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In this paper, the study on isolated spherical drops in thermocapillary migrations in
zero gravity is carried out with a novel numerical scheme to accomplish long-tank
simulations in a very short computing domain, and the full migrating phenomena with
fairly large Marangoni numbers (up to 400) are discussed in detail. Larger Marangoni
numbers lead to more complicated migrating processes, and longer distances for
the drops to reach their final stable migrating velocities (UF). There is nontrivial
difference between the UF values in theoretical analysis, numerical simulations, and
space experiments, and the most possible reason is the assumed different migrating
distances to reach steady states in different investigations. C© 2012 American Institute
of Physics. [http://dx.doi.org/10.1063/1.4752028]

I. INTRODUCTION

In daily life and industrial production, there are often two or several mutually insoluble fluids
mixed together to form droplets. In space, buoyancy effects can be ignored, so some other measures
have to be introduced to drive drops, e.g., temperature effects, electromagnetic effects, and concen-
tration effects. In particular, interfacial tensions normally decrease with increasing temperatures, the
background liquid near the interface is driven toward the cold region, and the counterforce will push
drops to the warm region. The drop migration caused by the temperature gradient on the interface is
termed the thermocapillary migration.

In practice, it is convenient to assume that the density, (ρ), the kinematic viscosity, (μ), the
thermal conductivity, (k), and the specific heat, (cp) are constants. Hence, seven non-dimensional
numbers in total are needed to describe the system, and a typical set is the following:

Ma = U R/κ1,

Pr = μ1/(ρ1κ1),

Ca = μ1U/σ0,

α = μ2/μ1,

λ = k2/k1,

ξ = ρ2/ρ1,

γ = cp2/cp1.

a)Electronic mail: zhaohua.yin@imech.ac.cn.
b)Present address: State Nuclear Power Technology R and D Center, Beijing, People’s Republic of China.
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FIG. 1. The linearized analytical solutions of the thermocapillary flow.2 (a) The streamlines in the laboratory coordinates,
(b) the streamlines in a reference frame attached to the drop.

Here, R is the drop radius, κ = k/ρcp the thermal diffusivity, and σ 0 the interface tension at a
reference temperature T0. Throughout this paper, symbols with subscript 2 are the parameters of the
droplet/bubble, and those with the subscript 1 are the values of the bulk liquid. U is the reference
velocity defined by the balance of thermocapillary force and viscosity force on the drop/bubble

U = |σT ||∇T∞|R/μ1,

where σ T is the changing rate of the interfacial tension with temperature, and ∇T∞ the temperature
gradient imposed on the bulk liquid. It is also common to adopt the Reynolds number (Re = Ma/Pr)
instead of Pr in the above set.1 In space experiments, the materials are fixed and Prs are constants.
Thus, it is easier to compare numerical simulations with space experiments if Prs are fixed.

The original thermocapillary work by Young et al. neglected the inertial convection and thermal
convection (the so-called YGB Model2), and the derived steady migration velocity is

VY G B = 2U

(2 + 3μ2/μ1)(2 + k2/k1)
. (1)

Moreover, the flow inside the drop forms a dipole as indicated in Fig. 1.
After YGB, there are many other studies on the thermocapillary motion of the isolated

drop/bubble (see the review book3). According to the theoretical prediction in Ref. 4, the thick-
ness of the temperature boundary layer along the interface is O(1/

√
Ma), which results in the main

difficulties for those large Ma researches because the boundary layer is very thin.
Most investigations have so far concentrated on the system of the Fluorinert FC-75 drop and

the silicone oil continuous phase. For small Ma numbers (<100), different studies reach a very
good agreement: the final steady migrating speed of the drop (UF) decreases with the increasing
Ma number, and the related physical mechanism is discussed in details in Ref. 5. However, the UF

predictions diverge for those large Ma numbers (>100): the asymptotic analysis4 and numerical
simulations6 showed that the UF increases with the increasing Ma, but several space experiments
showed that the UF decreases with the increasing Ma.7–9 So far as we know, there have been no
studies that really reveal the full drop migrating process of large Ma numbers: some only worked
on relatively small Ma numbers;5 some focused on the final states;6 and some worked on the first
half process.10 It has been predicted in Ref. 10 that the migrating distances to reach steady states for
large Ma numbers are longer than the lengths of the experimental tanks, but so far, there have been
no simulations providing any data of the necessary tank lengths, and the transient drop behaviours
have never been fully studied. In addition, there are some phenomena observed in experiments,8
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FIG. 2. The schematic diagram of the axisymmetric model for the Marangoni migration.

