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Simultaneous orthokinetic and perikinetic coagulations (SOPCs) are studied for small and large Peclet numbers

(Pe) using Brownian dynamics simulation. The results demonstrate that the contributions of the Brownian motion and

the shear flow to the overall coagulation rate are basically not additive. At the early stages of coagulation with small

Peclet numbers, the ratio of overall coagulation rate to the rate of pure perikinetic coagulation is proportional to P
1/2
e ,

while with high Peclet numbers, the ratio of overall coagulation rate to the rate of pure orthokinetic coagulation is

proportional to P
−1/2
e . Moreover, our results show that the aggregation rate generally changes with time for the SOPC,

which is different from that for pure perikinetic and pure orthokinetic coagulations. By comparing the SOPC with pure

perikinetic and pure orthokinetic coagulations, we show that the redistribution of particles due to Brownian motion can

play a very important role in the SOPC. In addition, the effects of redistribution in the directions perpendicular and

parallel to the shear flow direction are different. This perspective explains the behavior of coagulation due to the joint

effects of the Brownian motion (perikinetic) and the fluid motion (orthokinetic).

Keywords: simultaneous orthokinetic and perikinetic coagulation, Brownian motion, shear flow,
colloidal aggregation
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1. Introduction

The coagulation kinetics and stability of colloidal

suspensions has long been a major research field in col-

loid science.[1−10] Coagulation depends on the trans-

port of particles that induces particle collisions and

the interparticle forces that determine the proportion

of the collisions resulting in aggregation. The two ba-

sic transport mechanisms are Brownian diffusion and

fluid motion. The coagulations caused by these two

transport mechanisms are called perikinetic and or-

thokinetic coagulations, respectively.

The theoretical foundation for both perikinetic

and orthokinetic coagulation was formulated by

Smoluchowski.[10] In his classical treatment of orthoki-

netic coagulation, particle motion was considered to

be caused by the laminar shear only. However, no

pure orthokinetic coagulation can actually exist, be-

cause Brownian motion is always present, regardless of

whether the shear flow exists or not. When the shear

flow does exist, coagulation should be simultaneously

orthokinetic and perikinetic.

Swift and Friedlander[11] analysed the kinetics of

simultaneous orthokinetic and perikinetic coagulation

(SOPC) by assuming that the contributions from the

two mechanisms were additive. They found some

supportive experimental data of the coagulation of

polystyrene particles for their additive assumption.

The additive approximation was convenient to use,

so it was adopted and discussed in some subsequent

studies.[12−14] However, the assumption was criticized

by some researchers.[15−18] Van de Ven and Mason[16]

theoretically studied the SOPC of small Peclet num-

bers. Their results showed that there is no theoreti-

cal foundation for the additive assumption. Feke and

Schowalter[17] pointed out that the additive assump-

tion is inconsistent with the asymptotic corrections

for solid spheres with very small and very large Peclet
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numbers. In addition, there could be a strong coupling

between the flow strength and the effect of Brownian

motion. The collision rates of spherical drops or parti-

cles were also studied by using the Fokker–Plank equa-

tion for a broad range of Peclet numbers.[18] It was

concluded that the additive approximation is usually

questionable and a modified approximation provides

better results.

In those theoretical studies, only the early stages

of coagulation were considered, and the obtained re-

sults were conflicting, suggesting that the SOPC is

rather complicated, even for coagulations at the early

stages. The SOPC could be even more complicated

for coagulations beyond the early stage. Therefore, it

is necessary to investigate the coupling effect of Brow-

nian motion and shear flow, which may provide better

understandings of the applicability of different theo-

ries and the mechanism for the possible change of the

coagulation rate during the SOPC. A useful strategy

for this purpose is to study the behavior of SOPC and

compare it with that of pure perikinetic coagulation

(PPC) and pure orthokinetic coagulation (POC).

Computer simulation provides a simple method

to study the complicated SOPC process. In simula-

tions, the effect of the Brownian motion can be easily

turned on or off, which is impossible in an experi-

ment. So a computer simulation makes it possible to

directly compare SOPC with POC and PPC. More-

over, effects other than Brownian motion and shear

flow, such as hydrodynamic interaction, can be ne-

glected in the simulation, so we can concentrate on

the influences of these two mechanisms on the aggre-

gation behavior without any interference.

