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Applications of the CE/SE Scheme to Incompressible Viscous Flows in Two-Sided
Lid-Driven Square Cavities *

YANG Duo-Xing(杨多兴)1, ZHANG De-Liang(张德良)2**
1Institute of Crustal Dynamics, Chinese Earthquake Administration, Beijing 100085

2LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190

(Received 1 April 2012)
The spacetime conservation element-solution element (CE/SE) method is extended to two-dimensional incom-
pressible viscous flow in a two-sided lid-driven square cavity. Based on the SIMPLE method concept, the pre-
conditioned dual-time scheme is introduced for unsteady computations. The CE/SE-based code is validated by
simulating one-sided lid-driven cavity flows. The two-sided lid-driven square cavity problem involves several in-
teresting characteristics being successfully predicted, including development of a pair of off-corner vortices and a
free shear layer in the case of parallel wall motion, as well as the appearance of corner vortices for lower Reynolds
numbers in the case of anti-parallel motion of the walls. It is found that both the Reynolds number and the
direction of the moving walls affect the fluid flow in the cavity.

PACS: 47.40.Rs, 02.60.Cb, 82.33.Vx DOI: 10.1088/0256-307X/29/8/084707

The lid-driven cavity flow problem, involving al-
most all fluid mechanical phenomena in the sim-
plest geometrical settings,[1] is of great scientific in-
terest. Ghia et al.[2] used a multi-grid method to
investigate the flow field in a lid-driven cavity. Re-
cently, two-lid driven cavity flow problems have been
experimentally[3] and numerically[4−6] investigated.

The spacetime conservation element and solution
element (CE/SE) method, first proposed by Chang,[7]
has been used to obtain highly accurate numerical so-
lutions for hyperbolic conservation equations. The
basic idea of the CE/SE method is global and lo-
cal flux conservation in a spacetime domain. Due
to its efficiency, simplicity, and accuracy, the CE/SE
method has been successfully applied to viscous flow
problems.[8−11]

In this Letter, based on the SIMPLE method con-
cept, the preconditioned dual-time scheme[12] is in-
troduced. The CE/SE method proposed by Wang et
al.[13] is extended to two-sided lid-driven cavity flows.

The basic equations governing the flow of an in-
compressible viscous fluid are the conservation of
mass, i.e.,

∇ · 𝑢 = 0, (1)

and conservation of momentum, i.e.,

𝜕𝑢

𝜕𝑡
+∇·(𝑢𝑢) = −1

𝜌
∇𝑝+

1

𝜌𝑅𝑒
∇·𝜇(∇𝑢+(∇𝑢)𝑇 ), (2)

where 𝑢 represents the fluid velocity vector; 𝑝 and 𝜌
are, respectively, the pressure and density of the fluid;
𝜇 denotes the dynamic viscosity; 𝑅𝑒 is the Reynolds
number, with 𝑅𝑒 = 𝜌𝐿𝑈/𝜇. 𝐿 and 𝑈 represent, re-
spectively, the appropriate length and velocity scale.

Next, details of the CE/SE framework used in the
development of the incompressible viscous flow solver
are described. The governing Eqs. (1) and (2) can be

expressed as the Euler equation

𝜕𝑄

𝜕𝑡
+

𝜕𝐸(𝑄)

𝜕𝑥
+

𝜕𝐹 (𝑄)

𝜕𝑦
= 0, (3)

where 𝑄, 𝐸, 𝐹 are vectors of primary variable, flux
in 𝑥-direction and flux in 𝑦-direction, respectively.
Wang et al.[13] proposed an improved CE/SE method
with first-order accuracy by adopting a general hex-
ahedron mesh to construct CEs and SEs, which is
different to Chang’s original CE/SE method[7] (see
Fig. 1). Let (𝑗, 𝑘, 𝑛) denote a set of spacetime mesh
points, where 𝑛 = 0, ±1/2, ±1, ±3/2, . . . for
time, 𝑗 = 0, ± 1

2 , ±1, ±3/2, . . . for 𝑥, 𝑘 =
0, ±1/2, ±1, ±3/2, . . . for 𝑦. An SE is defined as
the vicinity of a mesh point and the whole spacetime
region is divided into non-overlapping CEs. Assume
that the physical variables in every SE are approxi-
mated by Taylor’s expansions at the mesh point as-
sociated with the SE, and the conservation Eq. (3) is
satisfied in every CE.

