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a b s t r a c t

An E-CUSP (energy-convective upwind and split pressure) scheme is developed to solve the
equations of magnetohydrodynamics. Fifth order WENO reconstructions are employed to
calculate the fluxes in order to achieve high order spacial accuracy. A characteristic speed
of sound by averaging the fast wave speed and the acoustic speed of sound is suggested to
evaluate the Mach number, which will yield robust and accurate solutions. The numerical
experiments have demonstrated the accuracy and the capability of the new scheme to cap-
ture complex interactions of multiple shocks and vortices.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

The governing equations of ideal (neglecting the displacement current and electric force) magnetohydrodynamics
(MHDs) combine the Euler equations with the pre-Maxwell equations for a fluid with infinite electrical conductivity. How-
ever, the electromagnetic field makes the structure of MHD equations more complex than the hydrodynamics equations.
There are seven distinct and, in general, non-degenerate eigenvalues in the system of MHD equations. Hence there are seven
different waves. In addition to the entropy wave, which propagates at the fluid speed, there are three other wave modes.
According to the magnitude of the wave speeds, these three modes are termed as fast, intermediate (Alfven), and slow waves.
The fast and slow waves are compressive, while the intermediate wave is not. Depending on the direction and the magnitude
of the magnetic field, these wave speeds may coincide. Thus the MHD equations form a non-strictly hyperbolic system [1–5].

Since the ideal MHD equations have a wave-like structure analogous to that of the hydrodynamics equations, various
numerical schemes for hydrodynamics equations have been extended to solve the MHD equations in the past two decades.
The approximate Riemann solvers, which are based on eigenvalue and eigenvector analysis, are widely used for high speed
flows as well as for high speed MHD applications. Beginning with the work of Brio and Wu [1], the numerical methods for
MHD equations based on approximate Riemann solvers have extensively been studied and developed. For example, Roe’s
Riemann solvers are developed by Brio and Wu [1], Dai and Woodward [6], Zachary and Collelaz [7], Roe and Balsara [2]
and Cargo and Gallice [8]. HLL (Harten-Lax-van Leer)-type schemes are developed by Janhunen [9], Honkkila and Janhunen
[10], Gurski [11], Li [12], Miyoshi and Kusano [13] and Balsara et al. [14]. Flux vector splitting methods are developed by
MacCormack [15] and Jiang and Wu [4]. The equations of magnetohydrodynamics are not homogeneous of degree one with
respect to the state vector and hence cannot directly perform flux vector splitting. To overcome this difficulty, MacCormack
introduces an extra variable ~a in Refs. [15,16] and adopts the method of Lombard et al. [17]. The flux splitting schemes based
. All rights reserved.
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on eigenvalues and eigenvectors system are generally very complicated. In our study we use the E-CUSP scheme discussed in
Section 2.2, that does not need to use the eigenvector approach.

The low dissipative high order filter schemes developed by Yee and Sjogreen [18] for MHD systems involves a dissipative
portion of higher order Lax-Friedrichs scheme or an approximate Riemann solver. Moreover, Balbas [19] developed a central
differencing scheme based on the evolution of cell averages over staggered grids. Gaitonde [20] developed a compact differ-
ence method for MHD with a local filter switching procedure to change the higher order filter to a second order filter locally
for shock capturing. The central differencing scheme and the compact difference scheme do not need a detailed knowledge of
the eigenstructure of the Jacobian matrices. However, the central differencing schemes have difficulty in capturing shock
waves in monotonic fashion.

In recent years, the convective upwind and split pressure (CUSP) family schemes, which simultaneously consider the con-
vective upwind characteristics and avoid the complex eigen-decomposition process, have achieved great success in gasdy-
namics. The CUSP schemes can be basically categorized to two types, the H-CUSP and E-CUSP [21–23]. The H-CUSP schemes
have the total enthalpy from the energy equation in their convective vector, whereas the E-CUSP schemes use the total en-
ergy in the convective vector. The Liou’s AUSM family schemes [24–28], Van Leer-Hänel scheme [29], and Edwards’s LDFSS
schemes [30,31] belong to the H-CUSP group. The schemes developed by Zha et al. [32–36] belong to the E-CUSP group.