such as the “knee” in the plot of velocity of the drop against position for the larger drop (or the
large Ma number), which require further discussions than that in Ref. 10. Therefore, it is necessary
to investigate the drop’s full migrating behavior with large Ma numbers, and this is the main focus
of this work.

This paper is arranged as follows: the governing equations and numerical methods are introduced
in Sec. II, efforts to overcome the numerical difficulties of large Ma numbers are presented in Sec. III,
and the results and discussions are in Sec. IV.

II. GOVERNING EQUATIONS

In this study, the axisymmetric model is adopted to perform high resolution simulations (Fig. 2).
The drop with the radius R is surrounded by the bulk fluid in a cylinder 	 = [0, r1] × [z0, z1]. The
direction of the temperature gradient is along the z-axis. The front-tracking method is employed in
our simulations, and by connecting the material parameters of two liquids with a smooth function,11

the governing equations for the entire domain can be written as

∇ · u = 0, (2)

∂(ρu)

∂t
+ ∇ · (ρuu) = −∇ p + ∇ · (μ(∇u + ∇T u)) + Fσ , (3)

ρC p(
∂T

∂t
+ u · ∇T ) = ∇ · (k∇T ). (4)

Here, u = (u, w) is the velocity vector, p the pressure, and T the temperature. Fσ is the body force
term produced by the interfacial tension

Fσ =
∫

B
δ(x − x f )(σζn + ∂σ

∂s
τ )ds, (5)

where x = (r, z) is the space vector, x f = (r f , z f ) the position of the cell f on the interface B, δ a
delta function, σ the interfacial tension, ζ the sum of two principal curvatures of the interface, and s
the natural coordinate along the interface. n = (nr , nz) and τ denote the normal and tangential unit
vectors of the interface, respectively.

The nondimensional quantities are defined as

ū = (ū, w̄) = u/U, x̄ = (r̄ , z̄) = x/R, t̄ = t/(
R

U
),

p̄ = p/(ρ1U 2), ρ̄ = ρ/ρ1, μ̄ = μ/μ1, k̄ = k/k1, (6)

C̄ p = C p/C p1, T̄ = T/(|∇ T |R), F̄σ = Fσ R/(ρ1U 2).
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Thus, we have the non-dimensional equations

∇ · ū = 0, (7)

∂(ρ̄ū)

∂ t̄
+ ∇ · (ρ̄ūū) = −∇ p̄ + 1

Re
∇ · (μ̄(∇ū + ∇T ū)) + F̄σ , (8)

ρ̄C̄ p(
∂ T̄

∂t
+ ū · ∇ T̄ ) = 1

Ma
∇ · (k̄∇ T̄ ). (9)

Boundary conditions on the solid walls (Fig. 2) are

ū|r̄=r̄1 = ū|z̄=z̄0,z̄1 = 0,

w̄|r̄=r̄1 = w̄|z̄=z̄0,z̄1 = 0,

T̄ |r̄=r̄1 = T̄0 + z̄, (10)

T̄ |z̄=z̄0 = T̄0 + z̄0,

T̄ |z̄=z̄1 = T̄0 + z̄1.

