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Instabilities of vortex rings generated by surface-tension gradients between co-axial diskswith Prandtl numbers of
0.001 and 0.01 are investigated by using the linear stability analysis (LSA) method. The continuity-vortex-energy
equations are used as the perturbation equations for stability analysis and discretized using a Chebyshev-
collocation method. The critical Reynolds numbers and the angular wavenumbers of the unstable mode are
obtained for vortex rings with a range of aspect ratios between 0.05 and 1.2. From stability analyses, it is found
that the product of the critical model and the aspect ratio approaches a constant when the aspect ratio decreases.
The critical mode ism=16 when the aspect ratio is 0.05. Analyses also indicate that the vortex rings must be of
certain energy for the perturbations of flow to grow in amplitude. The viscosity of fluid can dampen perturbations
if the magnitude of the stream function of the basic flow is below the critical value. The vortex rings generated by
surface-tension gradients become unstable when the magnitude of the stream function is above the critical value.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The study of vortex rings has been pursued by many researchers for
many years. Widnall and Sullivan [1] investigated theoretically and
experimentally the stability of vortex rings. The effect of the vorticity
distribution within the finite vortex core on the self-induced motion
of each element of the vortex filament was studied. Widnall and Tsai
[2] investigated theoretically the instability of a thin vortex ring with
a core of constant vorticity in an ideal fluid to short azimuthal bending
waves. Vortex rings can also be found in applications such as floating-
zone and Czochralski crystal-growth processes [3]. Crystal growth
conducted under microgravity conditions has had a profound impact
on improving the understanding of melt crystal growth processes [4].
Campbell et al. [5] studied the macrosegregation in the crystals grown
with the floating-zone technique. However, the formation mechanism
of dopant striations during zone refining of materials hasn't been
explained quantitatively. For small Prandtl numbers (Pr≪1) the first in-
stability of the axisymmetric flow is a stationary bifurcation. Levenstam
and Amberg [6] simulated the transition from the axisymmetric
thermocapillary flow to a steady non-axisymmetric flow with an
azimuthal wavenumber of 2 for a half-zone with Prandtl number of
0.01 and aspect ratio of 0.5.Wanschura et al. [7] simulated the instability
of the axisymmetric steady thermocapillary flow in a cylindrical liquid
bridge by using a mixed Chebyshev-finite difference method. Chen
et al. [8] calculated the criticalMarangoni numbers as a function of liquid
volume for liquid bridges with Prandtl numbers of 0.001, 0.01, and 0.1
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by using the linear stability analysis (LSA) method. Lappa et al. [9]
simulated the three-dimensional instability of the liquid bridge with
Pr=0.01. Nienhüser and Kuhlmann [10] investigated the stability of
thermocapillary flows in non-cylindrical liquid bridges. The hydrostatic
shape of the bridge is themost important effect on the critical point in a
gravity field.

In spite of the relatively simple geometry of the half-zone, factors
such as liquid volume, aspect ratio, surface deformation and the physical
properties of the liquid make comparisons between experiments com-
plicated. It is ideal to find a model that can explain the instabilities of
vortex rings in liquid bridge or Czochralski configurations. The study of
stabilities of vortex rings by surface-tension gradients will improve the
understanding of crystal growth processes, and explain the instability
mechanism of vortex rings. We consider here liquids with Prandtl
numbers of 0.001 and 0.01 to reduce the effect of perturbations of
surface-tension gradients.

2. Problem formulation

The floating half-zone model consists of a liquid bridge held be-
tween two solid planar disks of diameter D, which are separated by
a distance L (Fig. 1). The upper disk usually has a temperature,
T0 þ ΔT , higher than the temperature at the lower disk, T0, to reduce
the buoyancy effect. Typical dimensionless parameters such as aspect
ratio, Reynolds number, Marangoni number, Prandtl numbers and
Biot number are defined as,

A ¼ L
2R0

;Re ¼ U0R0

ν
;Ma ¼ U0R0

α
;Pr ¼ ν

α
;Bi ¼ hR0

k
; ð1Þ
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Fig. 1. Schematic of a vortex ring generated by surface-tension gradients in a floating
half-zone between two planar disks.
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where the reference velocity is U0=|σT
' |ΔT/ρν, and R0, ρ , ν, α, k, h,

and σT
' denote disk radius, liquid density, kinematic viscosity, thermal

diffusivity, thermal conductivity, heat transfer coefficient, surface-
tension derivative with respect to temperature, respectively.