Most of the CUSP schemes mentioned above are low diffusive. However, as discussed in [37], the low diffusion scheme
combined with high-order reconstruction is more prone to yield numerical oscillations in a shock wave. Agarwal et al. [38]
applied the original AUSM method with first-order spatial accuracy to one-dimensional MHD cases. Han et al. [37] developed
a AUSMPW+/M-AUSMPW + schemes combined with the MLP (multidimensional limiting process) interpolation method to
achieve the higher order accuracy for MHD equations.

In this paper, an E-CUSP scheme based on the one suggested by Zha et al. [36] is developed for MHD system. This scheme
avoids the complication of deriving the eigenvalues and eigenvector system when the MHD equations are incorporated. The
new E-CUSP scheme is used with a high order WENO reconstruction for the magnetohydrodynamics equations. The numer-
ical experiments demonstrate the new scheme’s accuracy and robustness.

2. Numerical method

2.1. Governing equations

The ideal MHD equations for inviscid flow can be expressed in vector form as [39]
@U
@t
þr � F ¼ 0; ð1Þ
where
U ¼

q
qV
B
qe

0
BBB@

1
CCCA; F ¼

qV
qVV þ ptI� BB
VB� BV
ðqeþ ptÞV � BðV � BÞ

0
BBB@

1
CCCA;

pt ¼ pþ 1
2

B2; qe ¼ 1
2
qV2 þ 1

2
B2 þ p

ðc� 1Þ ;
Subject to the constraint
r � B ¼ 0; ð2Þ
where q is the flow density, V is the velocity vector, qe is the energy, p is the pressure, B is the magnetic field.
The governing equations. (Eq. (1)) can be written in the Cartesian coordinate as:
@U
@t
þ @E
@x
þ @F
@y
þ @G
@z
¼ 0; ð3Þ
where
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F ¼
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On the x-direction, the speed of sound is
c ¼
ffiffiffiffiffiffi
cp
q

r
;

the Alfvén speed is
ca ¼
jBxjffiffiffiffiqp
and the fast and slow speeds are given by
cf ;s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2
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a

q� �s
;
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xþB2

yþB2
z

q .

2.2. E-CUSP scheme for MHD equations

For hydrodynamics, the characteristic analysis is given as the foundation to construct the E-CUSP [32,33,35,36]. The basic
idea is to split the flux E to the convective flux Fc and the pressure flux Fp. That is
E ¼ Fc þ Fp ¼

qu

qu2

quv

quw

qeu

0
BBBBBBBBB@

1
CCCCCCCCCA
þ

0

p

0

0

pu

0
BBBBBBBBB@

1
CCCCCCCCCA
: ð4Þ
The vector Fc has the eigenvalues of the velocity ðu;u;u;u;uÞ, which represent the convective terms. The vector Fp has the
eigenvalues of the speed of sound, ð0;0;0;�a; aÞ, which represents the acoustic waves propagating in each direction at sub-
sonic regime. Based on the above separation of convective and wave terms in subsonic regime, Zha et al. [32,33,35,36] sug-
gested to treat the convective term Fc in an upwind manner and to average the wave term Fp in both upwind and downwind
direction with the weight of u� a.

For magnetohydrodynamics eigensystem, the eigenvalues contain three different wave speeds, i.e., the fast wave speed cf ,
the slow wave speed cs and the Alfvén wave speed ca. Due to its complexity, so far there are no exact formulations for the
wave fluxes corresponding to the Fp in hydrodynamics. However, since the ideal MHD equations have a wave-like structure
analogous to that of hydrodynamics, the basic idea of E-CUSP can be extended to solve the MHD equations.