Boundary conditions on the symmetry axis are

ū|r̄=0 = 0,
∂w̄

∂ r̄
|r̄=0 = 0,

∂ T̄

∂ r̄
|r̄=0 = 0. (11)

It is difficult to have the same initial conditions as those in experiments,1 so we stick to the traditional
ones

ū|t̄=0 = w̄|t̄=0 = 0,

T̄ |t̄=0 = T̄0 + z̄. (12)

In the following, symbols without bars are adopted to indicate nondimensional values (except
Sec. IV C, where the experimental data are discussed and compared with those of the simulations).
The physical parameters are: Pr = 83.3, α = 0.14, λ = 0.47, ξ = 1.89, γ = 0.69, and Ca = 0.04, so the
results can be roughly compared with the Life and Microgravity Science (LMS) space experiments.8

III. NUMERICAL DIFFICULTIES IN SIMULATIONS WITH LARGE MA NUMBERS AND
COUNTERMEASURES

Compared with those studies of small Ma numbers, there are two major difficulties in numerical
simulations with strong thermal convections:

1. The migrating process is more complicated, and much longer time and larger domain are
needed for the drop to reach UF. For example, the drop needs to migrate a distance of 90R to
reach the steady state for Ma = 300 (see Fig. 14(b)).

2. Boundary layers are very thin for large Ma numbers (1/
√

Ma,4), and require very fine
resolutions.

A. The countermeasure for the first difficulty: The dynamic computing domain

The simplest solution to deal with the first difficulty is to adopt a very long tank in simulations
(>10R). However, most computing time is wasted in this strategy because the regions far away
from the drop (roughly 0.5 ∼ 1R above the drop and 2 ∼ 3R behind the drop) are trivial in our
studies.

Another typical solution is to perform simulations on the reference frame attached to the drop
instead of in the laboratory coordinates.6 The merit of this strategy is that no moving interface exists
in simulations, and that various computational techniques such as body-fitting grids and adaptive
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FIG. 3. The schematic diagram of the dynamic domain.

grids can be adopted to reach an effective high local resolution near the interface; thus, no intensive
computation is needed. The drawback is also clear: only the final steady state can be studied, and
the transient migrating behavior remains unrevealed.

Our strategy is a trade-off between the above two solutions: the laboratory coordinate is adopted
and the computing domain is kept as short as possible. The drop starts from a position just above
the cold wall. When the drop migrates near the hot wall, the computing domain near the cold wall
(Fig. 3, Zone 1) is then removed, and Zone 2 with the same size of Zone 1 is patched above the hot
wall. The initial data in Zone 2 are the undisturbed ones (Eq. (12)). The above procedure is repeated
until a steady migrating state is reached.

Figure 4 illustrates a validating test for this dynamic domain. The benchmark simulation adopts
the static long-tank domain (4R × 60R), and the size of the dynamic domain is 4R × 16R. It seems
that the velocity difference between these two simulations is trivial, while the static domain is almost
four times as large as the dynamic one.

B. The countermeasure for the second difficulty: The pressure equation solver based
on the standard Poisson equation solver

In the current numerical scheme, the most time-consuming part is to solve the pressure equation
derived in the projection Method12

∇(
1

ρn+1
∇ pn+1) = ∇ · (u∗)n, (13)

with the Neumann boundary conditions11, 13

∂p

∂r
|r=0,r1 = ∂p

∂z
|z=z0,z1 = 0,

where n is the time step, and u∗ the intermediate velocity.
Typical methods to solve the above equations are the successive over-relaxation (SOR) method

and the multi-grid method, but it is not so easy to parallelize these two methods. For the standard
Poisson equation, however, there are more choices available: the cyclic reduction method14, 15 and
the schemes based on fast Fourier transform (FFT).16, 17 Based on these standard Poisson solvers, it

Downloaded 11 Dec 2012 to 159.226.231.80. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



092101-6 Yin et al. Phys. Fluids 24, 092101 (2012)

t

V

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2
static compute zone(4×60)
dynamic compute zone(4×16)

FIG. 4. Time evolutions of drop velocities calculated by the static domain and the dynamic domain for Ma = 100. Twenty-five
grids are adopted per radius.

is also possible to solve the pressure equation with an iterative method18

pn+1 = −ρn∇(
1

ρn
) · ∇ pn + ρn

t
∇ · (u∗)n. (14)

In this paper, the strategies on the basis of FFTs (Tri-FFT) are adopted to solve the standard Poisson
equation so that we can take advantage of the global efforts to fasten FFTs. So far as we know, the
technical details for the axisymmetric Tri-FFT model with Neumann boundary conditions have never
been discussed in any earlier literatures, so they are presented in the Appendix. Due to the efficiency
of available FFT algorithms, this scheme is about twenty times faster than the SOR methods for the
finest simulation in this research.