For calculation of axisymmetric basic state of the surface-tension
driven convections in floating half-zone between disks, the liquid is
considered as incompressible. A steady axisymmetric basic state,
u0=(u0,0,w0), p0 and T0, is obtained by the spectral-collocation
method [11,12]. To derive the dimensionless control equations, the
length, time, velocity and pressure scales are set as R0, R0

2=ν, ν/R0,
and ρ0ν2=R0

2, respectively. The equations are as follows,

∇⋅u0 ¼ 0; ð2aÞ

∂u0

∂t þ u0⋅∇u0 ¼ −∇p0 þ
1
Re

∇2u0; ð2bÞ

∂T0

∂t þ u0⋅∇T0 ¼ 1
RePr

∇2T0: ð2cÞ

The boundary conditions at z=0 are

u0 ¼ w0 ¼ 0; and T0 ¼ 0; ð3aÞ

while the boundary conditions at z=2A are

u0 ¼ w0 ¼ 0; and T0 ¼ 1: ð3bÞ

The boundary conditions at the axis are chosen as

u0 ¼ 0;
∂w0

∂r ¼ 0; and
∂T0

∂r ¼ 0: ð3cÞ

The boundary conditions at the free surface are

u0⋅n ¼ 0; t⋅S0⋅n ¼ − Ma
RePr

t·∇T0; and n⋅∇T0 ¼ −BiT0; ð3dÞ

where n denotes the normal unit vector at the free surface, t denotes
the tangential unit vectors in the vertical cross-section, and S0
denotes the rate-of-strain tensor. The viscous tangential stress is
balanced by the surface-tension gradient at the free surface, and
the minus sign on the right side of the equations arrives since liquids
usually have a negative coefficient of the surface tension with regard
to temperature. The Biot number is set as Bi=0 in the present
calculations.

In linear stability analysis of surface-tension driven convections in
the floating half-zone, the small-amplitude fluctuations of the velocities
u=(u,v,w), pressure p and temperature T are imposed on the basic
state. The dimensionless governing equations for the perturbation
quantities under the microgravity conditions can be obtained as in
[8]. After applying the curl operator to the momentum equation to
eliminate the pressure term, we can obtain the vorticity equations. For
the stability analysis, we use the continuity equation, the vorticity
equations in r and z directions, and the energy equation for solving
the eigenvalue problem. The continuity equation is included in the
perturbation equations to ensure that the continuity equation is satis-
fied at all grid points. The perturbation quantities (u, v, w, p, T) can be
expanded as a sum of the spectral terms,

u
v
w
p
T

0
BBBB@

1
CCCCA

¼ ∑
m

eσ t þ imθ

ũm r; zð Þ
imṽm r; zð Þ
w̃m r; zð Þ
p̃m r; zð Þ
T̃ m r; zð Þ

0
BBBBBBBB@

1
CCCCCCCCA
þ c:c:; ð4Þ

where σ=σr+ iσi, σr and σi are the amplification rate and frequency of
small perturbation, respectively,m denotes the azimuthal wavenumber,
idenotes the complex unit

ffiffiffiffiffiffiffiffi
−1

p
, and c.c. denotes the complex conjugate.

The Chebyshev-collocation method is used to calculate the basic
states of flow and temperature with 49×73 Chebyshev polynomials in
r and z directions, respectively. The collocation method is also used to
solve the discretized equations for the eigenvalue problem. We use
33×33 Chebyshev polynomials in r and z directions for discretizing
the perturbation equations. The eigenvalues and eigenfunctions are
then obtained by using the Q–R method. Since four perturbation
equations are used, the complex matrix for the generalized eigenvalue
problem has a size of 4356×4356.