The semi-discretized conservative one-dimensional MHD equations can be written as
dU
dt
þ 1

Dx
Eiþ1=2 � Ei�1=2
� �

¼ 0: ð5Þ
Following the E-CUSP scheme of Zha et al. [36], the flux E may be decomposed to convective and generalized wave fluxes
as the following,
E ¼ fuþ Pþ wu; ð6Þ
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Similar to the pressure term pu that is separated from the enthalpy term qHu in the E-CUSP scheme, the term ptu (wu) is also
separated.

The numerical flux of the E-CUSP scheme is constructed based on the one given in [36] as the following,
E1=2 ¼ a1=2 CþfL þ C�fR
� �

þ DþL PL þ D�R PR
� �

þ w1=2; ð7Þ
where
ML;R ¼
uL;R

a1=2
;

Cþ ¼ aþL ð1þ bLÞML �
1
4
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C� ¼ a�R ð1þ bRÞMR þ
1
4

bRðMR � 1Þ2;

a�L;R ¼
1
2

1� signðML;RÞ½ �;

bL;R ¼ �max 0;1� intðjML;RjÞ½ �;
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1
2

bL;R 1�ML;Rð Þ

ð8Þ
and
w1=2 ¼ a1=2ðCþ þ C�ÞðDþwL þ D�wRÞ: ð9Þ
Note that, in [37], the speed of a fast magnetosonic wave is used to define the Mach number M ¼ u
cf

, which means ML;R is

defined as ML;R ¼ uL;R
Cf 1=2

. However, the generalized wave fluxes (or the generalized pressure terms P) in Eq. (6) are no longer

dominated by one single wave and how to estimate the relative Mach number ML;R is still an open question. As indicated
by Shang [40], the fast wave has the same propagation speed as the speed of sound at low and high frequency, but is greater
than the speed of sound at the mid-range frequency. In the present study, we find that using ML;R ¼ uL;R

ðCfþCÞ1=2
the results are

more robust due to averaging the fastest two wave propagation speeds. Hence, the relative Mach number is defined as
ML;R ¼
uL;R

a1=2
; ð10Þ
where
a1=2 ¼
1
2
ðCf L þ CL þ Cf R þ CRÞ is adopted:
2.3. Constrained transport method [41]

For numerical simulation of the magnetohydrodynamic (MHD) equations, a crucial issue is to preserve the divergence-
free condition r � B ¼ 0 for the magnetic field B. There are several approaches to deal with this problem. Powell et al. [3]
added a source term that is proportional to r � B to the original set of MHD equations, and present a set of characteristic
system. However, this system may generate some uncertainty [42]. The projection method proposed in [43] has been widely
used. The projection involves the solution of a Poisson equation and also restricts the choice of boundary conditions. The
constrained transport (CT) method by Evans and Hawley [44] is another approach to keep r � B to the accuracy of machine
round-off error. Toth [45] found the flux constrained transport method was one of the most accurate schemes that he tested.
This approach has been combined with various shock-capturing schemes by different researchers [6,46,47,41,48–52].

In this paper, the constrained transport method proposed by Balsara and Spicer [41] is adopted. For completeness, the
important formulas are given as following. First, in Eq. (1), Faraday’s equation can be written as
@B
@t
þr� E ¼ 0: ð11Þ
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For ideal MHD the electric field E is given by
E ¼ �v � B: ð12Þ
In the constrained transport method, the magnetic field B in Eq. (11) is to be treated as an area-weighted average �B on the
zone face [41].The electric fields E are collocated at zone edges. Then the line integral of the electric field over a zone edge
gives the electromotive force over that edge. Hence, the semi-discrete form of Eq. (11) is given by
d
dt

