responsive percentages of MLO-Y4 cells under oscillating
(96%) and steady (95%) fluid flow had no significant difference. Less
than 5% of cells failed to respond to 2 Pa shear stress stimulation
(Fig. 4A). The number of multiple [Ca2+]i peaks was much higher
under steady flow (4.3±2.8) than under oscillating flow (2.4±1.6)
(Fig. 4B). 58% MLO-Y4 cells can release three or more [Ca2+]i peaks
under 9-minute steady flow stimulation. The same percentage de-
creased to 21% under oscillatory flow stimulation. The average magni-
tude of the first [Ca2+]i peak under steady flow (3.3±2.6) was
significantly higher than that under oscillating flow (2.5±1.5), and
it took the cells significantly shorter time to reach the first peak
under steady flow (21±11 s vs. 37±29 s under oscillatory flow).

The responsive percentages of all sixteen pharmacological treated
groups were summarized in Fig. 5. Under both flow patterns, MLO-Y4
cells showed no [Ca2+]i responses when calcium free medium were
used. Under steady flow stimulation, the responsive percentages
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Fig. 5. Percentage of responsive cells under fluid flow with different pathways blocked
in MLO-Y4 cells. The blocked pathways are listed below the corresponding pharmaco-
logical chemicals employed. L-NMMA, Suramin and Ca2+ free medium treated groups
were compared with the untreated group. NS398, 18α-GA and thapsigargin treated
groups were compared with the DMSO vehicle control group. The cells treated with
Ca2+ free medium had no responses to fluid flow stimulation. * means significant dif-
ference with corresponding untreated group, and + with vehicle control group. # rep-
resents significant difference between the two connected groups, pb0.05.

Fig. 7. The time to reach 1st [Ca2+]i peak in MLO-Y4 cells after the start of fluid
flow stimulation. The inhibited pathways are listed below the chemicals employed.
* means significant difference with corresponding untreated group, and +with vehicle
control group. # represents significant difference between the oscillatory and steady
flow groups, pb0.05.
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were above 85% in all groups except the ER calcium store depleted
group (57%). The ER depleted group (57%) and ATP pathway blocked
group (87%) showed significantly lower responsive percentages than
the corresponding control groups under steady flow. Under oscillato-
ry flow stimulation, the ER depleted group (42%), NO (89%), and ATP
(78%) interrupted groups showed significantly lower responsive per-
centages than corresponding controls, while the 18α-GA treatment
increased the responsive percentage (97% vs 87% in vehicle control
group). In the NO, ATP, PGE2, and ER calcium store inhibited groups,
the responsive percentages of cells are significantly lower under the
oscillating flow than the steady flow, while other pharmacological
treatment groups showed no significant difference between two
fluid flow patterns.

Fig. 6 shows the number of [Ca2+]i peaks in all groups. In the NO
pathway and ER calcium store interrupted groups, steady flow stimu-
lated cells showed significantly more peaks than corresponding
groups under oscillatory flow. The number of [Ca2+]i peaks in the
two ATP pathway inhibited groups decreased close to 1 and had no
Fig. 6. The average number of responsive [Ca2+]i peaks inMLO-Y4 cells treatedwith phar-
macological inhibitors. The affected pathways are listed below the corresponding
chemicals. * means significant difference with corresponding untreated group, and +
with vehicle control group. # represents significant difference between the two connected
groups, pb0.05.
difference under two flow profiles. The ER calcium store depleted
groups under both flow profiles showed the average number of
[Ca2+]i peaks less than two, significantly lower than corresponding
vehicle control groups. When the gap junctions were blocked by
18α-GA, the number of [Ca2+]i peaks under oscillatory flow was
higher than the vehicle control group, which is opposite to the result
under steady flow. Disruption of NO and PGE2 pathways had no signif-
icant influence on the number of [Ca2+]i peaks compared with
corresponding control groups. MLO-Y4 cells took significantly longer
time to reach the first [Ca2+]i peak under oscillating flow than under
steady flow in all groups (Fig. 7). Interestingly, this timing gap is even
broadened when the cells were treated with pathway inhibitors. In
most groups under steady flow, except the calcium free medium
group, chemical treatment showed no significant effect on the time to
reach the first [Ca2+]i peaks. In contrast, whenMLO-Y4 cells were stim-
ulated with oscillatory flow, the time to reach the first peak was signif-
icantly increased in ER store depleted group, ATP, NOand PGE2 pathway
blocked groups when compared to the untreated or vehicle groups. The
timewas lengthened three times in NO blocked group, and twice for ER
store depleted group. Interestingly, no significant difference was
detected in the response speed between the vehicle control and
18α-GA treated groups under oscillatory flow.