Moreover, the above scheme can eliminate the side-effect caused by the dynamic computing
domain described in Subsection III A since it is not sensitive to initial conditions. Generally speaking,
6 − 7 iterations of Eq. (14) are enough to reach the convergence of the pressure equation. On the other
hand, the SOR scheme requires 10 − 105 iterations depending on good or poor initial conditions. It
is clear that the dynamic domain will lead to poor initial conditions when the domain is adjusted,
but it does not lead to longer computing time for the current solver.

It is worth mentioning that there is no solid mathematical proof to guarantee the convergence
of Eq. (14) for all pressure equations, although it does converge for our incompressible two-phase
flow with interfaces far away from physical boundaries.

IV. THE THERMOCAPILLARY MIGRATION OF A SINGLE DROP WITH STRONG
THERMAL CONVECTION

Throughout this study, the time step is 5 × 10−5, the dynamic domain 4R × 16R, and the
resolution 200 × 800.

A. Thermocapillary migrations of drops with different Ma numbers: A first view

In this subsection, seven Ma numbers are adopted in simulations, and the normalized velocities
(V/VY G B) are shown in Fig. 5. All simulations have reached their final steady migration states.
When Ma is relatively small (Ma < 100), the UF decreases as Ma increases. When Ma is fairly

Downloaded 11 Dec 2012 to 159.226.231.80. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



092101-7 Yin et al. Phys. Fluids 24, 092101 (2012)

t

V
/V

Y
G

B

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

Ma = 10
Ma = 20
Ma = 50
Ma = 80
Ma = 100

(a)
t

V
/V

Y
G

B

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Ma = 100
Ma = 200
Ma = 300
Ma = 400

(b)

FIG. 5. Time evolutions of drop migration velocities with different Ma numbers. (a) Ma = 10; 20; 50; 80; 100.
(b) Ma = 100; 200; 300; 400.

large (Ma > 100), the UF increases with Ma. This is consistent with the result of previous numerical
simulations.6

When the thermal convection is very weak (Ma ≈ 0), there are only two stages for the time
evolution of the migration velocity: the beginning accelerating stage and the final steady migration
stage.

When the thermal convection becomes stronger (10 < Ma < 100, see Fig. 5(a)), there is a new
stage besides the above two: the overshoot stage. The overshoot stage occurs at the beginning of the
whole process due to the redistribution of the temperature field inside the drop because the influence
of the thermal convection is stronger than that of the heat diffusion. The detailed discussion of this
phenomenon can be found in many previous works.1, 5

When the thermal convection becomes even stronger (Ma ≥ 200), the migrating process becomes
more complicated, and there are five stages involved (Fig. 6):

1. the “overshoot” stage;

t

V

0 50 100 150 200 250 300 350
0

0.05

0.1

0.15

0.2
Steady migration

Accelerating Ι

Accelerating ΙΙ
Plateau

Overshoot

FIG. 6. Five stages of the drop migration velocity with Ma = 200.
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(a) Ma = 10 (b) Ma = 50 (c) Ma = 100

(d) Ma = 200 (e) Ma = 300 (f) Ma = 400

FIG. 7. Temperature contours when drops reach their final migration states. The temperature difference between nearby
contours is 0.5. (a) Ma = 10. (b) Ma = 50. (c) Ma = 100. (d) Ma = 200. (e) Ma = 300. (f) Ma = 400.

2. the first acceleration stage (Accelerating I);
3. the “plateau” stage;
4. the second acceleration stage (Accelerating II);
5. the final steady migration stage.

Figure 7 presents the isotherms of steady migration states for different Ma numbers. From small
Ma numbers, the isotherms just above the drop begin to bend and embrace the drop, and the larger
Ma number is, the more part of the drop is enwrapped. When Ma = 50, some cold fluid originally
near the bottom of the drop is transported to the drop center before heated up by the surroundings.
As a result, the “cold region” is formed. With even larger Ma numbers, the cold region expands and
moves toward the boundary near the front stagnation point. When Ma > 100, the “cold region” near
the axis is empty and a “cold ring” appears.

