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Instabilities in a horizontal liquid layer in cocurrent gas flow with an evaporating interface
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The problem of a two-layer system consisting of a horizontal liquid layer in contact with its own vapor is
considered. The liquid layer is bounded by a rigid wall from below, and phase change can occur at the interface.
The flow of the vapor phase is driven by a constant pressure gradient in the streamwise direction. We have taken
into account the effects of buoyancy, thermocapillarity, evaporation, and the dynamics of the vapor phase. A full
linear stability analysis is performed using a Chebyshev spectral method. The influences of evaporation effect
and the interfacial shear on the Rayleigh instability and the Marangoni instability have been studied. The results
show that both the evaporation and the interfacial shear play important roles in the stability of the system.
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I. INTRODUCTION

Convection occurring in a horizontal liquid layer has
received extensive attention since Bénard observed hexagonal
roll cells upon the onset of convection in a layer of molten sper-
maceti with a free surface [1]. The phenomenon of convection
in an evaporating liquid layer is of particular interest because
of its importance in heat exchangers, distillation, drying
technologies, and cooling of microelectronic equipment.

During evaporation, an essential mechanism is that evapo-
ration leads to intensive cooling of the liquid-vapor interface.
When the temperature drop induced by evaporation across
the liquid layer exceeds a critical value, convective instability
occurs. This instability mechanism has been studied by many
previous investigators. Miller [2] examined the instability of
an isothermal evaporating interface associated with a moving
boundary. Prosperetti and Plesset [3] studied the stability of
an evaporating liquid surface. In their analysis, the effect
of viscosities of the vapor and the liquid is neglected, and
the depths of the vapor and the liquid are infinite. Palmer
investigated the hydrodynamic stability of rapidly evaporating
liquids at reduced pressure in an infinite-depth liquid-vapor
system [4]. Burelbach et al. investigated the nonlinear stability
of evaporating and condensing liquid films [5]. Vapor recoil,
thermocapillarity, and rupture instabilities are discussed in
their papers.

Many past papers on evaporating liquid films were based
on a one-sided model [5], and the vapor phase adjacent to the
liquid layer was considered to be passive or infinitely deep.
In this case, the dynamics of vapor was assumed to have little
influence on the instability of the liquid layer, consequently,
the dynamics of the vapor was neglected.
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VanHook et al. have proposed a two-sided model to study
long-wavelength surface-tension-driven Bénard convection in
a nonevaporating liquid film in contact with a gas layer
with a finite thickness [6]. Their results show that, if the
ambient gas layer is thin enough, a two-sided model would
better describe the system than a one-sided model. Ozen and
Narayanan questioned the assumption that the vapor is passive
in a vapor-liquid system with an evaporating interface [7].
They suggested that the active vapor layer plays an important
role in the instability of the system. In order to take into
account the effect of a finite-depth active vapor, they used a
two-sided model to investigate the influence of evaporation on
the instability. It should noted that, in their model, interfacial
chemical potential equilibrium assumption is used, i.e., the
temperature of the liquid is at its saturation value with respect
to the vapor pressure.

The boundary conditions at the evaporating interface is
complicated. A careful look at previous literature indicates that
many sets of interfacial conditions have been used to describe
the relation between the mass flux and other variables, such
as the interfacial temperature, velocity, and pressure. Liu and
Liu [8] gave up the assumption of interfacial chemical potential
equilibrium and used a more general empirical relation, i.e., the
Hertz-Knudsen equation [9], to describe the relation between
the mass flux and the local temperature and the pressure of
vapor. Kanatoni [10] has studied the interfacial instability
induced by lateral vapor pressure fluctuation in a vapor-liquid
system with an evaporating interface. More recently, Kanatani
and Oron [11] have studied the nonlinear dynamics of the
same system as that in Ref. [10]. In these two papers,
the Hertz-Knudsen equation has also been applied to describe
the dynamics of the interface. Margerit et al. [12] used a more
general formulation taking into account the nonequilibrium
effect contains a temperature discontinuity at the liquid-vapor
interface during evaporation. However, the effect of this
temperature jump may be neglected unless the phase change
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occurs too rapidly. More general formulations of dynamical
sharp-interface conditions for phase transformations in viscous
heat-conducting fluids have been investigated by Fried et al.
[13] and Anderson et al. [14]. Shklyaev and Fried [15] used
the new interfacial conditions proposed in Ref. [13] to revisit
the problem of an evaporating thin liquid film.