Discussion

In this study, the calcium signaling of osteocytic networks was in-
vestigated and compared under the stimulation of steady or oscillato-
ry fluid flow. The results clearly demonstrated that the oscillatory
flow is significantly less potent than the steady flow to osteocytes. Os-
teocytes tend to release more frequent [Ca2+]i peaks with higher
magnitudes under the stimulation of steady fluid flow than under
the oscillatory flow. Previous studies on monolayer osteoblastic cells
also showed that in vitro oscillating flow is far less stimulatory than
the unidirectional flow [7]. The responsive percentage, but not the re-
sponse amplitude, of osteoblasts is dependent on the flow profiles.
Thus an “all or nothing” [Ca2+]i response character was proposed
for osteoblastic cells under fluid flow stimuli [7]. In the present
study, however, the responsive percentages of osteocytes show no
significant differences between the two flow patterns, but significant
differences in the spatiotemporal characters were observed in the
[Ca2+]i transients, i.e., more frequent and stronger [Ca2+]i peaks
under steady flow than under oscillatory flow. In our previous studies
on the calcium signaling of osteocytes under fluid shear stress ranging
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from 0.5 to 4 Pa, it was also found that the spatiotemporal parameters,
but not responsive percentages of osteocytes, are correlated with the
strength of fluid shear stress [11]. Therefore the information regarding
the profiles of fluid flow is represented by the spatiotemporal charac-
ters of [Ca2+]i transients rather than by the responsive percentage of
osteocytes. This finding is opposite to that revealed in osteoblasts
[7], which further implies that the osteocytes and osteoblasts may in-
corporate different [Ca2+]i signaling mechanisms under similar me-
chanical stimuli. Our previous studies also confirmed that the
osteocytic and osteoblastic networks had dramatically different
[Ca2+]i responses under the same steady fluid flow stimulation. The
[Ca2+]i transients of osteocytes are much more dynamic than those
of osteoblasts. It has been shown that the expression of T-type voltage
gated calcium channels in osteocytes may play an essential role in the
spike-like [Ca2+]i responses of MLO-Y4 cells under mechanical stimu-
lation [11,46,47].

The exact mechanism of fluid shear stress induced [Ca2+]i signal-
ing in bone cells remains elusive, but several essential pathways in
bone remodeling process have been proven to interact with
[Ca2+]i responses in osteoblasts [15,20,31,32,48]. In this study, we
found that the fluid flow induced [Ca2+]i responses in osteocytes in-
volve the gap junction, PGE2, NO and ATP related pathways.
Purinergic receptors on cell membrane are especially critical for
the release of multiple [Ca2+]i peaks in MLO-Y4 cells under both
steady and oscillatory flows. The results also proved that the
[Ca2+]i responses of osteocytes rely on two major calcium sources,
the extracellular calcium in medium and intracellular calcium stored
in ER, while the release of ER store has to be initiated by the influx
of extracellular calcium. Osteocytic networks stopped responding to
fluid flow in calcium-free medium, and the depletion of calcium in
ER store significantly reduced the number of [Ca2+]i peaks. Blocking
these pathways showed similar effects on the number of [Ca2+]i
peaks under both oscillating and unidirectional flow patterns.
However, the time to reach the first peak was significantly increased
in most chemical-treated groups under oscillating flow stimulation,
but not under steady flow. This indicates that the [Ca2+]i transients
in osteocytes are more readily affected by pharmacological treatment
under oscillating fluid flow, the assumed “normal” stimulation on
osteocytes.

Compared with the interruption of ATP pathway, intra- and extra-
cellular calcium sources, the blocking of NO and PGE2 release showed
less significant effects on the flow induced [Ca2+]i signaling in
MLO-Y4 cells. Since the upregulation of NO release is another early
response of osteocytes under fluid flow stimulation, which occurs in
a few minutes [49,50], it is highly possible that NO release and
[Ca2+]i signaling can interfere with each other. The production of
NO in human bone cells is mainly regulated by the endothelial nitric
oxide synthase [51]. According to the time reaching the 1st [Ca2+]i
peaks demonstrated in the present study (20 s in the control
group), the flow induced [Ca2+]i signaling in osteocytes is even faster
than the NO release. Therefore it is unlikely the [Ca2+]i signaling is a
downstream activity of NO release in flow-stimulated osteocytes. Our
previous studies on osteoblasts also showed that activation of NO re-
lease has no essential influence on the flow induced [Ca2+]i signaling.
The PGE2 release under fluid flow starts even later than NO [49], and
the treatment of L-NMMA prevented both NO and PGE2 release in
chicken osteocytes, suggesting that the upregulation of PGE2 is de-
pendent on the NO pathway. Thus it is not a surprise that the inhibi-
tion of PGE2 release did not reduce the calcium responsive percentage
of osteocytes in the present study.