Brownian dynamics (BD) simulation has been

proved to be a useful approach to studying the ag-

gregation of colloidal particles.[19−21] In this study,

we will investigate the SOPC with different param-

eters using the BD simulation. Since our goal is to

study the influence of the transport mechanism on the

coagulation process, we do not include particle inter-

actions, and the particles are assumed to aggregate

upon collision. Similar to what was done in the pre-

vious BD studies on colloidal coagulation,[19−21] the

hydrodynamic interactions are also neglected. The

results are compared with those of POC and PPC to

study how Brownian motion and the laminar shear af-

fect the SOPC process. The additive approximation

and the other theoretical predictions are also com-

pared with the simulated results for different Peclet

numbers, which gives the conditions under which the

theories are applicable and are helpful for the future

analysis of coagulation through Brownian motion and

shear flow.

2. Simulation

BD simulation is utilized in this study. In order

to concentrate on the influence of transport mecha-

nisms on colloidal aggregation and to make compar-

isons with the theories in which the hydrodynamic in-

teractions are ignored, we neglect the hydrodynamic

interactions in the BD simulation, which is similar to

what has been done in previous BD studies of colloidal

aggregation.[19−21] Such a treatment also saves simula-

tion time, as BD simulation considering the hydrody-

namic interactions[22−24] can be very time consuming

when the particle number in the system is large.

The Langevin equation for a system of N non-

hydrodynamically interacting Brownian particles is

miv̇i(t) = −ζvi(t) + Fi(t) + pGi (t), (1)

where i represents the i-th component (1 ≤ i ≤ 3N); v

andm represent the velocity and the mass of the parti-

cle, respectively; F is the external force acting on the

particle; −ζvi(t) is the friction force; and pGi (t) is a

random term representing the effect of Brownian mo-

tion. The algorithm for the BD simulation based on

the Langevin equation can then be written as[1,22,25]

ri(t+∆t) = ri(t) +
DiFi

kT
∆t+∆rGi , (2)

where k is the Boltzmann constant, T is the tempera-

ture, Di is the diffusion coefficient, ∆t is the time step,

and ∆rGi has a Gaussian distribution with zero mean

and variance 2Di∆t. Here, Di equals kT/(6πηai) with

η being the viscosity coefficient and ai the radius of

particle i.

In this study, we focus only on the coagulation

process caused by particle transport. Therefore, the

external force Fi is zero. If shear flow exists in the sys-

tem, the particle will also move with the fluid motion

at a velocity depending on the position of the particle.

Then the algorithm used in this study can be written

as

ri(t+∆t) = ri(t) + vSi (t)∆t+∆rGi , (3)

where vSi is the velocity of the particle depending on

the shear flow.

The shear flow used in the simulation is laminar

Couette flow, which is similar to that in Smoluchoski’s

theory. The flow velocity is a function of y, and the

054702-2



Chin. Phys. B Vol. 21, No. 5 (2012) 054702

flow direction is along the x axis in the simulation.

The flow field can be expressed as

vx(y) = G |y| , (4)

where −L/2 ≤ y ≤ L/2 with L being the size of the

simulation box, and G is the shear rate.

At the beginning of the simulation, we randomly

place N0 = 20000 monodispersed particles without

superposition in the simulation box. The particle di-

ameter d is 1.0 µm, and the size of the simulation box

L is 1.25 mm, so the number concentration of the sys-

tem is 1.024×107 cm−3, and the volume fraction φ

is about 5.36×10−6. The temperature in the simula-

tion is T = 300 K. The other two important param-

eters, viscosity coefficient η and shear rate G, will be

changed in the study to adjust the particle transport

caused by Brownian motion and fluid motion. Using

these parameters, the particle velocity caused by the

shear flow and the diffusion coefficient can be calcu-

lated as described above. Then, the motion of the

particles caused by Brownian motion and the shear

flow can be calculated iteratively by using Eq. (3). If

vSi (t) (∆rGi ) is taken to be zero in Eq. (3), we can also

simulate PPC (POC) by using BD simulation.