Let 𝑥1 = 𝑥, 𝑥2 = 𝑦, 𝑥3 = 𝑡 be considered as the
coordinates of a Euclidean space 𝐸3. By means of
Gauss’ divergence theorem, Eq. (3) can be rewritten
as ∮︁

𝑆(𝑉 )

𝐻𝑚 · 𝑑𝑠 =

∫︁
𝑉

𝑆𝑚𝑑𝑉 , (4)

where 𝐻𝑚 = (𝐸𝑚, 𝐹𝑚, 𝑄𝑚) is the spacetime flux vec-
tor with 𝑄𝑚, 𝐸𝑚 and 𝐹𝑚 being the components of
vectors 𝑄, 𝐸 and 𝐹 ; 𝑆𝑚 represents the components
of the source term vector; 𝑆(𝑉 ) is the boundary of an
arbitrary spacetime region 𝑉 in 𝐸3, 𝑑𝑠 = 𝑑𝜎�̂� with 𝑑𝜎
and �̂�, respectively, being the area and the outward
unit normal of a surface element on 𝑆(𝑉 ). Figure 1(a)
shows the projection of mesh points on the 𝑥–𝑦 plane,
in which the interval between the mesh points denoted
by closed and open circles is ∆𝑡/2 in the time direction
or 1/2 in the mesh number 𝑛. For any point 𝑃 ′(𝑗, 𝑘, 𝑛)
on which the variables are solved, we define the solu-
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tion element SE(𝑃 ′) constituted by the three verti-
cal planes intersecting at 𝑃 ′(𝑗, 𝑘, 𝑛) and their neigh-
borhood space as demonstrated in Fig. 1(b). Suppose
that 𝑄𝑚, 𝐸𝑚 and 𝐹𝑚 at point (𝑡, 𝑥, 𝑦) in 𝑆𝐸(𝑃 ′) are
approximated by the first-order Taylor expansions at
𝑃 ′(𝑗, 𝑘, 𝑛), i.e.,

𝑄𝑚(𝑑𝑥, 𝑑𝑦, 𝑑𝑡)𝑃 ′ = (𝑄𝑚)𝑃 ′ + (𝑄𝑚𝑥)𝑃 ′𝑑𝑥+(𝑄𝑚𝑦)𝑃 ′𝑑𝑦

+ (𝑄𝑚𝑡)𝑃 ′𝑑𝑡,

𝐸𝑚(𝑑𝑥, 𝑑𝑦, 𝑑𝑡)𝑃 ′ = (𝐸𝑚)𝑃 ′ + (𝐸𝑚𝑥)𝑃 ′𝑑𝑥 + (𝐸𝑚𝑦)𝑃 ′𝑑𝑦

+ (𝐸𝑚𝑡)𝑃 ′𝑑𝑡,

𝐹𝑚(𝑑𝑥, 𝑑𝑦, 𝑑𝑡)𝑃 ′ = (𝐹𝑚)𝑃 ′ + (𝐹𝑚𝑥)𝑃 ′𝑑𝑥 + (𝐹𝑚𝑦)𝑃 ′𝑑𝑦

+ (𝐹𝑚𝑡)𝑃 ′𝑑𝑡, (5)

where 𝑑𝑥 = 𝑥− 𝑥𝑃 ′ , 𝑑𝑦 = 𝑦− 𝑦𝑃 ′ , 𝑑𝑡 = 𝑡− 𝑡𝑃 ′ , where
𝑥𝑝′ , 𝑦𝑝′ and 𝑡𝑝′ are the position coordinates of point
𝑃 ′. Substituting Eq. (5) into Eq. (3) gives

(𝑄𝑚𝑡)𝑃 ′ = −(𝐸𝑚𝑥)𝑃 ′ − (𝐹𝑚𝑦)𝑃 ′ . (6)
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Fig. 1. Staggered spacetime mesh of the CE/SE scheme.