In recent years, increasing performance demands in semi-
conductor technology, including shrinking feature size, in-
creasing transistor density, and faster circuit speeds, have
resulted in very high chip power dissipation and heat fluxes.
It is also leading to greater nonuniformity of on-chip power
dissipation, creating localized submillimeter hot spots, often
exceeding 1 kW/cm2 in heat flux, which can degrade the pro-
cessor performance and reliability [16]. Similar developments
are underway in microwave integrated circuits and power
amplifier chips with even higher localized heat fluxes and heat
densities. For more applications and related papers on these
subjects, we refer the reader to the review paper by Kabov [17].
The industrial and technological applications mentioned above
involve thin liquid films on uniform or nonuniform heated
substrates. To avoid the reduction in their performance by film
breakdown, it is of crucial importance to understand when
and why instabilities arise that may result in the rupture of the
film. Understanding the physical mechanisms of instability and
rupture behavior is also highly desirable for the requirement
of seeking effective ways to suppress the rupture of heated
films.

Shear-induced flows of liquid films are important for a
number of technological innovations for ground and space
applications. A particularly promising technological candidate
to prevent the rupture of film due to temperature gradients
at the interface, which allows reaching high heat fluxes and
minimizing space and mass of cooling equipment, is a setup
where heat is transferred to a subcooled thin liquid film
driven by a forced gas on one side of a minichannel. It
is quite evident that the combined effects of evaporation,
thermocapillarity, gas dynamics, and gravity as well as the
formation of a microscopic adsorbed film on the wall, are
somewhat complicated issues and have not yet been studied
systematically. Recently, Gatapova and Kabov [18] have
studied the problem of a locally heated liquid film sheared
by gas flow in a channel. The problem of heat and mass
transfer has been examined in the framework one-dimensional
long-wave model. Iorio et al. [19] have studied evaporative
convection in an open cavity under shear stress flow using
direct numerical simulation. More recently, Kabov et al. [20]
have studied experimentally the dynamics and evaporation of
thin shear-driven liquid films in microgap channels. In the
present paper, we investigate the instability of evaporating
films driven by the action of vapor flow in a microchannel.
The aim of the present paper is to provide physical insight
into the mechanisms of instability of two phase flow in heated
minichannels.

The present paper is organized as follows. In Sec. II,
the mathematical formulation of the physical model is pre-
sented. We provide dimensionless equations and parameters
in Sec. III. The numerical method is presented in Sec. IV. In
Sec. V, we present the results and discussions. In Sec. VI, we
summarize the results and present the conclusions.

II. PROBLEM FORMULATION

We consider a two-layer system consisting of a liquid layer
of thickness dl underlying its own vapor of thickness dv as
shown in Fig. 1. The system is infinite in the streamwise (x)
and the spanwise (y) directions. The acceleration of gravity is
opposite the z direction. We assumed that the top wall and the
bottom wall are rigid perfectly conducting boundaries. The gas
flow is driven by a constant pressure gradient. The vapor and
liquid phases are separated by an immiscible and deformable
interface where phase change can occur. The surface tension σ

decreases linearly with temperature T , i.e., σ = σ0 − σT (T −
T0), where σT is a constant coefficient and T0 is the temperature
of the reference state.

The motions of the liquid and gas layers are governed by
the continuity equation, the Navier-Stokes equation, and the
energy equation for incompressible Newtonian fluids,

∇ · ui = 0, (1)

∂t ui + ui · ∇ui = − 1

ρi

∇pi + [1 − βi(Ti − T0)]g + νi∇2ui ,

(2)

∂tTi + ui · ∇Ti = κi∇2Ti, (3)

in which u, p, and T are the velocity, pressure, and tem-
perature, respectively. ρ, ν, and κ are the density, kinematic
viscosity, and thermal diffusivity. The subscript i = v,l de-
notes the property of a vapor or liquid. For simplicity, we only
consider the two-dimensional problem in the present paper.

We assume that, at the upper and the bottom walls, the
isothermal condition for temperature and the no-slip condition
for velocity are satisfied. So, at the bottom wall (z = −dl),

Tl = Tb, ul = wl = 0, (4)

and, at the upper wall (z = dv),

Tv = Tu, uv = wv = 0. (5)

Here, u and w are the velocity components in the x and z

directions, respectively.
The position of the interface can be described by z = h(x,t).