Bxi�1=2;j;k
¼ �

Ezi�1=2;jþ1=2;k � Ezi�1=2;j�1=2;k

dy
þ

Eyi�1=2;j;kþ1=2 � Eyi�1=2;j;k�1=2

dz
d
dt

Byi;j�1=2;k
¼

Eziþ1=2;j�1=2;k � Ezi�1=2;j�1=2;k

dx
�

Exi;j�1=2;kþ1=2 � Exi;j�1=2;k�1=2

dz
d
dt

Bzi;j;k�1=2
¼ �

Eyiþ1=2;j;k�1=2 � Eyi�1=2;j;k�1=2

dx
þ

Exi;jþ1=2;k�1=2 � Exi;j�1=2;k�1=2

dy

ð13Þ
where
Exi;jþ1=2;kþ1=2 ¼
1
4

G7 i;j;kþ1=2 þ G7 i;jþ1;kþ1=2 � F8 i;jþ1=2;k � F8 i;jþ1=2;kþ1
� �

;

Eyiþ1=2;j;kþ1=2 ¼
1
4

E8 iþ1=2;j;k þ E8 iþ1=2;j;kþ1 � G6 i;j;kþ1=2 � G6 iþ1;j;kþ1=2
� �

;

Eziþ1=2;jþ1=2;k ¼
1
4

F6 i;jþ1=2;k þ F6 iþ1;jþ1=2;k � E7 iþ1=2;j;k � E7 iþ1=2;jþ1;k
� �

;

ð14Þ
where En; Fn;Gn ðn ¼ 6;7;8Þ is the nth flux of the E-CUSP scheme from above subsection.
For 2D case, Eq. (14) reduce to
Exi;jþ1=2 ¼ �F8 i;jþ1=2;

Eyiþ1=2;j ¼ E8 iþ1=2;j;

Eziþ1=2;jþ1=2 ¼
1
4

F6 i;jþ1=2 þ F6 iþ1;jþ1=2 � E7 iþ1=2;j � E7 iþ1=2;jþ1
� �

:

ð15Þ
The magnetic fields stored on the faces �B are averaged to the zone center value B. They are then used to correct the energy
density for the new magnetic field [41],
qe ¼ qeþ 1
2
ð�Bnþ1Þ2 � ðBnþ1Þ2
	 


: ð16Þ
2.4. High order WENO reconstruction [53]

The WENO scheme is used to evaluate the conservative variables UL and UR. The WENO scheme for a variable uL can be
written as:
uL
iþ1=2 ¼

Xr

k¼0

xkqk; ð17Þ
where xkðk ¼ 0; . . . ; rÞ are the weights, and the qkðk ¼ 0; . . . ; rÞ are the rth order accuracy reconstruction of the variables in
three different stencils.
xk ¼
ak

a0 þ � � � þ ar�1
; ð18Þ
where
ak ¼
Ck

ðeþ ISkÞp
; k ¼ 0;1;2 ð19Þ
and where Ck are the optimal weights with the values given below.
The smoothness indicators ISk suggested by Jiang and Shu [53] are given by
ISk ¼
Xr�1

l¼1

Dx2l�1
Z x

iþ1
2

x
i�1

2

dl

dxl
q̂kðxÞ

 !2

dx: ð20Þ
The e in Eq. (19) is introduced to avoid the denominator becoming zero. Jiang and Shu’s numerical tests indicate that the
results are not sensitive to the choice of e as long as it is in the range of 10�5–10�7. In their paper [53], e is taken as 10�6. In
[54], Shen et al. suggested to use an optimized e value of 10�2 in the smoothness estimators to achieve optimal weight in
smooth regions in order to minimize dissipation and improve convergence.
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The uR is constructed symmetrically as uL about iþ 1=2.
For the third-order (r ¼ 2) WENO scheme, there are
q0 ¼ �
1
2

ui�1 þ
3
2

ui; q1 ¼
1
2

ui þ
1
2

uiþ1
and
C0 ¼ 1=3; C1 ¼ 2=3;

IS0 ¼ ðui � ui�1Þ2; IS1 ¼ ðuiþ1 � uiÞ2: ð21Þ
For the fifth-order (r ¼ 3) WENO scheme, there are
q0 ¼ 1
3 ui�2 � 7

6 ui�1 þ 11
6 ui;

q1 ¼ � 1
6 ui�1 þ 5

6 ui þ 1
3 uiþ1;

q2 ¼ 1
3 ui þ 5

6 uiþ1 � 1
6 uiþ2;