The above equations imply that the variables re-
quired in computation are (𝑄𝑚)𝑃 ′ , (𝑄𝑚𝑥)𝑃 ′ and
(𝑄𝑚𝑦)𝑃 ′ , because 𝐸𝑚 and 𝐹𝑚 are the functions of
𝑄𝑚. The conservation element CE(𝑃 ′) is defined as
illustrated as Fig. 1(c). It can be seen from Fig. 1(c)
that CE(𝑃 ′) is related to not only SE(𝑃 ′) but also
the SEs of SE(𝐴), SE(𝐶), SE(𝐸), and SE(𝐺). Note
that the values of physical variables on mesh points
𝐴, 𝐶, 𝐸, and 𝐺 are known. Assume that the integral
conservation laws are satisfied in every CE. Integrat-
ing Eq. (4) on the surfaces of CE(𝑃 ′) with the aid of
Eq. (6), we find

(𝑄𝑚)𝑃 ′ =
1

4
(�̄� +

∆𝑡

∆𝑥
�̄� +

∆𝑡

∆𝑦
𝐹 ), (7)

where

�̄� =𝑄𝑚

(︁
𝐴,

∆𝑥

4
,

∆𝑦

4
, 0
)︁

+ 𝑄𝑚

(︁
𝐶,−∆𝑥

4
,

∆𝑦

4
, 0
)︁

+ 𝑄𝑚

(︁
𝐸,−∆𝑥

4
,−∆𝑦

4
, 0
)︁

+ 𝑄𝑚

(︁
𝐺,

∆𝑥

4
,−∆𝑦

4
, 0
)︁
,

�̄� =𝐸𝑚(𝐴, 0,
∆𝑦

4
,

∆𝑡

4
) − 𝐸𝑚

(︁
𝐶, 0,

∆𝑦

4
,

∆𝑡

4

)︁
− 𝐸𝑚

(︁
𝐸, 0,−∆𝑦

4
,

∆𝑡

4

)︁
+ 𝐸𝑚

(︁
𝐺, 0,−∆𝑦

4
,

∆𝑡

4

)︁
,

𝐹 =𝐹𝑚

(︁
𝐴,

∆𝑥

4
, 0,

∆𝑡

4

)︁
+ 𝐹𝑚

(︁
𝐶,−∆𝑥

4
, 0,

∆𝑡

4

)︁
− 𝐹𝑚

(︁
𝐸,−∆𝑥

4
, 0,

∆𝑡

4

)︁
− 𝐹𝑚

(︁
𝐺,

∆𝑥

4
, 0,

∆𝑡

4

)︁
.
(8)

Using the continuity conditions at points 𝐴′, 𝐶 ′, 𝐸′

and 𝐺′, the derivatives of 𝑄𝑚 with respect to 𝑥 and 𝑦
are obtained,

(𝑄𝑥)𝑃 ′ = 𝑊 [(𝑄𝑥)−𝑃 ′ , (𝑄𝑥)+𝑃 ′ , 𝛼],

(𝑄𝑦)𝑃 ′ = 𝑊 [(𝑄𝑦)−𝑃 ′ , (𝑄𝑦)+𝑃 ′ , 𝛼], (9)

where

(𝑄𝑚𝑥)𝐷′ = [𝑄𝑚𝑥(𝐶, 0, 0,∆𝑡/2)

+ 𝑄𝑚𝑥(𝐸, 0, 0,∆𝑡/2)]/2,

(𝑄𝑚𝑥)𝐻′ = [𝑄𝑚𝑥(𝐺, 0, 0,∆𝑡/2)

+ 𝑄𝑚𝑥(𝐴, 0, 0,∆𝑡/2)]/2,

(𝑄𝑚𝑦)𝐹 ′ = [𝑄𝑚𝑦(𝐸, 0, 0,∆𝑡/2)

+ 𝑄𝑚𝑦(𝐺, 0, 0,∆𝑡/2)]/2,

(𝑄𝑚𝑦)𝐵′ = [𝑄𝑚𝑦(𝐴, 0, 0,∆𝑡/2)

+ 𝑄𝑚𝑦(𝐶, 0, 0,∆𝑡/2)]/2. (10)

Here (𝑄𝑥)±𝑃 ′ and (𝑄𝑦)±𝑃 ′ are defined as

(𝑄𝑚𝑥)−𝑃 ′ = − 1

∆𝑥

[︁
𝑄𝑚(𝐴, 0, 0,

∆𝑡

2
)