Most pharmacological treatments in this study had negative ef-
fects on the [Ca2+]i responses of MLO-Y4 cells. Interestingly, the
treatment with 18α-GA increased the responsive percentage and
number of peaks in cells under oscillating flow, but not under steady
flow, and the speed of calcium response has no significant difference
with the vehicle control group. The 18α-GA has been widely used in
bone cell research to block the intercellular gap junctions. A number
of studies from our group and other groups have proven the effective-
ness of this chemical in blocking gap junction and its effect on calcium
signaling [11,12,14,15,19,24,36,43,52,53]. Our previous studies using
a bone explant model also showed that 18α-GA treatment attenuated
the effects of mechanical loading in new bone formation while having
minimal toxic effects on osteocyte health in a 4-week long culture
[53]. It is interesting that the treatment of 18α-GA on MLO-Y4 cells
boosts the calcium responses under oscillatory fluid flow. Identifying
the exact mechanisms responsible for this unexpected result may
require extensive studies, which is beyond the scope of this present
work. However, this result from 18α-GA treatment revealed a crit-
ical difference between the stimulative effects of steady and oscilla-
tory flow in osteocyte mechanotransduction. Finally, it is important
to note the limitations of the usage of chemical inhibitors. Each
pharmacological chemical may have complex effects on the cells
besides its major functions. Therefore, a thorough understanding
of the mechanisms of these pathways in calcium signaling may re-
quire comprehensive studies using a combination of various
techniques.

Osteocytic networks are regarded as themajor mechanical sensor in
bone modeling and remodeling processes. A number of studies showed
that the bone is more sensitive to the change of mechanical environ-
ments rather than the magnitude or duration of loading [54]. Par-
titioning exercise into multiple sessions is much more effective for
“training” bone to be stronger [55]. Five jumps per day can significantly
increase the bone volume and fracture stiffness in rats [56]. However,
little information is available about the correlation between the loading
profiles and osteocyte behaviors. During cyclic movement of the human
body, such as walking and running, a normal oscillatory fluid flow is
expected in the LCS in bone. However, a posture change, such as from
sitting to standing, may induce a constant, nonhomogeneous strain
field in the bone. Due to the low permeability of LCS and the dense glyc-
ocalyx surrounding the osteocyte processes, this pressure gradient in
the LCS may generate a minutes-long, steady fluid flow on osteocytes.
Our recent study demonstrated a high viscoelasticity in osteocyte cyto-
skeletal networks under fluid flow loading [57]. The cell deformation
slowly “creeps” to the equilibrium state under the constant push from
a unidirectional flow. This process could take minutes under 1 Pa
shear stress. Therefore the stress and strain developed in the cell body
and processes under steady flow could be significantly higher than
those under oscillatory flow. The difference in deformation amplitudes
of the cell membrane and cell body may contribute to the differences
in [Ca2+]i signaling revealed in the present study. Previous research
using MC3T3-E1 cells also found that the stretch-activated membrane
channel, blocked using gadolinium chloride, is not important for cell
response to oscillatory fluid flow [32], but calcium responses were
inhibited by blocking this channel under steady flow [13,22]. Further-
more, mechanotransduction responses in MC3T3-E1 cells were shown
to be induced by a mechanism that involves the reorganization of the
actin cytoskeleton under unidirectional steady fluid flow [58], while
exposure to oscillatory fluid flow failed to result in the development
of F-actin stress fibers in osteoblastic cells [34]. Combining all of
these factors with the results in this study, it is clear that the different
stimulation effects of steady and oscillatory flows are related to the
distinct strain fields developed in the cytoskeleton under two flow
patterns. Another significant difference between steady and oscillatory
flows is the effective volume of medium which the cells are exposed
to. The cells are exposed to much more medium under the steady
flow than the oscillatory flow. Therefore, essential biochemical factors
for [Ca2+]i signaling within the medium would be depleted more rap-
idly under steady flow, and the messengers secreted from cells, such
as ATP, would accumulate faster and higher within the small volume
of oscillating medium. Identifying the existence and mechanisms of
these factors could be a challenging yet important direction for future
studies on this topic.
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Conclusion

In summary, this study proved that fluid flow can induce robust
intracellular calcium responses in osteocytic networks. The respon-
sive percentage of osteocytes is not dependent on the flow patterns,
but the spatiotemporal characteristics of calcium transients vary sig-
nificantly under steady and oscillatory flows. Osteocytes can release
more intracellular calcium peaks with higher magnitudes under
steady flow than under oscillatory flow, i.e., steady flow is more stim-
ulative to osteocytes than oscillatory flow. Experiments using phar-
macological inhibitors demonstrated that extracellular calcium
source in medium, intracellular calcium store in ER, and purinergic
receptors on cell membrane are essential for calcium signaling of os-
teocytes under fluid flow stimulation.
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