At the interface z = h(x,t), a kinematic relation between
h(x,t) and the interfacial velocity uint is

wint = ∂th + uint∂xh. (6)

vapor

liquid

Tb

T u

J

in terf ace

FIG. 1. (Color online) A sketch of the physical model.
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The mass balance equation at the interface is

J = ρv(uv − uint) · n = (ul − uint) · n, (7)

in which J is the evaporation flux. The normal momentum and
the tangential momentum balance conditions at the interface
are

J [u]lv · n + [p − P · n · n]lv = −2σH, (8)

[P · n · t]lv = ∂T σ

N
(∂xT + ∂xh ∂zT ). (9)

Here, [f ]lv = fl − fv, P is the viscous stress tensor, n and
t are the unit vectors normal and tangent to the interface
defined as

n = (−∂xh,1)

N
, t = (1,hxη)

N
, (10)

in which N =
√

1 + (∂xh)2, 2H is the surface mean curvature
defined as

2H = ∂2
xh

N3
. (11)

The energy balance equation at the interface is

J
[

1
2 |u − uint|2

]l

v
+ ql − qv − [P · (u − uint) · n]lv = JL,

(12)

here, L is the latent heat of evaporation and q is the conductive
heat flux defined as −χn · ∇T in which χ is the heat
conductivity.

We assume that the temperatures of the liquid and vapor
are continuous at the interface,

Tv = Tl. (13)

The evaporation flux is given by the Hertz-Knudsen relation
as

J = β

√
M

2πRT
[ps(T ) − pv], (14)

in which β is the evaporation accommodation coefficient, M is
the molecular weight of vapor, ps(T ) is the saturation pressure
at temperature T , pv is the vapor pressure just beyond the
interface, and R is the universal gas constant.

The relation between the saturation pressure and the
interfacial temperature is given by the Clausius-Clapeyron
relation as

ps(T ) = p0 exp

[
−L

R

(
1

T
− 1

T0

)]
. (15)

The tangential velocities of the liquid and the vapor layers are
equal at the interface,

uv · t = ul · t. (16)

III. DIMENSIONLESS EQUATIONS AND PARAMETERS

In order to nondimensionalize the controlling equations,
we scale length, time, velocity, pressure, temperature, and
mass flux by dl, d2

l /νl, νl/dl, ρlν
2
l /d

2
l , �T = Tb − T0, and

χl�T/dlL, respectively. The dimensionless equations are

expressed as

∇ · ul = 0, (17)

∂t ul + ul · ∇ul = −∇pl + (Pr−1Ra θl − G)ez + ∇2ul , (18)

∂tθl + ul · ∇θl = Pr−1∇2θl, (19)

∇ · uv = 0, (20)

∂t uv + uv · ∇uv = − 1

ρ∗ ∇pv + (Pr−1β∗Ra θv − G)ez

+ν∗∇2uv, (21)

∂tθv + uv · ∇θv = Pr−1κ∗∇2θv. (22)

Here, θ is defined as θ = (T − T0)/�T . For convenience, we
can choose T0 = T̄int.

The boundary conditions at the bottom wall (z = −1) are

ul = wl = 0, θl = (Tb − T0)/(Tb − T̄int) = 1. (23)

The boundary condition at z = d,

uv = wv = 0, θv = (Tu − T0)/(Tb − T̄int) = − d

χ∗ . (24)

At the interface z = h(x,t),

EJ = ρ∗(uv − uint) · n = (ul − uint) · n, (25)

uint · n = ∂th

N
, (26)

uv · t = ul · t, (27)

EJ (ul − uv) · n + pl − pv − 2n · (El − μ∗Ev) · n

+ 2SH = 0, (28)

n · (2El − 2μ∗Ev) · t = − Ma

Pr N
(∂xθl + ∂xh ∂zθl), (29)

J − �

2E
J {|ul − uint|2 − |uv − uint|2} + (∇θl − χ∗∇θv) · n

+ �

E2
n · {2El · (ul − uint) − 2μ∗Ev · (uv − uint)}

= 0, (30)

θl = θv, (31)

J = K

(
θl − 1

ρ∗


E
pv

)
. (32)