8><
>:
and
C0 ¼ 0:1; C1 ¼ 0:6; C2 ¼ 0:3:
The ISk are
IS0 ¼ 13
12 ðui�2 � 2ui�1 þ uiÞ2 þ 1

4 ðui�2 � 4ui�1 þ 3uiÞ2

IS1 ¼ 13
12 ðui�1 � 2ui þ uiþ1Þ2 þ 1

4 ðui�1 � uiþ1Þ2

IS2 ¼ 13
12 ðui � 2uiþ1 þ uiþ2Þ2 þ 1

4 ð3ui � 4uiþ1 þ uiþ2Þ2:

8><
>: ð22Þ
2.5. Time marching Runge–Kutta method

The 3rd-order TVD Runge–Kutta method developed by Shu and Osher [55] is used in this paper. To solve the equation
du
dt
¼ LðuÞ; ð23Þ
the 3rd-order TVD Runge–Kutta method is
uð1Þ ¼ uð0Þ þ DtLðuð0ÞÞ;
uð2Þ ¼ 3

4 uð0Þ þ 1
4 uð1Þ þ 1

4 DtLðuð1ÞÞ;
uð3Þ ¼ 1

3 uð0Þ þ 2
3 uð2Þ þ 2

3 DtLðuð2ÞÞ:

8><
>: ð24Þ
3. Numerical examples

3.1. One-dimensional Riemann problems

(1) Brio-Wu shock tube problem.

The initial left and right values have been suggested by Brio and Wu [1] and are commonly used to test numerical
schemes for one-dimensional ideal MHD. Note that the hydrodynamics data used here are identical to those in Sod’s shock
tube Riemann problem.
ðq;u;v ;w;By;Bz;pÞ ¼
ð1:0; 0; 0;0;þ1;0;1:0Þ; for x < 0
ð0:125;0; 0;0;�1;0; 0:1Þ; for x > 0

�

with Bx ¼ 0:75; c ¼ 2.
The numerical example involves a compound wave, which is a typical feature of the solutions of MHD systems. For each

quantity, the solution contains five constant states separated by a fast rarefaction wave, a slow compound wave, a slow
shock, and a fast rarefaction. The density presents a sixth constant state because this variable is discontinuous across the
contact discontinuity [1].

Fig. 1 shows the solution with 800 points at t ¼ 0:2. It can be seen that the present method resolves well all the complex
waves.

(2) High Mach number shock tube problem
In the second tested case the following initial values are used to demonstrate the robustness of the present scheme for

high Mach number flow in MHD. The Mach number corresponding to the right-moving shock wave is 15:5. This problem is
also used in [1,4].
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Fig. 1. Brio-Wu shock tube problem.
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ðq;u;v ;w;By;Bz; pÞ ¼
ð1:0; 0;0;0;þ1;0;1000Þ; for x < 0
ð0:125;0;0;0;�1;0; 0:1Þ; for x > 0

�

with Bx ¼ 0; c ¼ 2.

The numerical result with 200 points at t ¼ 0:012 is shown in Fig. 2. There is a slight undershoot at the tail of the rare-
faction wave. The contact discontinuity and shock wave are captured very well. These numerical results agree well with
those of Jiang and Wu [4] and show that the present scheme can deal well with MHD high Mach number flow.

3.2. Two-dimensional iso-density MHD vortex advection

The 2D vortex advection problem proposed in [56] and lately considered by Dumbser et al. [57] and Mignone at al. [58] is
used to test the scheme’s accuracy. The computational conditions are taken as the same used in [57,58]. The uniform meshes
on the box ½�5;5� � ½�5;5� with the following initial conditions are adopted.
q ¼ 1;

u ¼ 1� ykeqð1�r2Þ
; v ¼ 1þ xkeqð1�r2Þ

;

Bx ¼ �yleqð1�r2Þ; By ¼ xleqð1�r2Þ;

p ¼ 1þ 1
4q
ðl2ð1� 2qr2Þ � k2qÞe2qð1�r2Þ

ð25Þ
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Fig. 2. High Mach number shock tube problem.
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where, k ¼ l ¼ 1
2p ; r2 ¼ x2 þ y2. The parameter q ¼ 0:5 and q ¼ 1 are chosen for the third- and fifth-order WENO reconstruc-

tion, respectively. The results are calculated at final time t ¼ 10 with periodic boundary conditions. The exact solution is gi-
ven by Eq. (25). Since the solution is smooth, the CT method is not used in this case.