To sum up, there are mainly two mechanisms that influence the UF:

� For increasing Ma numbers, the bending of the isotherms just above the drop reduces the
temperature gradient along the interface;

� For the stronger thermal convection, the “cold region” is closer to the interface. As a result, the
temperature boundary layer near the interface becomes stronger, and the isotherms there are
more compact. So, the interfacial temperature gradient near the drop bottom becomes larger.

It is obvious that the first mechanism makes the driving force on the drop smaller because
the gradient of the capillary force along the interface becomes smaller; and the second mechanism
makes the drop move faster.

When the Ma number increases from 10 to 50, the temperature gradient along the interface
decreases because of the first mechanism (Figs. 7(a) and 7(b)), and the influence of the second
mechanism is not obvious yet. For Ma > 50, the influence of the first mechanism does not become
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FIG. 8. Relative temperature distribution along the horizontal line through the drop center when the drop reaches its steady
migration state. T∞ is the temperature on the solid wall in the same horizontal line.

much stronger for the larger Ma, and the second mechanism begins to take effect. From Ma = 50 to
Ma = 100, the interfacial temperature gradient on the upper half of the drop only experiences slight
changes, but that on the lower half obviously keeps increasing (Figs. 7(b) and 7(c)). Consequently,
the UF decreases quickly for larger Ma numbers before Ma = 50, but falls slowly for Ma > 50, and
this decrease stops around Ma = 100 (Fig. 5(a)).

From Ma = 100 to 400, the “cold ring” expands and moves from the front stagnation point to
the equator of the drop (Figs. 7(c)–7(e)). Due to stronger thermal convections, the heat-up of the cold
fluid is slower for larger Ma numbers, and the relative temperature in the “cold ring” is also lower.
As indicated in Fig. 8, the coldest point on the “cold ring” is 8.5 lower than T∞ with Ma = 200, and
15.5 lower with Ma = 300. The scaled temperature distribution along the interface shows that the
temperature difference between the stagnation points becomes larger for a larger Ma (Fig. 9). This
leads to the stronger temperature boundary layer, the denser isotherms inside the drop, the larger
interfacial temperature gradient near the drop bottom, and eventually the obvious increase in UF

(Fig. 5(b)).

B. The full process of the large-Ma thermocapillary migration

In this subsection, we attempt to focus the analysis on the full migrating process with strong
thermal convection.

Figure 10 shows the temperature field near the droplet for different times with Ma = 200. Right
after the beginning of the simulation, the originally straight isotherms just above the drop start to
bend and embrace the drop. At t ≈ 20, some cold fluid originally near the bottom of the drop is
transported to the drop center before heated up by the surroundings, and the “cold region” thus take
form. Later, the “cold region” expands and moves toward the boundary near the front stagnation
point. Around t = 40, the part of the “cold region” near the axis becomes relatively hotter, and a
“cold ring” appears.

Similar to the two mechanisms on the UF in Subsection IV A, there are also two main mecha-
nisms that influence the temporary migrating velocity of the drop:

� As time goes on, the bending of the isotherms just above the drop reduces the interfacial
temperature gradient near the top of the drop;
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FIG. 9. Scaled temperature distribution along the drop interface for various Ma numbers. θ is defined as the angle from the
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� At the later time of the simulation, the “cold region” is closer to the interface, so the temperature
boundary layer near the interface becomes stronger. As a result, the isotherms there are more
compact, and eventually the interfacial temperature gradient near the drop bottom becomes
larger.

(h)

FIG. 10. Temperature contours at different times with Ma = 200. (a) t = 0. (b) t = 20. (c) t = 40. (d) t = 50. (e) t = 60.
(f) t = 100 (g) t = 200 (h) t = 350.
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FIG. 11. Scaled temperature distribution along the drop interface for Ma = 200. See the definition of θ in the caption of
Fig. 9. (Note: The lowest curve corresponds to t = 0; and for all other curves (namely, t > 0), the curve of the later time is in
a lower position.)