In the simulation, when the distance between two

particles (or aggregates) is smaller than the sum of

their radii, the two particles (or aggregates) are con-

sidered to collide and aggregate. Since the volume

fraction is very low, a multi-body collision will not oc-

cur in the simulation. Therefore, after each aggrega-

tion the particle number decreases by one and the two

colliding particles (or aggregates) form a larger aggre-

gate. For simplicity, we assume that the newly formed

aggregate is spherical with a volume equal to the total

volume of the two colliding particles or aggregates. By

this means, the particle numbers at different aggrega-

tion times can be obtained for different parameters.

And the results are used to analyze the coagulation

processes of POC, PPC, and SOPC, respectively, as

will be shown in the following Sections.

3. Results and discussion

3.1.POC and PPC

When the hydrodynamic interactions are ignored,

according to Smoluchowski’s theory, the rate constant

for the collisions of two same-sized particles for periki-

netic coagulation is[1,10]

kperi =
8kT

3η
. (5)

For the collisions of different-size particles, the rate

constant will be a little different from Eq. (5). How-

ever, all the rate constants are usually assumed to be

equal in theory, so the change of the concentration of

particle can be written as[1]

dN

dt
= −kperiN

2

2
. (6)

With the initial condition of N = N0 at coagula-

tion time t = 0, the particle number concentration

for perikinetic coagulation can be expressed as

N =
N0

1 + kperiN0t/2
. (7)

Figure 1 shows the simulation results of the

residual particle numbers in the simulation box for

PPC, the theoretical results from Smoluchowski are

also shown for comparison. The values of viscos-

ity coefficient η used are 1×10−3 kg·m−1·s−1 and

2×10−3 kg·m−1·s−1, respectively. The time step in

the simulation is 5×10−3 s. The figure shows that the

simulation results are close to the theoretical ones.

The results also show that our method is suitable for

simulating the coagulation process of colloidal parti-

cles.
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Fig. 1. Simulation results of PPC compared to Smolu-

chowski’s theoretical results (Eq. (7)).

For POC caused by the laminar shear, accord-

ing to Smoluchowski’s theory, the rate constant of the

collisions between two particles of radius a is[1,10]

kortho =
32Ga3

3
. (8)

By analogy with Eq. (6), the differential equation for

POC is

dN

dt
= −16

3
N2Ga3 = −4NG

π
φ, (9)
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where the volume is φ = 4πNa3/3. The particle num-

ber concentration during the orthokinetic coagulation

can be deduced from Eq. (9) as[1]

N = N0 exp

(
−4Gφt

π

)
. (10)

The calculation results of Eq. (10) are compared

with the simulation results for the POC in Fig. 2. For

the shear rates of 0.1 s−1 and 0.4 s−1, the time step

in the simulation is 5×10−3 s. For larger shear rates,

we reduce the time step to make the simulation rea-

sonable. The time step is 5×10−4 s for the shear rates

of 60 s−1, 80 s−1, and 100 s−1. Since the time step

is reduced and the total steps in the simulation are

kept the same, the coagulation time is also reduced

for larger shear rates, as shown in Fig. 2.
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Fig. 2. Simulation results of POC compared to Smolu-

chowski’s theoretical results (Eq. (10)) for (a) small and

(b) large shear rates.

Figure 2 shows that there are significant devia-

tions between the simulation results and the theoreti-

cal ones when the residual particle numbers drop down

to certain values (about 19800 in Fig. 2). Such devia-

tions are caused by the periodic boundary conditions

used in the simulation. For POC, the particles move

only in one dimension, that is, along the direction of

the shear flow, so two particles i and j can aggre-

gate only when
√

(yi − yj)2 + (zi − zj)2 < (ai + aj).

The y and z coordinates of the particles cannot be

changed by the shear flow along the x axis. Due to

the periodic boundary condition, the particle distri-

bution is only uniform in a box of size L, but not in

an unbounded domain. Therefore, after some coagu-

lation time when most of the particle pairs satisfying√
(yi − yj)2 + (zi − zj)2 < (ai + aj) have already ag-

gregated, the remaining particles will have very low

aggregation probabilities. Comparatively, Brownian

motion can make the particles distribute randomly

and uniformly in three dimensions, so the periodic

boundary condition has little influence on PPC, as

shown in Fig. 1.