In these equations and boundary conditions, the parameters
include

Ma = σT �T dl

μlκl

, Ra = βlρlg �T d3
l

μlκl

, Bo = βlρgd2
l

σT

,

G = gρ2
l d

3
l

μ2
l

, Pr = νl

κl

, E = χl�T

μlL
, S = σρldl

μ2
l

,

 = χlμlT0

(ρldlL)2
, K = β

√
M

2πRT0

ρvdlL
2

χlT0
, � = �T

T0
,

ρ∗ = ρv

ρl

, μ∗ = μv

μl

, ν∗ = νv

νl

,

χ∗ = χv

χl

, κ∗ = κv

κl

, d = dv

dl

. (33)
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FIG. 2. (a) Effect of the depth ratio d on the marginal curves of the critical Rayleigh number versus the wave number at K = 0. (b) Effect
of K on the marginal curves of the critical Rayleigh number versus the wave number at d = 3. (c) Effect of the Reynolds number Re on the
marginal curves of the critical Rayleigh number versus the wave number at d = 3, K = 1.

A. Basic state in dimensionless form

In the basic state, we assume that the interface is flat, and
the velocity and the temperature are independent of x. In this
case, the applied pressure gradient in the vapor phase is the
same as that in the liquid phase. The controlling equations for
the streamwise velocity components are

−∂xp̄ + μ∗ ∂2ūv

∂z2
= 0, (34)

−∂xp̄ + ∂2ūl

∂z2
= 0. (35)

At the upper wall z = d,

ūv = 0. (36)

At the bottom wall z = −1,

ūl = 0. (37)

At the interface z = 0,

ūl = ūv,
∂ūl

∂z
= μ∗ ∂ūv

∂z
. (38)

Solving the above equations, we have the basic velocities ūv(z)
and ūl(z) in the form of

ūv = A1z
2 + B1z + C1, (39)

ūl = A2z
2 + B2z + C2. (40)

The coefficients A1,B1,C1 and A2,B2,C2 are defined as

A1 = 1

2μ∗
∂

∂x
p̄, B1 = 1

2

μ∗ − d2

μ∗(d + μ∗)

∂

∂x
p̄,

(41)

C1 = −1

2

d(d + 1)

d + μ∗
∂

∂x
p̄,

A2 = 1

2

∂

∂x
p̄, B2 = 1

2

μ∗ − d2

d + μ∗
∂

∂x
p̄,

(42)

C2 = −1

2

d(d + 1)

d + μ∗
∂

∂x
p̄.

From the continuity equation and the boundary conditions
of v̄v(d) = 0 and v̄l(−1) = 0, we can obtain the velocity
components v̄v(z) = 0 and v̄l(z) = 0. In order to discuss the

effect of interfacial shear on the stability of the problem, it
is convenient to define the Reynolds number as Re = uintdl

νl

instead of ∂
∂x

p̄. We note that the Reynolds number and the
gradient of pressure are not independent. For the present
problem, the Reynolds number Re = C2.

The unperturbed temperature fields satisfy

∂2θ̄v

∂z2
= 0, (43)

∂2θ̄l

∂z2
= 0. (44)

At the bottom wall z = −1,

θ̄l = 1. (45)

At the interface z = 0,

θ̄l = θ̄v = 0,
∂θ̄l

∂z
= χ∗ ∂θ̄v

∂z
. (46)

The basic temperatures Tv(z) and Tl(z) have the form

θ̄v = a1z + b1, (47)

θ̄l = a2z + b2. (48)

Here,

a1 = − 1

χ∗ , a2 = −1, b1 = b2 = 0. (49)

In order to study the stability of infinitesimal disturbance
on the basic state, we decompose the perturbations of velocity,
pressure, and the temperature into normal modes,

[u′
i ,w

′
i ,p

′
i ,θ

′
i ] = [Ui(z),Wi(z),Pi(z),�i(z)] exp(λt + ikx),

(50)

in which λ is the complex time growth rate and k is the
streamwise wave number. We denote ∂

∂z
as “D” and write

the normal mode equations for the disturbances as follows:
For the vapor phase,

ikUv + DWv = 0, (51)
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FIG. 3. The flow fields of the stream function of disturbance initiating in (a) the vapor layer and (b) the liquid layer. (c) and (d) are the
isothermal lines for temperature disturbance. The parameters for (a) and (c) are Ra = 1421.8, k = 1.04, d = 3, K = 1, and Re = 100. The
parameters for (b) and (d) are Ra = 984.1, k = 2.18, d = 1, K = 1, and Re = 10.