3. Results

3.1. Choosing of azimuthal wavenumbers

In studying the instability of the thin vortex ring of constant vorticity,
Widnall and Tsai [2] found that the wavelength is proportional to the
core radius so that ka=κ where k is the angular wavenumber (defined
as k ¼ 2π=λ, λ is the wavelength). Stability analysis showed that by
assuming the perturbed waves do not rotate, the line vortex is always
unstable for at least the lowest two critical dimensionless wavenumbers
κ=2.5 and 4.35 (κ is the wavenumber non-dimensionalized by the core
radius a in the stability analysis). This implies that the wavelength of
the most unstable wave on a vortex ring is a fixed number of vortex
core radii, independent of vortex-ring radius. In dimensionless form,
the relation is

mε ¼ κ ; ð5Þ

where ε=a/Rring is the aspect ratio of vortex ring, m ¼ 2πRring=λ is
the dimensionless azimuthal wavenumber, and Rring is the radius of the
vortex ring.

The computed critical values by LSA are listed in Tables 1 and 2.
It appears that the computed azimuthal wavenumber increases
(1≤m≤16) as the aspect ratio A decreases from 1.2 to 0.05. The
radii of the roll axis of the basic flow, Rring, are also listed. The ratio
of the vortex-ring radius and the disk radius increases as the aspect
ratio decreases. The centrifugal force pushes the vortex ring structure
to the outer region of the liquid bridge when the aspect ratio is small,
and the cross-section of the vortex core is not circular. In making the
analogy between a vortex ring and the liquid bridge, Levenstam and



Table 1
Critical values for surface-tension driven flows with Pr=0.001.

A The critical mode The critical Reynolds number mA Rring/R

0.05 16 48,307 0.8 0.962
0.1 9 15,020 0.9 0.932
0.2 4 6093 0.8 0.876
0.3 3 3435 0.9 0.832
0.4 2 2566 0.8 0.802
0.5 2 1871 1 0.777
0.6 2 1402 1.2 0.750
0.8 2 1070 1.6 0.732
1 1 731 1 0.728
1.1 1 610 1.1 0.726
1.2 1 550 1.2 0.723

Fig. 2. Dependence of mA on the aspect ratio for the unstable modes of the
surface-tension driven flows. Symbol circle, Pr=0.001; symbol delta, Pr=0.01; filled
diamond, experimental data [1].
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Amberg [6] assumed that the vortex core diameter to be the height of
the liquid bridge. From Tables 1 and 2, it appears that the product of
the azimuthal wavenumber of the unstable mode and the aspect
ratio approaches a constant,

mA≈0:8; ð6Þ

when 0.05≤A≤0.4.
There is no theoretic data on the instabilities of Marangoni flows

in small-aspect-ratio liquid bridges. The only available experimental
data on critical wavenumbers are by Preisser et al. [13] who studied
the transition of a thermocapillary convection to an oscillatory
convection in liquid columns with Pr=7 and found that mA≈1.1
when 0.2≤A≤0.5. It should be noted that at Pr=7, amplification of
disturbances in surface-tension gradient is significant in the bifurcated
solutions. However, the hydrodynamic effect is still dominant for
large-Prandtl-number surface-tension driven flows when the aspect
ratio is small.

The product of mA obtained by the LSA method is plotted in Fig. 2
along with the experimental data [1]. The aspect ratios ε=a/Rring in
[1] have been multiplied by a factor of 0.75 to suit the current
definition of the aspect ratio of liquid bridge assuming that Rring in
[1] is about 0.75 times radius of the periphery where the tangential
velocity peaks. The experiments in Ref. [1] dealt with vortex rings in
the air, and mA decreases when aspect ratio decreases (Fig. 2). The
mA obtained for surface-tension driven flows is generally lower
than the mA obtained for the vortex rings in the air. This may be
due to the fact that vortex rings by surface-tension gradients are
bounded by solid walls and vortex rings in the air are unbounded.
It appears that the instabilities for vortex rings induced by surface-
tension gradients and generated in the air are both of hydrodynamic
in nature. Since the melts are generally opaque it is difficult to
obtain experimental data for instabilities of small-Prandtl-number
surface-tension driven flows.
Table 2
Critical values for surface-tension driven flows with Pr=0.01.