According to the periodic boundary condition,

the long-time limit number of particles that can pos-

sibly aggregate in the POC can be easily estimated

based on the probability of collision between parti-

cles, the value is given by N0(N0 − 1)πd2/L2. For

the system used in this study, the value is approxi-

mately 800, so the final number of particles for the

POC will be about 20000 − 800 + 800/2 = 19600,

which is consistent with our simulation result shown

in Fig. 2. To completely avoid the influence of the

boundary condition on the POC, all particles in the

system should have probabilities to aggregate, so value

N0(N0−1)πd2/L2 needs to be larger than N0. There-

fore, (N0 − 1)πd2/L2, which is approximately 6φL/d,

should be larger than 1. If the volume fraction φ and

the particle diameter d are kept unchanged, the simu-

lation box needs to be increased by 25 times and the

particle number should be about 0.3 billion to ensure

6φL/d ≥ 1. Such a huge number of particles are ap-

parently far beyond the capability of our current com-

puting facilities. Therefore, it would be very difficult

to study the long-time behavior of SOPC with a large

Peclet number without the influence of the periodic

boundary condition. However, for each shear rate,

there is still a time interval at the beginning of the

coagulation during which the boundary condition has

an ignorable influence. In that time interval, the sim-

ulation results are very close to the theoretical ones,

as shown in Fig. 2. In order to avoid the influence

of the boundary conditions in the following discussion

about the SOPC, the time intervals determined from

the results shown in Fig. 2 will be used.

The simulated results in Figs. 1 and 2 and the

relevant discussion in Section 2 show that the y and z

coordinates of the particles are never changed by the

shear flow along the x axis, while Brownian motion

can make the coordinates uniformly distribute in three
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dimensions. For SOPC, the redistribution of parti-

cles by Brownian motion may greatly influence the

coagulation caused by the shear rate. Because of the

redistribution of coordinates along the y and z axes,

the particles not satisfying
√
(yi − yj)2 + (zi − zj)2 <

(ai + aj) can aggregate by the shear flow. Such an ef-

fect tends to cause more particles to aggregate under

the shear flow. Also, particle pairs will become gradu-

ally closer in the x direction for POC until they even-

tually collide and aggregate. Then, the redistribution

along the x axis tends to cause these pairs to disperse,

which will reduce the aggregation rate by shear flow.

These two effects will be discussed in the following

Sections.

3.2. SOPC with small Peclet numbers

A simple theory to deal with SOPC is based

on the additive assumption,[11] in which the collision

rates for Brownian motion and laminar shear flow are

assumed to be additive. Therefore, with Eqs. (5), (6),

and (9), the change of the total particle concentration

with time for SOPC is given by

dN

dt
= −16

3
N2Ga3 − 4kT

3η
N2

= −4NG

π
φ− 4kT

3η
N2. (11)

From the above equation, we can obtain[11]

ln

[(
N + P

N

)(
N0

N0 + P

)]
=

4Gφ

π
t, (12)

where P = 3Gφη/πkT . Then the particle number

concentration N at coagulation time t can be ex-

pressed as

N =
P(

N0 + P

N0

)
exp

(
4Gφ

π
t

)
− 1

. (13)

Equation (11) indicates that the rate constant for the

SOPC collisions is

kSOPC =
32Ga3

3
+

8kT

3η
= 16πDa

(
1 +

2

3π
Pe

)
, (14)

where Pe is the Peclet number and is given by

Pe =
Ga2

D
=

6πηGa3

kT
. (15)

However, the correctness of the additive assump-

tion is questionable. For small Peclet numbers,

Ref. [16] shows that the increment of the coagulation

rate relative to the perikinetic coagulation due to the

shear is on the order of P
1/2
e instead of Pe shown in

Eq. (14). When there is no interparticle force, as in

this study, the coagulation rate should be expressed

as[16]

kSOPC = 16πDa
(
1 + 0.5136P 1/2

e

)
. (16)

Thus, Eq. (11) should be written as

dN

dt
= −8πDa

(
1 + 0.5136P 1/2

e

)
N2. (17)

Then we can obtain

N =
N0

1 + 8πDa
(
1 + 0.5136P

1/2
e

)
N0t

. (18)

Equations (13) and (18) give the particle num-

ber concentrations for SOPC based on the additive

assumption and the theory in Ref. [16], respectively.

