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Abstract The reflection of asymmetric nonstationary shock
waves is analytically and numerically studied in this paper.
An analytical approach, which is a combination of the shock
dynamic and shock polar methods, is advanced to predict the
reflection wave configurations. The numerical simulations
are performed by the finite volume method based on the sec-
ond-order MUSCL-Hancock scheme and the HLLC approx-
imate Riemann solver, with the self-adaptive unstructured
mesh. It is found that the transition between the overall reg-
ular reflection and overall Mach reflection in the asymmetric
nonstationary reflection agrees with the detachment criterion,
which is analogous to the reflection in pseudo-steady flows
(i.e. shock reflection over a wedge). Some special reflec-
tion wave configurations, which have never been observed in
steady or nonstationary shock reflections so far, are found to
exist in this asymmetric reflection. Furthermore, the domains
and boundaries of various overall reflection wave configura-
tions are analytically predicted, and the effect of mis-syn-
chronization is also discussed.

Keywords Asymmetric shock waves · Mach reflection ·
Detachment criterion

1 Introduction

Nonstationary shock wave reflection over a wedge is often
referred to as the reflection in pseudo-steady flows, for the
reflection is self-similar and could be transformed into a
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frame of reference in which the flow is steady. The config-
urations of this reflection are investigated thoroughly in the
past 100 years (e.g. Mach [1]; von Neumann [2,3]; Smith [4];
White [5]; Henderson and Lozzi [6]; Hornung and Taylor [7];
Mirels [8]; Takayama and Ben-Dor [9]; Colella and Hender-
son [10]; Ben-Dor et al. [11–16]) and several types of wave
configurations are observed: regular reflection (RR), von
Neumann reflection (vNR), single-Mach reflection (SMR),
transitional-Mach reflection (TMR), double-Mach reflection
(DMR) and so on.

When two nonstationary shock waves with the same shock
Mach number collide with each other, they would be reflected
symmetrically (as shown in Fig. 1a). In this situation, the
plane of symmetry is equivalent to the wedge surface in
the pseudo-steady reflection. However, if the incident shock
wave Mach numbers are different, the reflection wave con-
figurations become asymmetrical and thus get more complex
(as shown in Fig.1b).

In asymmetric shock wave reflections, many investiga-
tions have dealt with the reflections in steady flows. Chpoun
and Lengrand [17] initiated the study on asymmetric reflec-
tion in steady flows. Their experimental results revealed
that, similar to the reflection of symmetric shock waves, a
hysteresis in the transition between RR and Mach reflec-
tion (MR) also exists in the reflection of asymmetric shock
waves. Later, Li et al. [18] conducted the same investiga-
tion analytically and experimentally. With the aid of shock
polars the hysteresis process was analyzed and the inverse-
Mach reflection (InMR) wave configuration was suggested
to exist. The domains and transition boundaries of various
asymmetric reflection wave configurations in steady flows
were predicted. Recently, Hu et al. [19] studied the asym-
metric reflection in steady flows analytically and numerically
and found that the RR → MR transition can occur between
the sonic and maximum-deflection conditions.
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Fig. 1 The reflection of nonstationary shock waves: a symmetric
reflection; and b asymmetric reflection

For the nonstationary reflection of two interacting shock
waves, Barbosa and Skews [20] conducted a series of exper-
iments in a bifurcated shock tube in which a shock wave
is split into two plane shock waves of equal strengths that
then reflect off each other at the trailing edge of wedge. This
nearly symmetric reflection is used to investigate the per-
sistence of regular reflection in pseudo-steady flows. How-
ever, it is almost impossible to construct exactly symmetric
wave configurations in experiments, so the effect of mis-syn-
chronization is also discussed. For the cases in which two
incident shock waves arrive at the trailing edge at slightly
different times, it shows that although an asymmetric shock–
vortex interaction would occur at the early stage (shown in
Fig. 2a), almost the same reflection wave configuration would
be generated as the ideal synchronized case at a later time
(shown in Fig. 2b), only with a slight displacement of the
reflection pattern downwards by a distance y′. Furthermore,
Barbosa and Skews [21] also studied the shock–vortex inter-
action generated in the bifurcated shock tube experimentally
and numerically. The detailed shock–vortex interaction wave
configuration is described and the generating and developing
process of the configuration is recorded. For the reflection
of asymmetric nonstationary shock waves, Xie et al. [22]
advanced an approach to analyze the wave configuration by
the method of shock dynamics. In their studies, a virtual wall
surface is assumed to exist and two incident shock waves