Table 1 shows the errors for Bx measured both in L1 and L1 norms and the corresponding convergence rates. The scheme
can almost reach third- and fifth-order accuracy by using the third- and fifth-order WENO reconstruction, respectively. As
analyzed by Dumbser et al. [57], Bx and By have opposite signs on the left and right and on the top and bottom boundary,
respectively. Hence, there is a jump in the magnetic field at the boundaries due to the periodic boundary conditions. These
discontinuities cause first-order disturbances of order 10�5. For high order accurate schemes on sufficiently fine meshes, the
small jump at the boundary will lead to dominant first-order errors.

3.3. Two-dimensional circularly polarized Alfven waves

The 2D circularly polarized Alfven wave problem is used as the second example to test the accuracy of the schemes
for smooth flow. The computational conditions are same as in Ref. [45]. The circularly polarized Alfvén wave propagates
at an angle a ¼ 30o relative to the x-axis. The computational region is periodic with 0 < x < 1=cosðaÞ and 0 < y < 1=sinðaÞ.
At t ¼ 0,



Table 1
Accuracy for the 2D MHD vortex advection problem, t = 10.

Scheme Nx � Ny L1 error L1 order L1 error L1 order

10� 10 0.1021 – 1.4958e�2 –
20� 20 7.6894e�2 0.409 9.8836e�3 0.598

WENO-3 40� 40 2.9000e�2 1.407 3.1625e�3 1.644
60� 60 1.0559e�2 2.491 8.1753e�4 3.336
80� 80 4.7367e�3 2.787 3.2955e�4 3.158

10� 10 9.7568e�2 – 1.4971e�2 –
20� 20 4.2204e�2 1.209 5.1895e�3 1.511

WENO-5 40� 40 3.6914e�3 3.515 4.2682e�4 3.604
60� 60 5.2234e�4 4.823 4.2196e�5 5.707
80� 80 1.4478e�4 4.460 1.1927e�5 4.392

Table 2
Accurac

Sche

L-F
-WE

L-F
-WE

ECUS
-WE

ECUS
-WE
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q ¼ 1; p� 0:1;
vk ¼ 0; Bk ¼ 1;
v? ¼ B? ¼ 0:1sin½2pðx cos aþ y sinaÞ�;
w ¼ Bz ¼ 0:1cos½2pðx cos aþ y sin aÞ�;

ð26Þ
where B? ¼ By cos a� Bx sin a; Bk ¼ Bx cosaþ By sin a; c ¼ 5=3.
For comparison, the Lax–Friedrichs (L–F) splitting method with the high order WENO schemes is also used to calculate

this problem. For example, the flux E is split into E� ¼ 1
2 ðE� aUÞ, where a ¼ maxx;yðjuj þ cf Þ is the maximal eigenvalue.

The numerical flux is Eiþ1=2;j ¼ ðEþ þ E�Þiþ1=2;j, where E�iþ1=2;j is constructed by using WENO schemes. Same as in previous case,
the CT method is not used in this case.

Table 2 shows the errors for B? measured both in L1 and L1 norms at t ¼ 5 and the corresponding convergence rates. The
L–F method and the ECUSP scheme can reach the expected accuracy. But the errors of the former are almost two times of the
latter. That means the ECUSP scheme has lower diffusion than the L–F method.