From t = 0 to t = 20, the first mechanism significantly reduces the temperature gradient along
the interface. This can be seen clearly in Fig. 11 since the t = 20 curve is in the highest position
while the t = 0 curve is in the lowest one.

After t = 40, the influence of the second mechanism starts to become obvious, so the relative
temperature of the “cold ring” becomes even lower (Fig. 12). Hence, generally speaking, after
the “overshoot” stage, the drop velocity keeps increasing till the final steady state (Fig. 6). An
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FIG. 12. Relative temperature distribution along the horizontal line through the drop center for different times of the
Ma = 200 run.
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FIG. 13. Locations of the coldest points inside drops: (a) time evolutions of z coordinates with Ma = 200 and 300; (b) the
locus with Ma = 300.

exception is the “plateau” stage, when two mechanisms try to find a balance between themselves.
To be more specific, when t ∈ [40, 60], the temperature boundary layer is not fully developed yet
(Figs. 10(c)–10(e)), and the heating-up of the “cold ring” by the heat diffusion is in the same order
as the cooling-down by the thermal convection.

Another interesting phenomenon during the “plateau” stage is the locus of the coldest point
inside the drop (Fig. 13). At first, the coldest point moves up from the bottom of the drop along the r
= 0 line, and then it falls apart from the symmetric axis when the “cold ring” starts to appear. If we
focus on the time evolution of the z coordinate of the coldest point, there is a small overshoot around
t = 40 ∼ 60 after the big one (Fig. 13(a)). The second overshoot is more obvious for the Ma = 300
run. A simple comparison between Figs. 13(a) and 5(b) reveals that the second overshoot and the
“plateau” stage occur simultaneously. Table I presents the detailed coordinates of the coldest point
around the “plateau” stage for Ma = 300. It is clear that, after t = 40, the coldest point paces up and
down before moving towards its destination (see the drawing of partial enlargement in Fig. 13(b)).

After the “plateau” stage, the temperature boundary layer gradually becomes fully developed,
the “cold ring” becomes colder, the interfacial temperature gradient near the drop bottom becomes
larger, and the drop velocity is in the second acceleration stage. Finally, there is a balance between
the thermal diffusion and convection, and the final steady migration state is reached.

C. The comparison between our numerical simulations and space experiments

Before any comparison is made, it is convenient to list the assumptions adopted in our simula-
tions:

1. The existence of the “overshoot” stage:
In our previous investigation,1 it has been analyzed that the current initial condition induces
the “overshoot” phenomenon of the velocity, and the “overshoot” stage will not be so obvious
in real experiments.

2. The temperature-independent viscosity and density:
It has been clarified that this assumption leads to nontrivial difference from the space
experiments.5, 10

3. Trivial drop deformation:

TABLE I. Coordinates of the coldest point at t = 40 ∼ 60 with Ma = 300. The droplet center is at (rc, zc).

Time 40 42 44 46 48 50 52 54 56 58 60

r 0.73 0.73 0.72 0.72 0.71 0.71 0.71 0.71 0.71 0.71 0.71
z − zc 0.081 0.065 0.038 0.040 0.032 0.039 0.0469 0.066 0.071 0.072 0.083
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FIG. 14. Dimensional times and distances required for the drop to reach final steady states for different Ma numbers. (a) Ma
numbers vs. migration time. (b) Ma numbers vs. migration distance.

According to Ref. 19, the simulation must be stopped before the drop center migrates a distance
much shorter than (1/Ca − 1)R in the z direction to avoid the noticeable deformation. However,
in this paper, (1/Ca − 1)R = 24R is not enough for those Ma ≥ 200 runs to reach their final
migration states.

We stick to the above assumptions because they have been widely employed in most previous
analytical and numerical studies,1–4, 6 and it will be seen later in this subsection that our simulations
can still give a pretty good explanation for most experimental phenomena.