Both theoretical results are compared with our simu-

lation results for some small Peclet numbers in Fig. 3.

For the simulation shown in Fig. 3, the time step used

is 5×10−3 s. Since Eqs. (13) and (18) are deduced

from the rate constants of collisions at the initial

stages of coagulation, the comparisons for the early

stages are also shown in Fig. 3.

Figures 3(a) and 3(c) show the results of 5000 s

and 3000 s coagulations for G = 0.1 and 0.4, respec-

tively. As discussed in Section 2, at these time in-

tervals, the boundary condition has an ignorable in-

fluence. Figures 3(b) and 3(d) correspondingly show

the results for the early stages (first 100 s). Since in

this section we study SOPC with low values of Pe,

the values of Pe in Fig. 3 are all smaller than 1.

The viscosity coefficients are 1×10−3 kg·m−1·s−1 and

2×10−3 kg·m−1·s−1 in Fig. 3. The corresponding Pe

in these figures are 0.0569, 0.114, 0.228, and 0.455 re-

spectively. Figure 3 clearly shows that the theory in

Ref. [16] is very precise for the early stages of SOPC

with small Pe. The additive assumption based the-

ory underestimates the coagulation rate, so it is not

accurate for SOPC, even at the early stages. This

result is consistent with the conclusions obtained in

the above Section. Brownian motion can redistribute

the particles, so it can increase the aggregation. Such

an additional contribution makes the aggregation rate

larger than the summation of PPC and POC (additive

assumption) at the initial stages of coagulation.
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Fig. 3. Simulation results of SOPC with small Peclet numbers compared to results obtained from Eqs. (13) (additive

assumption) and (18) (theory in Ref. [16]). Panels (a) and (c) show the results for different parameters during long

time of coagulation. Panels (b) and (d) exhibit the results for the first 100 s of coagulation.

Although Eq. (18) can predict the coagulation

rates at the early stages of coagulation, the predicted

particle numbers are smaller than the simulated re-

sults for coagulation beyond the early stages, as shown

in Figs. 3(a) and 3(c). Such a difference indicates

that the aggregation rates decrease with time. This

is caused by the redistribution along the x axis that

tends to reduce the aggregation rate as described in

the above section. As time passes, the effect of redis-

tribution at the x axis becomes obvious, causing the

aggregation to be slower at the later stages than that

at the early stages.

In summary, Fig. 3 shows that the theory in

Ref. [16] can successfully describe the coagulation fea-

ture for the early stages of SOPC with small Pe. How-

ever, the aggregation rate decreases with the increas-

ing time, so the theory cannot fit the aggregation be-

yond the early stages very well. The redistribution of

particle positions by Brownian motion plays an essen-

tial role in SOPC with small Pe.

3.3. SOPC with large Peclet numbers

The simulation results of SOPC with large Peclet

numbers are compared with the theoretical ones un-

der the additive assumption in Fig. 4. In Fig. 4(a), the

viscosity coefficient is η=2×10−3 kg·m−1·s−1, and the

Peclet numbers are 68.3, 91.1, and 114 respectively.

While in Fig. 4(b), η=1×10−3 kg·m−1·s−1, and the

Peclet numbers are 34.1, 45.5, and 56.9 respectively.

For these Peclet numbers, the shear rates are so high

that the boundary condition has an ignorable influ-

ence only for the very short time indicated in Fig. 2.

Therefore, only the initial stages are discussed in this

section.

Figure 4 shows that the additive assumption

based theory overestimates the number of aggregated

particles compared with the simulated results at the

early stages. For high Peclet numbers, the motion

caused by the shear flow along the x axis dominates.