A The critical mode The critical Reynolds number mA Rring/R

0.05 16 51,928 0.8 0.962
0.1 8 17,262 0.8 0.933
0.2 4 6620 0.8 0.877
0.3 3 3666 0.9 0.832
0.4 2 2687 0.8 0.802
0.5 2 1972 1 0.774
0.6 2 1500 1.2 0.751
0.8 2 1186 1.6 0.726
1 1 776 1 0.724
1.1 1 653 1.1 0.723
1.2 1 596 1.2 0.723
3.2. Features of the unstable mode

Here the features of the unstable mode of the vortex ring with
m=9 are presented. The contours of the amplification rate σ r Re
are plotted in Fig. 3 for Pr=0.001 and A=0.1. From the neutral
curve σ r Re=0, we can estimate that the critical mode is m=9.
The amplification rate as a function of Reynolds number for A=0.1
and m=9 can be linearly fitted as, σ r Re=0.028∗(Re−15,020). In
the analysis by Widnall and Tsai [2], the linear instability of a thin
vortex ring was performed based on the assumption of inviscid
flow, and the amplification rate was found to be proportional to the
total circulation. The present calculations indicate that vortex rings
must be of certain energy for the perturbation of flow on the vortex
to occur and grow in amplitude [1]. Here we use the stream function
to represent the convection strength. If the magnitude of the stream
function of the convections is smaller than the critical value, the
viscosity of fluid can dampen any perturbations. When the magnitude
of the stream function is above the critical value the vortex rings
generated by surface-tension gradients become unstable.
Fig. 3. The contours of the amplification rate σ r Re for Pr=0.001 and A=0.1.
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Fig. 4. (a) Basic flow and (b) distribution of the perturbed vorticity in the azimuthal
direction at r=0.88 when Pr=0.001, A=0.1 and Re=16,000.
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The typical basic flow and the distribution of the perturbed vorticity
in the azimuthal direction ω ¼ ∂u

∂z −∂w
∂r , are plotted in Fig. 4(a) and (b),

respectively, when Pr=0.001, A=0.1, and Re=16,000. The basic
flow is confined in the region near the free surface of the liquid column,
and a vortex ring is generated. The corresponding eigenvalue for the
basic state is (σr+ iσi) Re=26.78+ i0. The perturbation calculated
by LSA does not rotate since σi is zero. The disturbance solution is
normalized using the maximum temperature of the perturbation. The
perturbation flow in the unstable mode contains nine waves around
the perimeter at r=0.88. Each perturbed wave generates strong
positive and negative vorticities in the azimuthal direction. The positive
and negative perturbed vorticities will result in sinusoidal displace-
ments of the centerline of vortex ring in both the radial and vertical
directions.

4. Summary

Instabilities of vortex rings generated by surface-tension gradients
between co-axial disks with Prandtl numbers of 0.001 and 0.01 are
investigated by using the linear stability analysis method. From the
stability analysis, it appears that the product of the angular wavenumber
of the unstable mode and the aspect ratio approaches a constant when
the aspect ratio decreases. That means that the wavelength of the unsta-
blemode is proportional to the radius of the vortex core, and the instabil-
ity is a local behavior of vortex when the aspect ratio is small. By
considering the viscosity of fluid, the stability analyses indicate that the
vortex rings must be of certain energy for the perturbation of flow to
grow in amplitude. The vortex rings driven by surface-tension gradients
are unstable when the magnitude of the stream function is above a
critical value. This suggests that the viscosity of fluid can dampen pertur-
bations if themagnitude of the stream function of the basic flow is below
the critical value. Experiments will be performed in the future to study
the features of vortex rings in both shallow liquid bridge and Czochralski
configurations.
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