If only the last four stages in Fig. 6 are considered, we will find a very good agreement with
the LMS space experiment. In particular, Fig. (4b) in Ref. 8 shows the existence of the “knee”
in the plot of velocity of the drop against position for the larger drop, and the “knee” lasts about
5 s. Using the material parameters at T = 30 ◦C (σT = −0.036 mN/mK and |∇ T∞| = 1K/mm), the
nondimensional “knee” time can be calculated by the expression t|σ T||∇T∞|/μ1 = 20.7. It is clear
that the “plateau” stage in our simulation lasts roughly as long as that of the experiments.

Figure 14 shows the dimensional times and distances needed by the drop to reach its final steady
states based on our simulations. It is obvious that the required time and distance increase with the Ma
number. The least square fit shows that the required dimensional time of large Ma numbers follows
the expression

t = 0.33Ma + 0.575(s), (15)

and the coefficient of determination E2 = 0.98. The previous research8 adopts a different expression
based on the linear analytical result of Kronig and Brink20

t = 0.0096R2/κ2. (16)

There is a big gap between the above two expressions when Ma numbers are fairly large. For
example, when Ma = 200, the radius of the FC-75 droplet is 2.04 mm, and the thermal diffusivity
is κ2 = 0.034 mm2/s. So, the time for the drop to reach the steady state determined by Eq. (16) is
11.8 s, while it is about 70 s according to Eq. (15). Moreover, the length of the tank in the LMS
space experiment is 60 mm, which is not long enough for large drops to reach their steady migration
states according to our numerical simulations: the tank should be longer than 93 mm for Ma = 200
and 238 mm for Ma = 300.

The UFs from previous studies are summed up in Fig. 15. The results of our simulations are
close to those of the steady simulations in Ref. 6, but are quite different from the space experiment
results. To be specific, the numerical results (this work and Ref. 6) agree with the findings of the
space experiments for Ma < 100, but they become larger than experimental data after Ma > 100.
The asymptotic result4 shows a similar trend to the numerical prediction for large Ma numbers.
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FIG. 15. The resulted UFs from the asymptotic theory, numerical simulations, and space experiments.

The main reason bringing the difference in UFs is the long complex migration process for large Ma
numbers, so it is impossible for the space experiments to observe the final steady migration state
within a short tank of 60 mm.

In the space experiments, all data are taken within approximate 10 mm of traverse distance in the
tank.8 To get a direct comparison, we replace the UFs with the drop speeds at z = 25 mm and 35 mm
in our simulations. The resulting data are plotted in Fig. 16, and a fairly good agreement with the
space experiments is reached. It is interesting that the sampled velocity for Ma = 400 at z = 35 mm

Ma

V
/V

Y
G

B

100 101 102 1030

0.2

0.4

0.6

0.8

1

1.2

1.4

Velocity at z = 25mm (Present work)
Velocity at z = 35mm (Present work)
LMS mission
IML-2 mission
Xie et al 2005

FIG. 16. The intermediate drop velocities at z = 25 and 35 mm from our numerical simulations and the corresponding
experimental results.
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FIG. 17. Temperature contours when drops reach their final migration states with different domain widths for Ma = 150.

is lower than that of Ma = 300 because: (1) the first three stages defined in Fig. 6 last longer for
larger Ma numbers (see Fig. 5); (2) Ma = UR/κ1 means that a larger Ma number corresponds to
a larger drop, which means that the first three stages in Fig. 6 cover longer physical distance. It
also explains why the sampled experimental velocities for Ma > 500 are even lower (see Fig. 6 and
Ref. 9).

It is worth mentioning that all experimental data are sampled when drops migrate a distance
shorter than 20 mm from the injection needle, or the effective maximum temperature difference
in the system is 20K. Therefore, the comparison in Fig. 16 roughly meets the requirement of the
Boussinesq approximation in our simulations.

D. The influence of the domain width

In our simulations, the domain width is fixed at 4R, while in the experiments it varies from 3R
∼ 24R (note that the axisymmetric coordinate is adopted here). Since the cylinder is confined on top
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FIG. 18. Time evolutions of drop migration velocities with different domain widths for Ma = 150.
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and bottom, there should be a back flow in the outer fluid. To provide a better support for the future
experiments, it is necessary to consider the influence of the domain widths in numerical simulations.