The redistribution of particles along the x axis by

Brownian motion is more important than that along

the y and z axes to affect the aggregation caused by

the shear. This effect reduces the total aggregation

rate of SOPC, making it lower than that with the ad-

ditive assumption.

According to Ref. [18], the effects of Brownian

motion and the shear rate should not be additive, and

the ratio between the rate constants of two spherical

drops or particles for SOPC and POC is proportional
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to P
−1/2
e for high Peclet numbers. According to this

theory, we can obtain

kSOPC/kortho = C1 + C2P
−1/2
e , (19)

where kSOPC and kortho are the coagulation rates for

SOPC and POC, respectively.
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Fig. 4. Results of Eq. (13) (additive assumption) com-

pared to simulation results for SOPC with high Peclet

numbers. Panels (a) and (b) show results with different

viscosity coefficients.
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Fig. 5. Typical linear fitting for the simulated results of

the initial stages of SOPC with high Peclet numbers, vis-

cosity coefficient η=2×10−3 kg·m−1·s−1, and shear rate

G = 100 s−1.

Based on our simulation results, the values of

kSOPC at different parameters can be determined

by linearly fitting the data at the early coagulation

stages. The typical fitting results are shown in Fig. 5

for G = 100 s−1 and η=2×10−3 kg·m−1·s−1. The

value of kortho can be determined by using Eq. (8).

After the determination of kSOPC and kortho, a plot of

kSOPC/kortho versus P
−1/2
e can be obtained. For the

simulation results shown in Fig. 4, the kSOPC/kortho
versus P

−1/2
e is shown in Fig. 6. The result supports

Eq. (19).
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e .
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Fig. 7. Results of Eq. (20) (theory in Ref. [18]) com-

pared to the simulation results of SOPC with large Peclet

numbers. Panels (a) and (b) show results with different

viscosity coefficients.

As shown in Fig. 6, the values of kSOPC for
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different Pe can be evaluated theoretically by using

Eq. (19). Similar to the deduction of Eq. (18), the

number concentration can then be evaluated from the

theoretically evaluated kSOPC as

N =
N0

1 + kSOPCN0t/2
. (20)

The results of Eq. (20) are compared with the

simulated results of SOPC in Fig. 7. In Fig. 7(a), the

viscosity coefficient is η=2×10−3 kg·m−1·s−1, while

in Fig. 7(b), η=1×10−3 kg·m−1·s−1. Figure 7 shows

that the particle numbers evaluated from Eq. (20) are

close to the simulated results, showing that Eq. (20)

is better than Eq. (13) for SOPC with large Peclet

numbers.

4. Conclusion

By using Brownian dynamics simulation, we

study SOPCs with small and large Peclet numbers,

and the results are compared with different theoret-

ical predictions. The applicabilities of different the-

ories are tested directly, and the effects of Brownian

motion and the laminar shear on SOPC are studied.

Moreover, the results are explained by comparison

with those of PPC and POC, which shows that the

redistribution of particles can play an essential role in

SOPC.

The simulation results provide direct evidences

that the additive assumption is inappropriate even at

the very initial stages of SOPC. For small Peclet num-

bers, the additive assumption based theory underesti-

mates the aggregation rate, while Eqs. (16)–(18) are

preferable. For large Peclet numbers, the additive as-

sumption based theory overestimates the aggregation

rate, and Eqs. (19) and (20) are preferable. More-

over, for small Peclet numbers, the simulated results

in the later stages also show that the coagulation rate

decreases during SOPC. All these results can be ex-

plained by the different effects of the redistribution

(by Brownian motion) in the y and z axis directions

(perpendicular to the flow direction) and in the x axis

direction (parallel to the flow direction).

Due to the influence of the periodic boundary

condition, for SOPC with large Peclet numbers, only

the initial stages in which the boundary condition has

an ignorable influence can be studied. To essentially

avoid the influence of the periodic boundary condi-

tion, the required particle number and the size of the

simulation box are far beyond the capability of our

current computing facilities. Future studies concern-

ing the later stages of SOPC with large Peclet numbers

will be beneficial for deepening our understanding of

SOPC.
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