+ 𝑄𝑚(𝐺, 0, 0,
∆𝑡

2
) − 2(𝑄𝑚)𝑃 ′

]︁
,

(𝑄𝑚𝑥)+𝑃 ′ = +
1

∆𝑥

[︁
𝑄𝑚(𝐶, 0, 0,

∆𝑡

2
)

+ 𝑄𝑚(𝐸, 0, 0,
∆𝑡

2
) − 2(𝑄𝑚)𝑃 ′

]︁
,

(𝑄𝑚𝑦)−𝑃 ′ = − 1

∆𝑦

[︁
𝑄𝑚(𝐴, 0, 0,

∆𝑡

2
)

+ 𝑄𝑚(𝐶, 0, 0,
∆𝑡

2
) − 2(𝑄𝑚)𝑃 ′

]︁
,

(𝑄𝑚𝑦)+𝑃 ′ = +
1

∆𝑦

[︁
𝑄𝑚(𝐸, 0, 0,

∆𝑡

2
)

+ 𝑄𝑚(𝐺, 0, 0,
∆𝑡

2
) − 2(𝑄𝑚)𝑃 ′

]︁
.

(11)

The weighted equation[14,15] is

𝑊 [𝑥+, 𝑥−, 𝛼] =
|𝑥+|𝛼𝑥− + |𝑥−|𝛼𝑥+

|𝑥−|𝛼 + |𝑥−|𝛼
, (12)
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and 𝛼 is a constant (𝛼=2 in this study).
Based on the SIMPLE method concept, the pre-

conditioned dual-time scheme[12] is introduced. Equa-
tion (1) can be rewritten as

𝜕𝑃

𝜕𝜏
+ 𝐶2𝜌

(︁𝜕𝑢
𝜕𝑥

+
𝜕𝑣

𝜕𝑦

)︁
= 0, (13)

where 𝜏 is the visual time, and 𝐶2 is the coefficient ef-
fecting the numerical stability. Substituting the visual
time derivative of velocities into Eq. (2), we obtain

𝜕𝑈

𝜕𝜏
+

𝜕𝑄

𝜕𝑡
+

𝜕𝐸(𝑄)

𝜕𝑥
+

𝜕𝐹 (𝑄)

𝜕𝑦
= 0. (14)

For 𝜏 → ∞, Eq. (14) is consistent to Eq. (2). Applying
the pressure splitting method, Eq. (14) takes the form

𝜕𝑈𝑣

𝜕𝜏
+

𝜕𝑄𝑣

𝜕𝑡
+ 𝑅𝑣(𝑄𝑣) +

1

𝜌
∇𝑃 = 0, (15)

where

𝑅𝑣(𝑄𝑣) = (
𝜕𝐸𝑣(𝑄𝑣)

𝜕𝑥
+

𝜕𝐹𝑣(𝑄𝑣)

𝜕𝑦
),

𝑄𝑣 = 𝑈𝑣 =

(︂
𝑢
𝑣

)︂
, 𝑈 =

(︃
𝑃/𝐶2

𝑢
𝑣

)︃
,

𝐸𝑣 =

(︂
𝑢2 − 𝜏𝑥𝑥

𝜌𝑅𝑒

𝑢𝑣 − 𝜏𝑦𝑥

𝜌𝑅𝑒

)︂
, 𝐹𝑣 =

(︂
𝑢𝑣 − 𝜏𝑥𝑦

𝜌𝑅𝑒

𝑣2 − 𝜏𝑦𝑦

𝜌𝑅𝑒

)︂
.

Using the time operator splitting method to split
pressure item in momentum Eq. (15), we obtain

𝑄
𝑛+1/2
𝑣 − 𝑓(𝑄𝑛

𝑣 )

∆𝑡
+ 𝑅𝑛

𝑣 (𝑄𝑛
𝑣 ) = 0, (16a)

𝜕𝑈

𝜕𝜏
+

𝑄𝑛+1
𝑣 −𝑄

𝑛+1/2
𝑣

∆𝑡
+

1

𝜌
∇𝑃 = 0.