λUv + ikūvUv + DūvWv = − ik

ρ∗ Pv + ν∗(D2 − k2)Uv,

(52)

λWv + ikūvWv = − 1

ρ∗ DPv + Ra β∗

Pr
�v + ν∗(D2 − k2)Wv,

(53)

λ�v + ikūv�v + Dθ̄vWv = Pr−1κ∗(D2 − k2)�v. (54)

And for the liquid phase,

ikUl + DWl = 0, (55)

λUl + ikūlUl + DūlWl = −ikPl + (D2 − k2)Ul, (56)

λWl + ikūlWl = −DPl + Ra

Pr
�l + (D2 − k2)Wl, (57)

λ�l + ikūl�l + Dθ̄lWl = Pr−1(D2 − k2)�l. (58)

The boundary conditions at the upper wall z = d,

Uv = Wv = �v = 0. (59)

The boundary conditions at the lower wall z = −1,

Ul = Wl = �l = 0. (60)

The boundary conditions at the initial position of the interface
z = 0 are as follows:

EJ = ρ∗(Wv − Wint) = Wl − Wint, (61)

Wint = λh, (62)

Ul + ∂ūl

∂z
h = Uv + ∂ūv

∂z
h, (63)

Pl − Pv − 2DWl + 2μ∗DWv = [Sk2 + (1 − ρ∗)G]h, (64)

(DUl + ikWl) − μ∗(DUv + ikWv) = − ik Ma

Pr
(�l + Dθ̄lh),

(65)

J + D�l − χ∗D�v = 0, (66)

�l + ∂T̄l

∂z
h = �v + ∂T̄v

∂z
h, (67)

J = K

(
�l − 1

ρ∗


E
pv

)
. (68)
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FIG. 4. (a) Effect of K on the marginal curves of the critical Marangoni number versus the wave number at d = 1, Re = 0. (b) Effect of
K on the marginal curves of the critical Marangoni number versus the wave number in the long-wave range at d = 1, Re = 0.

Equations (51)–(58) together with the boundary conditions
(59)–(68) determine an eigenvalue problem. The goal of the
present paper is to determine the conditions at the onset of
instability.

IV. NUMERICAL METHOD

The spectral method can yield great accuracy for the insta-
bility problems in hydrodynamics. We implement a Chebyshev
collocation method to solve the eigenvalue problem. We first
transform the domains of vapor layer (0,d) and liquid layer
(0, − 1) to the Chebyshev domain (−1,1) by introducing η =
2z/d − 1 and η = 2z + 1. The variables Ui,Wi,Pi (i = l,v)
are expanded by Chebyshev series as

Ui =
N∑

j=0

Û
j

i Tj (η), Vi =
N∑

j=0

V̂
j

i Tj (η),

(69)

Wi =
N∑

j=0

Ŵ
j

i Tj (η).

Using the Chebyshev series (69), the system of equations is
required to solve for 6N + 7 unknowns including 6N + 6
spectral coefficients and an interface deflection variable h.
This gives rise to a (6N + 7) × (6N + 7) matrix eigenvalue
problem in the form of

AX = λBX. (70)

In the present problem, the real part of the complex eigenvalue
λ is the time growth rate, and the imaginary part is the
oscillatory frequency.

V. RESULTS AND DISCUSSIONS

The goal of this paper is to investigate the influences of
interfacial shear and evaporation on the stability of the system.
We chose the system consisting of a water layer in contact
with its own vapor at 100 ◦C. The physical properties of
the liquid and the vapor phases are the same with that in
Ref. [7]. The ratios of physical properties are ρ∗ = 6.25 ×

10−4, ν∗ = 71.72, χ∗ = 3.68 × 10−2, and κ∗ = 0.118. The
Prandtl number is Pr = 1.78.

The physics of the coupling of evaporation, interfacial
shear, Rayleigh effect, and Marangoni effect is complicated.
When investigating the problem, we will look at different
aspects of the problem separately whenever possible.