3.4. Two-dimensional Kelvin–Helmholtz instability

The Kelvin–Helmholtz instability is considered as an important mechanism for momentum transfer at Earth’s magneto-
pause boundary, which separates the solar wind flow from the Earth’s magnetosphere [59,4]. In order to compare the results,
the computational conditions are taken as the same used in [4,19]. The initial stationary configuration of the periodic model
is given by
q0 ¼ 1; u ¼ u0

2
tanhðy=aÞ; v ¼ w ¼ 0;
p0 ¼ 0:5; Bx0 ¼ By0 ¼ 0; Bz0 ¼ 1;
where a denotes the width of the velocity shear layer. At t ¼ 0, a small perturbation of the following form is introduced,
y for the 2D circularly polarized Alfvén wave problem, t = 5.

me Nx � Ny L1 error L1 order L1 error L1 order

8� 8 8.5375e�2 – 5.2613e�2 –
NO-3 16� 16 2.2648e�2 1.914 1.4283e�2 1.881

32� 32 3.1200e�3 2.860 1.9105e�3 2.902
64� 64 3.8459e�4 3.020 2.3927e�4 2.997

8� 8 3.0060e�2 – 1.9944e�2 –
NO-5 16� 16 8.9345e�4 5.072 6.3736e�4 4.968

32� 32 2.3784e�5 5.231 1.6755e�5 5.249
64� 64 7.6216e�7 4.964 4.9905e�7 5.069

P 8� 8 6.6484e�2 – 4.3874e�2 –
NO-3 16� 16 1.2335e�2 2.430 7.6532e�3 2.519

32� 32 1.6152e�3 2.933 9.3011e�4 3.041

64� 64 1.9477e�4 3.052 1.1565e�4 3.008
P 8� 8 1.8800e�2 – 1.2734e�2 –

NO-5 16� 16 4.5956e�4 5.354 3.3229e�4 5.260
32� 32 1.2130e�5 5.244 8.2940e�6 5.324
64� 64 4.0176e�7 4.916 2.5307e�7 5.034
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~u0 ¼
��u0 sinð2px=kÞ=ð1þ y2Þ; if � k

2 < x < k
2 ;

0; otherwise:

(

The computational domain is ½� L
2 ;

L
2� � ½0;H�. u0 ¼ 2; �u0 ¼ 0:008; L ¼ k ¼ 5p; H ¼ 1; a ¼ 1, and c ¼ 2 are used. The periodic

boundary condition is used in the x-direction. The free outflow condition is applied at the top boundary at y ¼ H. At the low
boundary of y-direction, q; p and Bz are symmetric and u and v are antisymmetric under the transformation x! �x.

A Roberts transformation [4,19]
y ¼ H sinhðsg=2HÞ
sinhðs=2Þ
with s ¼ 6 is used to refine the grid near y ¼ 0. The mesh has 96� 60 grid points. Fig. 3 shows the current computational
results. In this calculation, the components of Bx;By, and w are always set to be zero and the evolution of Bz follows closely
with the density.

3.5. Orszag–Tang MHD turbulence problem

Since the Orszag–Tang MHD turbulence problem [60] has many significant characteristics of MHD turbulence, such as
interactions of multiple shock waves generated as the vortex evolves, it is considered as one of the standard models to val-
idate a MHD numerical method [61,4,62,19,37].
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Fig. 3. Two-dimensional Kelvin–Helmholtz instability.
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The initial conditions are given by
qðx; y;0Þ ¼ c2; uðx; y;0Þ ¼ � sinðyÞ; vðx; y; 0Þ ¼ sinðxÞ;
pðx; y;0Þ ¼ c; Bxðx; y;0Þ ¼ � sinðyÞ; Byðx; y;0Þ ¼ sinð2xÞ;
where c ¼ 5=3. As in [61,4,62], the computational domain is ½0;2p� � ½0;2p�. The final computation time is t ¼ 3:0. Periodic
boundary conditions are imposed in both x- and y-directions. Firstly, the results of the 3rd-order WENO reconstruction with
and without constrained transport (CT) method are compared with a uniform mesh of 192� 192 grid points. Fig. 4 shows
that, without CT method, there are perturbations in both pressure field and magnetic field. With CT method, the solutions
are improved greatly. Secondly, the numerical solutions with different reconstruction (the 3rd- and 5th-order WENO
scheme) and different meshes (256� 256;512� 512) are calculated and compared. Fig. 5 displays the pressure contours,
density contours, velocity field and magnetic field obtained by the 5th-order WENO reconstruction with the mesh of
256� 256. In all contour figures, 20 contours are plotted. Fig. 6 shows the pressure distributions along the line of y ¼ 1:0
with 3rd and 5th order WENO schemes and using the different mesh sizes. These solutions agree very well in general except
some minor deviation of the 3rd order scheme with the coarser mesh.