(16b)

We interpret Eq. (16a) as yielding an intermediate
value of 𝑄𝑛

𝑣 , denoted by 𝑄
𝑛+1/2
𝑣 at time 𝑛. Here

the superscript 𝑛 indicates the time step. 𝐹 (𝑄𝑛
𝑣 ) is

the value of 𝑄𝑛
𝑣 at time step 𝑛. Equation (16a) can

be simulated by using the CE/SE method to obtain
𝑄

𝑛+1/2
𝑣 . By means of time-marching solutions and in-

ternal iteration method, Eqs. (13) and (16b) yield

𝑃𝑚+1 − 𝑓(𝑃𝑚)

∆𝜏
+ 𝐶2

(︁𝜕𝑢
𝜕𝑥

+
𝜕𝑣

𝜕𝑦

)︁𝑚
= 0, (17a)

𝑈𝑚+1 − 𝑈𝑚

∆𝜏
+

𝑄𝑚+1 −𝑄𝑛+1/2

∆𝑡
+

1

𝜌
∇𝑃𝑚+1 = 0,

(17b)

where 𝑚 is the iteration step. Assume that we have al-
ready carried out 𝑚 iteration. Then, for the 𝑚+1 iter-
ation, by substituting 𝑄

𝑛+1/2
𝑣 into Eq. (17a) and using

the CE/SE method, 𝑃𝑚+1 can be calculated at iter-
ation step 𝑚 + 1. Substituting 𝑃𝑚+1 into Eq. (17b),
𝑈𝑚+1 is obtained. The above procedure is repeated

for a number of iterations; convergence is achieved
when 𝑈𝑚+1−𝑈𝑚 becomes less than a prescribed value
(10−6) at all grid points. After convergence, 𝑈𝑛+1

can be obtained at time step 𝑛 + 1. These govern-
ing equations are discretized on staggered orthogonal
grids, which eliminate the possibility of a checkerboard
pressure pattern.
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Fig. 2. Code validation: (a) streamlines (102×102 grids),
(b) 𝑢 along the vertical centerline, and (c) grid indepen-
dence test: 𝑢-velocity distribution in the vertical mid-
plane (𝑅𝑒 = 1000).
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Fig. 3. Two-sided lid-driven cavity: (a) parallel wall mo-
tion and (b) anti-parallel wall motion.

In order to validate the developed 2D incompress-
ible viscous flow algorithm, the code is applied to the
single lid-driven cavity flow problem. Here a set of
grids (102 × 102) is used, and we set 𝑅𝑒 = 1000.
Qualitative comparison is shown in Fig. 2. There is
a primary vortex inside the cavity, and two smaller
counter-rotating vortices appear at both corners of
the bottom wall. One can see an excellent agree-
ment between the CE/SE solutions and the bench-
mark solutions[2] for the cases considered.

Figure 2(b) shows the 𝑢 velocity distribution along
the vertical centerline, compared with Ghia’s data. It
can be seen that the result matches very well with
Ghia’s. Note that a 128×128 mesh was used in Ghia’s
work. It demonstrates that the CE/SE method can
be extended to 2D incompressible viscous flow with-
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out increasing computational effort or compromising
the accuracy.

Grid convergence study is also carried out for this
test case. Grid independence analysis is performed us-
ing successively sized grids, 52×52, 82×82, 102×102
for the case.[2] Uniform grid has been used for all the
computations. The distribution of the 𝑢-velocity in
the vertical mid-plane is shown in Fig. 2(c). It is ob-
served that the curves overlap with each other for
102× 102 and 82× 82. Thus a grid number of 82× 82
is chosen for further computation. A similar type of
grid independence test has been carried out for other
cases and is not represented here.

Here we focus on the recirculating flow due to a
moving lid on a cavity, and present the evolution of
recirculating cells for two cases according to the top
and bottom walls moving in the opposite (anti-parallel
motion) or same (parallel motion) direction with a
unite velocity. The boundary conditions for parallel
and anti-parallel wall motion problems are illustrated
in Figs. 3(a) and 3(b), respectively.
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Fig. 4. Streamlines for parallel wall motion at (a) 𝑅𝑒 =
100, (b) 𝑅𝑒 = 400, (c) 𝑅𝑒 = 1000, and (d) 𝑅𝑒 = 2000 on
82× 82 grids.
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Fig. 5. Parallel wall motion at 𝑅𝑒 = 100: (a) horizontal
velocity 𝑢 along vertical lines (𝑥 = 0.25, 0.50, 0.75) and
(b) vertical velocity 𝑣 along horizontal lines (𝑦 = 0.25,
0.50, 0.75).