A. Rayleigh-Bénard instability

We begin with the influence of evaporation and interfacial
shear on the Rayleigh convection in the system. The depth ratio
is an important parameter to influence the Rayleigh instability
of the system. The marginal curves of the critical Rayleigh
number versus the wave number are shown in Fig. 2. In
these figures, the curves may display a bimodal structure. The
left branch corresponds to the mode of convection initiating
in the vapor layer, and the right branch corresponds to the
convection initiating in the liquid layer. Figure 2(a) shows
the effect of the depth ratio on the Rayleigh instability in a
system without evaporation. It is observed that, for a smaller
depth ratio of d = 2, the convection initiating in the liquid
layer is the dominant mode. With the increase in d, the
Rayleigh convection in the vapor layer obviously becomes
more unstable. However, the increase in d has almost no
influence on the Rayleigh convection in the liquid layer (see
Ref. [21]). In Fig. 2(a), as d increases to 3, the minimum of
the left branch gets lower than that of the right branch. As d

increases further, the Rayleigh convection in the vapor layer
becomes the dominant mode.

In the present paper, we have used the Hertz-Knudsen
equation to predict the evaporation flux. In the dimensionless
Hertz-Knudsen equation, parameter K measures the degree
of nonequilibrium at the evaporating interface [5]. K−1 = 0
corresponds to the quasiequilibrium case in which the pressure
of the vapor is identical to the saturation pressure at the
interface; K = 0 corresponds to the nonvolatile case in which
the evaporation flux J is zero. In order to know the effect of
the degree of interfacial nonequilibrium on the stability of the
system, we plot the marginal curves of the Rayleigh number
versus the wave number for various K’s at d = 3 in Fig. 2(b).
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FIG. 5. (a) and (b) The flow fields of the stream function of disturbance. (c) and (d) The isothermal lines for temperature disturbance. The
parameters for (a) and (c) are Ma = 86.9, k = 2.0, d = 1, K = 0, and Re = 0; the parameters for (b) and (d) are Ma = 433.5, k = 2.72, d =
1, K = 10, and Re = 0.

In this figure, it is shown that, with the increase in K , the right
branch significantly becomes more stable, however, the left
branch is almost unchanged. This result indicates that the
degree of equilibrium at the interface plays an important role
in the stability of the liquid mode, however, it has almost no
influence on the vapor mode.

In order to know the influence of interfacial shear on the
stability of the system, we fix other parameters and plot the
marginal curves of the Rayleigh number versus the wave
number at various Reynolds numbers. As shown in Fig. 2(c),
a small change in Re significantly increases the stability of
the liquid mode. However, for small Reynolds numbers, the
increase in Re only slightly stabilizes the vapor mode. As the
Reynolds numbers increase to large values, the vapor mode is
the dominant mode, and the increase in Re stabilizes the vapor
mode.

In order to know more about the characteristics of the
Rayleigh convection of the liquid mode and the vapor mode,
we plot the flow fields of these two modes at the onset of
convection in Fig. 3. In Fig. 3(a), the Rayleigh convection
initiates in the vapor layer, and the liquid layer is moved by
the viscous drag of the vapor layer. In this viscous coupling
mode of convection, the amplitude of velocity in the liquid
layer is much lower than that in the vapor layer. In Fig. 3(b),
the convection initiates in the liquid layer, and the vapor layer is

driven by the viscous force at the interface. In this case, being
different from that in Fig. 3(a), the amplitudes of velocity
in both layers are comparable. The isolines of temperature
disturbance are plotted in Figs. 3(c) and 3(d) for convection
initiating in the vapor layer and the liquid layer. For the vapor
mode as shown in Fig. 3(c), the temperature disturbance is
mainly confined in the vapor layer. For the liquid mode in
Fig. 3(d), the maximum temperature disturbance is located in
the liquid layer, and the isolines of the temperature disturbance
penetrate deeply into the vapor layer.