It is worthy pointing out that, if only the fast wave speed cf is used to calculate the relative Mach number ML;R, i.e.,
ML;R ¼ uL;R

cf 1=2
, the computation is unstable and breaks down even using third-order WENO reconstruction.
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Fig. 4. Orszag-Tang MHD turbulence problem, WENO-3, 192� 192, t ¼ 3:0.
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Fig. 5. Orszag-Tang MHD turbulence problem, WENO-5, 256� 256, t ¼ 3:0.
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3.6. 2D MHD rotor problem

The rotor problem has been suggested by Balsara and Spicer [41] as a test to check the propagation of torsional Alfven
waves, and then it has been widely used as a standard test model. The initial condition consists of a rapidly rotating cylinder
of dense gas embedded in a lighter fluid at rest. The system is threaded by a uniform magnetic field along the x-axis and the
problem is defined on the 2D Cartesian domain ðx; yÞ 2 ½�0:5;0:5�2
q ¼ 1þ 9f ðrÞ;
p ¼ 1;

u ¼ �2f ðrÞy=0:1; v ¼ 2f ðrÞx=0:1; w ¼ 0; if r < 0:1;
u ¼ �2f ðrÞy=r; v ¼ 2f ðrÞx=r; w ¼ 0; if r P 0:1;

�

Bx ¼ 5=
ffiffiffiffiffiffiffi
4p
p

; By ¼ Bz ¼ 0;

ð27Þ
where, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
,

f ðrÞ ¼
1 if r < 0:1
200

3 ð0:115� rÞ if 0:1 6 r 6 0:115;
0 if r > 0:115;

8><
>:
The adiabatic index c ¼ 1:4. For this case, when the ECUSP scheme with the third order WENO or the fifth order WENO
reconstruction is used, we found the same problem as that in [63], that is: the reconstructed densities and pressures may
become negative. Hence, in this paper, the first order upwind reconstruction is used to replace the reconstruction of those
negative points. The L–F method has no this kind of problem. The contour plots of pressure p and x-component of magnetic
field Bx with grid of 201� 201 at the final time t ¼ 0:15 are shown in Fig. 7. It can be seen that the ECUSP scheme with the
third order WENO reconstruction almost approaches to the L–F method with the fifth order WENO scheme. Except the neg-
ative reconstructed densities and pressures, the ECUSP scheme with the fifth order WENO reconstruction also generates
slight oscillation. This may be an indication that the intrinsic numerical dissipation provided by the ECUSP scheme is not
adequate for these kind of configurations. Study of this issue is currently underway and will be reported at an upcoming
paper

4. Conclusions

An E-CUSP scheme that avoids the complex eigenstructure of the Jacobian matrices in MHD system, is developed and
used with a fifth order WENO scheme to solve 1D and 2D MHD problems. A characteristic speed of sound by averaging
the fast wave speed and the acoustic speed of sound is suggested to evaluate the Mach number, which yields robust and
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accurate solutions. Six standard test cases, including two one-dimensional problems, the 2D MHD vortex advection problem,
the 2D Kelvin–Helmholtz instability problem, the Orszag-Tang MHD turbulence problem and the 2D MHD rotor problem, are
solved to validate the accuracy and robustness of the scheme. The numerical experiments demonstrate that the scheme can
resolve the complex wave characteristics in MHD very well.
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