Figure 4 depicts the streamlines calculated with
82 × 82 grids for 𝑅𝑒 = 100, 400, 1000 and 2000.
The upper and lower walls move in the same direction

along the 𝑥 axis with the same velocity. The stream-
lines are symmetrical with respect to a line parallel
to these walls and passing through the cavity center.
Figure 4(a) illustrates the streamlines in the case of
the parallel wall motion at 𝑅𝑒 = 100 with the top and
bottom walls moving from the left to right. We ob-
serve that a pair of recirculating cells takes place at
the upper and the lower cavities. These primary vor-
tices are counter-rotating and form a typically dual
lid-driven cavity flow. Clearly, there is a strong shear
layer in a region of clustering stream lines between the
upper and lower cavities.
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Fig. 6. Parallel wall motion at 𝑅𝑒 = 1000: (a) horizontal
velocity 𝑢 along vertical lines (𝑥 = 0.25, 0.50, 0.75) and
(b) vertical velocity 𝑣 along horizontal lines (𝑦 = 0.25,
0.50, 0.75).
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Fig. 7. Streamlines in the case of anti-parallel wall mo-
tion at (a) 𝑅𝑒 = 100, (b) 𝑅𝑒 = 400, (c) 𝑅𝑒 = 1000, and
(d) 𝑅𝑒 = 2000 on 82× 82 grids.

For 𝑅𝑒 = 400 as shown in Fig. 4(b), besides the
primary vortices, a pair of counter-rotating secondary
vortices symmetrically exist near the center of the
right wall. Figures 4(c) and 4(d) show the stream-
line patterns at 𝑅𝑒 = 1000 and 𝑅𝑒 = 2000. As the
Reynolds number increases, the upper eddy strength
and its center location move downward to the center
of the upper cavity. The location of the lower eddy
shifts upward to the center of the lower cavity. A free
shear layer exists midway between the upper and lower
cavities, referencing to the confining zone.

As the Reynolds number increases, the size of the
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secondary vortices near the center of the right wall
increases. Pairs of the counter-rotating primary and
secondary vortices maintain their symmetry at all the
Reynolds numbers considered here.
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Fig. 8. Anti-parallel wall motion at 𝑅𝑒 = 100: (a) hori-
zontal velocity 𝑢 along vertical lines (𝑥 = 0.25, 0.50, 0.75)
and (b) vertical velocity 𝑣 along horizontal lines (𝑦 = 0.25,
0.50, 0.75).

Figures 5 and 6 present the plots of horizontal ve-
locity profiles along vertical lines and vertical velocity
profiles along horizontal lines passing through differ-
ent points of the square cavity at a variety of Reynolds

numbers.
Figure 7 shows the streamline patterns simulated

on 82 × 82 grids for 𝑅𝑒 = 100, 400, 1000 and 2000.
Here the upper and lower walls move in opposite direc-
tions along the 𝑥-axis with the same velocity. Figures
7(a) and 7(b), respectively, depict the streamlines for
𝑅𝑒 = 100 and 400. It is observed that a single primary
vortex appears at the geometric center of the cavity for
low Reynolds numbers. Figures 7(c) and 7(d), respec-
tively, illustrate the streamline patterns for 𝑅𝑒 = 1000
and 2000. Two secondary vortices exist near the top
left and the bottom right corners of the cavity, and
the primary vortex center slightly shifts from the ge-
ometric center of the cavity. As the Reynolds num-
ber (between 𝑅𝑒 = 1000 and 2000) increases, the size
of the secondary vortices increases. Figures 8 and 9
show the plots of horizontal velocity profiles along ver-
tical lines and vertical velocity profiles along horizon-
tal lines passing through different points of the square
cavity at different Reynolds numbers. Also note that
for all lid-driven cavity flows, there exist singularities
at the corners where the velocity becomes discontin-
uous, while the stream function itself does not have
any singularity.

Table 1. Locations of the vortices for parallel wall motions for 𝑅𝑒 = 400. Here superscript B represents the bottom and T denotes
the top.