B. Marangoni-Bénard instability

In this subsection, we study the influence of evaporating and
interfacial shear on the Marangoni instability. As discussed
in Ref. [6], in addition to the classic Marangoni-Bénard
mode [22–24], a long-wave Marangoni instability may occur
upon the onset of convection. Figure 4 shows the effect
of nonequilibrium degree at the interface on the Marangoni
instability of the system. In Fig. 4(a), the curves for all K’s
display a bimodal structure. The left branch corresponds to the
long-wave Marangoni mode, and the right branch corresponds
to the classical short-wave Marangoni mode. In this figure,
with the increase in K , the short-wave mode becomes more
stable. In order to know the effect of K on the long-wave
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FIG. 6. (a) Effect of Re on the marginal curves of the critical Marangoni number versus the wave number at d = 1, K = 1. (b) Effect of
Re on the marginal curves of the critical Marangoni number versus the wave number in the long-wave range at d = 1, K = 0. (c) Effect of Re
on the marginal curves of the critical Marangoni number versus the wave number in the long-wave range at d = 1, K = 1.

mode, we plot the closeup of the marginal curves in the long-
wave range in Fig. 4(b). In the case of K = 0, the critical
condition is realized at Ma � 9.0 and k = 0. The critical
Marangoni number is very sensitive to the change in K . As K

increases to 0.01, the critical Marangoni number decreases
significantly in the long-wave range and approaches zero
as k → 0. As K increases further, the critical Marangoni
number decreases for nonzero wave numbers. However, the
increase in K has no influence on the critical Marangoni
at the long-wave limit of k = 0. The curves in Fig. 4 show
that the effect of the evaporation is stabilizing for the classical
short-wave Marangoni mode and destabilizing for the long-
wave Marangoni mode. In volatile cases, even when the liquid
is not heated from below, the perturbation of evaporation is
enough to induce a long-wave Marangoni instability.

In order to know the influence of the evaporation effect on
the coupling mode between the vapor and the liquid layers, we
plot the flow patterns on the onset of short-wave Marangoni
instability in Fig. 5. As shown in Fig. 5(a) for the non-
evaporating case, Marangoni convection initiates in the liquid
layer, and the circulation in the vapor layer is driven by
the viscous force at the interface. The flow pattern is in the
form of counter-rotating rolls in the vapor and the liquid
layers. However, for the evaporating case, the structure of

flow pattern is different from the nonevaporation case. As
shown in Fig. 5(b), it is found that, near the interface, the
isoline of the stream function extends from the liquid layer to
the vapor layer. In this case, the magnitude of velocity in the
vapor layer is much lower than that in the liquid layer. This
result means that the evaporation at the interface significantly
suppresses the viscous coupling between the liquid layer and
the vapor layer. The isolines of temperature disturbance are
plotted in Figs. 5(c) and 5(d) for the nonevaporating case and
the evaporating case. For the nonevaporating case in Fig. 5(c),
the maximum temperature disturbance is located near the
interface in the liquid layer, and the isolines penetrate into
the vapor layer. For the evaporating case in Fig. 5(d), the
maximum temperature disturbance is located near the center
of the liquid layer. Comparing Fig. 5(d) with Fig. 5(c), in the
evaporating case, the temperature disturbance at the interface
is much smaller than that in the nonevaporating case. This
result means that the evaporation at the interface significantly
suppresses the Marangoni effect.

In order to know the effect of interfacial shear on the
stability, in Fig. 6, we plot the marginal curves of the
critical Marangoni number versus the wave number at various
Reynolds numbers. In Fig. 6(a), we observed that, with
the increase in the Reynolds number, the curves become
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FIG. 8. (a) and (b) The flow fields of stream function of disturbance. (c) and (d) are the isothermal lines for temperature disturbance. The
parameters for (a) and (b) are Ma = 410.5, α = 2.44, d = 1, K = 0, and Re = 100; the parameters for (b) and (d) are Ma = 1159.9, α =
3.56, d = 1, K = 10, and Re = 100.

more stable in the short-wave range and more unstable in
the long-wave range. For large values of Re, the long-wave
mode is unstable even at a zero Marangoni number. In
Figs. 6(b) and 6(c), we present the closeup of the marginal
curves for the nonvolatile case of K = 0 and evaporation case
of K = 1. As shown in Fig. 6(b), for the nonvolatile case, the
most unstable long-wave mode is always realized at the long-
wave limit of k → 0. In the long-wave range, with the increase
in the wave number, the critical Marangoni number increases.
However, for the evaporation case of K = 1 as shown in
Fig. 6(c), the critical Marangoni value is always zero at the
long-wave limit of k = 0. For the volatile case of K = 1, with
the increase in Re, the wavelength of the most unstable mode
may switch from the long-wave limit to a finite number. With
the increase in Re, the long-wave mode becomes more unstable
at various wave numbers. In Fig. 6(b), as the Re increases
to 10, the critical Marangoni number has become a negative
number. The result in Figs. 6(b) and 6(c) indicates that, in
the presence of a cocurrent gas flow, for both the evaporation
and the nonvolatile cases, the long-wave Marangoni instability
may occur even for a system cooled from below.