From Fig. 17, we can see that the different domain widths lead to nearly the same final-state
temperature contours for Ma = 150. On the other hand, although the migrating velocities roughly
experience the same five stages as those defined in Sec. IV A, there is obvious difference in the UF

values (Fig. 18). Similar conclusions were reached in a level-set simulation.10

V. CONCLUSIONS

In this paper, we develop an efficient numerical solver to investigate the drop thermocapillary
migrations with large Ma numbers. The dynamic adjustment of the computing domain can sig-
nificantly reduce the total resolution, and the iteration scheme based on the tri-FFT can solve the
pressure equation much faster than the traditional ones.

The different migration processes of drops with various Ma numbers are discussed. A larger Ma
number leads to a more complicated process, longer time, and larger distance for the droplet to reach
the final steady state. In our simulations, the sharp interface numerical scheme is adopted. Although
this brings some difficulties in programming,21 it leads to a better observation of the “plateau” stage,
and a very good agreement of our simulations with the space experiments.

In addition, the different UFs predicted by different investigations are compared, and the major
reason leading to the divergence in various predictions is the underestimation of the drop’s migrating
distance to reach its final steady state for large Ma numbers.

Finally, some suggestions for future experiments can be made. The necessary tank length
according to our work is significantly longer than that of any earlier predictions. So, if the goal of
experiments is related to the final steady migrating velocity with large Ma numbers, at least one of
the following strategies should be considered:

� Extend the physical length of the current tank. The extension should go along with the decrease
of the temperature on the cold wall instead of the increase of the temperature on the hot wall,
because the temperature on the hot wall of current experiments is already close to the burning
point of the silicone oil;

� Extend the nondimensional length of the tank by using different experimental liquids (other
than the Fluorinert FC-75 drop and the silicone oil continuous phase) to make drops smaller
while keeping the Ma number big enough.
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APPENDIX: THE TRI-FFT POISSON SOLVER WITH NEUMANN BOUNDARY CONDITION
IN AXISYMMETRICAL MODEL

The details of the Poisson solver can be found in Refs. 22 and 23, and only some specifics of the
solver about the Neumann boundary condition in axisymmetrical model are presented here. With
the three-point centered finite-difference method, the axisymmetrical poisson equation discreted on
a uniform, Cartesian, staggered grid can be written as

ai Xi−1 + bi Xi + ci Xi+1 + AXi = Di ,

Xi = {pi,1, pi,2, ..., pi,Nz }T , (A1)

Di = z2{di,1, di,2, ..., di,Nz }T ,
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A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1 0 · · · · · · · · ·
−1 2 −1 0 · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · 0 −1 2 −1
· · · · · · · · · 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

Nz×Nz

,

where ai, bi, ci are the coefficients in the finite-difference scheme, pi, j the unknown pressure, Nz the
grid number in the z direction, z the length of the grid cell, and di, j the source term. The Neumann
boundary condition has been applied to the first and last rows in matrix A, of which the eigenmatrixs
are read as

AQ = �Q, G AQ = � = diag{λ j },

Q = {q j }, G = {g j },

q j = C j {cos
( j − 1)π

2Nz
, cos

3( j − 1)π

2Nz
, ..., cos

(2Nz − 1)( j − 1)π

2Nz
}

T

, (A2)

λ j = 2 − 2 cos
( j − 1)π

Nz
, C j = { 1/Nz, j = 1

2/Nz, j �= 1
,

g j = {1, cos
(2 j − 1)π

2Nz
, cos

2(2 j − 1)π

2Nz
, ..., cos

(Nz − 1)(2 j − 1)π

2Nz
}.

Note that the products of G and Q can be executed with a staggered cosine-FFT. Then, by multiplying
G to Eq. (A1), we can obtain

ai Yi−1 + bi Yi + ci Yi+1 + �Yi = Ei ,

Yi = GXi , Ei = GDi ,

and the series of tridiagonal equations are

ai yi−1, j + bi yi, j + ci yi+1, j + λ j yi, j = ei, j .

For j=1, the tridiagonal equations are singular and any additional restrict condition can be imposed,
so the series of tridiagonal equations can be solved with the highly efficient Thomas algorithm.
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