Primary vortex Secondary vortices
Ref. [6] (0.5845, 0.2388)B (0.5845, 0.7553)T (0.9873, 0.4638)B (0.9873, 0.5264)T

CE/SE (0.5875, 0.2375)B (0.5875, 0.7500)T (0.9875, 0.4625)B (0.9875, 0.5250)T
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Fig. 9. Anti-parallel wall motion at 𝑅𝑒 = 1000: (a) hori-
zontal velocity 𝑢 along vertical lines (𝑥 = 0.25, 0.50, 0.75)
and (b) vertical velocity 𝑣 along horizontal lines (𝑦 = 0.25,
0.50, 0.75).

Table 2. Locations of the vortices for anti-parallel wall motions
for 𝑅𝑒 = 400. Here superscript BR represents the bottom right
and TL denotes the top left.

Primary vortex Secondary vortices
Ref. [6] (0.5002, 0.4981) ( , )BR ( , )TL

CE/SE (0.5000, 0.5000) ( , )BR ( , )TL

To evaluate the CE/SE calculated results on 82 ×
82 grids, locations of the vortices for parallel and anti-
parallel wall motions are compared with those ob-
tained in Ref. [6] on 257 × 257 grids for 𝑅𝑒 = 400,
respectively. As shown in Tables 1 and 2, these re-
sults confirm that the results obtained through the
CE/SE solver closely match the available benchmark
results.

In the present work, the flow in the two-sided
lid-driven square cavity for the parallel and anti-
parallel wall motion is numerically investigated with
the CE/SE method on the staggered grids, using the
preconditioned dual-time scheme based on the concept
of the SIMPLE method. We find that the presented
CE/SE scheme is accurate for incompressible viscous
flow.

References
[1] Bruneau C H and Saad M 2006 Comput. Fluid 35 326
[2] Ghia U et al 1982 J. Comput. Phys. 48 (3) 387
[3] Blohm C H and Kuhlmann H C 2002 J. Fluid Mech. 450

67
[4] Albensoeder S et al 2001 Theor. Comput. Fluid Dyn. 14

223
[5] Kumar N et al 2006 The 2nd International Conference on

Computational Mechanics and Simulation (Guwahati, In-
dia 8–10 December 2006) p 102

[6] Perumal D A and Dass A K 2010 CFD Lett. 2 13
[7] Chang S C 1995 J. Comput. Phys. 119 295
[8] Venkatachari B S et al 2008 Math. Comput. Simulat. 78

653
[9] Zhang M, Yu S T and Chang S C 2004 AIAA paper 2004-

0075
[10] Zhang M C et al 2000 The 1st International Conference

on Computational Fluid Dynamics (Kyot, Japan 9–14 July
2000) p 671

[11] Guo Y H et al 2004 Comput. Fluid 33 1349
[12] Yang D X et al 2012 Trans. Porous Med. 92 101
[13] Wang J T et al 2009 Comput. Fluid 38 544
[14] Wang G et al 2010 Chin. Phys. Lett. 27 024701
[15] Dong H F et al 2011 Chin. Phys. Lett. 28 030203

084707-5

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

http://cpl.iphy.ac.cn
http://dx.doi.org/10.1016/j.compfluid.2004.12.004
http://dx.doi.org/10.1016/0021-9991(82)90058-4
http://dx.doi.org/10.1017/S0022112001006267
http://dx.doi.org/10.1007/s001620050138
http://dx.doi.org/10.1006/jcph.1995.1137
http://dx.doi.org/10.1016/j.matcom.2008.04.007
http://dx.doi.org/10.1016/j.compfluid.2003.10.005
http://dx.doi.org/10.1007/s11242-011-9893-8
http://dx.doi.org/10.1016/j.compfluid.2008.04.014
http://dx.doi.org/10.1088/0256-307X/27/2/024701
http://dx.doi.org/10.1088/0256-307X/28/3/030203

	Title
	Eq. (1)
	Eq. (2)
	Eq. (3)
	Eq. (4)
	Eq. (5)
	Eq. (6)
	Fig. 1
	Eq. (7)
	Eq. (8)
	Eq. (9)
	Eq. (10)
	Eq. (11)
	Eq. (12)
	Eq. (13)
	Eq. (14)
	Eq. (15)
	Eq. (16)
	Eq. (17)
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Table-1
	Fig. 9
	Table-2
	References