The parameters Re, K , and Ma play important roles in the
long-wave stability of the system. To understand more about

the effects of these parameters, it is helpful to look at the
dispersion relation between the time growth rate and the wave
number. In Fig. 7(a), we present the curves of the dispersion
relation for various K’s at Ma = 10 and Re = 0. In this figure,
for all values of K , the maximal time growth rate is always
realized at k = 0. With the increase in K , the time growth
rate increases at all wave numbers in the long-wave range, and
Fig. 7(b) presents the influence of Ma on the time growth rate at
Re = 0, K = 0. With the increase in Ma, the time growth rate
increases at almost all wave numbers except for k = 0 in the
long-wave range. Moreover, the most amplified disturbance
is shifted from the long-wave limit to a finite nonzero wave
number. Figure 7(c) shows the effect of interfacial shear on
the time growth rate in the long-wave range. It is obvious that,
with the increase in the Reynolds number, the time growth
rate increases at all wave numbers, and the wave number
corresponding to the maximal time growth rate increases.

In Fig. 5, we have studied the influence of evaporation on
the coupling mode between the vapor and the liquid layers
for evaporation case at Re = 0. However, the influence of
interfacial shear on the structure of flow field at the onset
of short-wave Marangoni instability is unknown. In Fig. 8,
the isolines of the stream function and the temperature of

066305-9



R. LIU AND O. A. KABOV PHYSICAL REVIEW E 85, 066305 (2012)

disturbances are plotted for two typical cases with Re > 0.
For the nonvolatile case of K = 0, as shown in Fig. 8(a), the
flow pattern consists of counter-rotating rolls in both layers.
Being different from the case with Re = 0 in Fig. 5, the flow
pattern in the liquid layer is in the form of traveling waves and
tilts toward the streamwise direction. In Fig. 8(b), for K = 1,
the flow pattern in the liquid layer is qualitatively similar to the
nonvolatile case in Fig. 8(a). In the vapor layer, being similar
to the case Re = 0 as shown in Fig. 5(b), the magnitude of
velocity is much smaller than that in the liquid layer because
of the evaporation circulation at the interface. Comparing the
flow pattern in the vapor and the liquid layers, it is shown
that the flow pattern only slightly tilts toward the streamwise
direction. In Figs. 8(c) and 8(d), the isolines of the temper-
ature disturbance tilt toward the streamwise direction. For
the nonevaporation case in Fig. 8(c), the maximum temperature
disturbance is located near the interface in the liquid layer.
However, for the evaporation case in Fig. 8(d), the maximum
temperature disturbance is located closer to the center of the
liquid layer. Comparing Fig. 8(c) with Fig. 8(d), it is shown
that, in the evaporating case, the temperature disturbance in
the vapor layer is smaller than that in the nonevaporating case.

VI. CONCLUSIONS

In the present paper, we have studied the instability of
a horizontal liquid layer in cocurrent gas flow with an

evaporating interface. In this system, the interfacial shear is
induced by the cocurrent gas flow. We focus on the effects
of evaporation and the interfacial shear on the Rayleigh and
Marangoni instabilities.

For the Rayleigh problem, convection can initiate in the
vapor layer or in the liquid layer, depending on the depth ratio
d. The results show that the change in d only influences the
vapor mode, and the change in parameter K , which represents
the nonequilibrium degree at the interface, only influences the
critical Rayleigh number of the liquid mode.

Both the evaporation and the interfacial shear play im-
portant roles in the Marangoni instability. Parameter K has
different influences on the long-wave mode and the short-wave
mode of Marangoni instability. With the increase in K , the
short-wave mode becomes more stable, and the long-wave
mode becomes more unstable. The influence of the interfacial
shear also has different effects on the short-wave and the
long-wave Marangoni instability. With the increase in Re,
the short-wave Marangoni mode becomes more stable, and
the long-wave mode becomes more unstable.
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