Fig. 2 The schematic of the mis-synchronized case of symmetric
reflection of nonstationary shock waves [19]: a initial interaction; and
b interaction at a later stage

of different strengths are assumed to be reflected over it.
By solving the shock dynamic equations on both sides, the
unknown parameters in the flowfield could be obtained. Nev-
ertheless, this analysis can only be applied to the oMR cases,
yet cannot predict whether an oMR or an oRR would appear
when the overall reflection type is completely unknown.

Compared to the reflection of asymmetric shock waves
in steady flows, the shock polar analysis of the reflection
of asymmetric nonstationary shock waves is more difficult.
In the asymmetric steady shock reflection, for a given flow
Mach number M0 and a constant wedge angle θ1, the I- and
R1-polars would be fixed when the angle of the other
wedge θ2 changes; while in the asymmetric nonstationary
shock reflection, the oncoming flow Mach number, which is
obtained by the Galilean transformation, depends partly on
the triple point trajectory angle. If one of the incident shock
wave Mach number changes, the triple point trajectory angles
and hence the oncoming flow Mach numbers, in addition to
the location of the virtual wall surface, would all alter with it.
Thus, all the I-, R1- and R2-polars would shift on the shock
polar combination. Furthermore, unlike only SMR and RR
existing in steady flows, more different types of MRs are
involved in the nonstationary shock reflection.

The reflection of asymmetric nonstationary shock waves
is not only a theoretical problem, but also of some application
backgrounds, e.g., the interaction of shock waves generated
by two adjacent supersonic vehicles or the interaction of two
explosive waves. In the present paper, a detailed analytical
investigation on the reflection of asymmetric nonstationary
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Fig. 3 The nonstationary shock wave reflection over a wedge

shock waves is conducted and scores of numerical simula-
tions, which are provided to verify the analytical results, are
also performed.

2 The analysis methods

2.1 Shock dynamic analysis

The shock dynamic theory is a very powerful and relatively
easy tool for analyzing the interaction, refraction and reflec-
tion of shock waves. In the theory, all the wave structures
except the incident shock wave and Mach stem are neglected
and the parameters in the flowfield could be obtained by solv-
ing the equation based on the geometrical relations. For the
reflection of shock wave over a wedge (shown in Fig. 3), the
relation between the wedge angle and the Mach numbers of
incident shock wave and Mach stem could be expressed as:
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where K (M) is a complicated mathematical function which
yields values between 0.3941 and 0.5 for the perfect gas of
air.

Figure 4a, b presents the schematic illustrations of the
reflections of asymmetric nonstationary shock waves. Simi-
lar to shock reflection over a wedge, both the oMR and oRR
wave configurations could be formed in the reflection. Xie et
al. [22] assumed that there is a virtual wall surface between
the incident shock waves for the oMR cases. On each side of
the virtual wall surface (1) could be applied, respectively:

Fig. 4 The reflection of asymmetric nonstationary shock waves: a
overall Mach reflection; and b overall regular reflection
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where θν denotes the angle between the horizontal line and
the virtual wall and θ0 is the angle between the two incident
shock waves. The above set of two equations contains two
unknown parameters: θν and Mm . Thus, the set is closed and
the location of the virtual wall could be solved. For the oRR
wave configuration, as shown in Fig. 4b, the virtual wall is
also assumed to exist and the location could be derived by
the geometrical relations easily:

θν = π

2
− arctan

MS2 sin θ0

MS1 + MS2 cos θ0
(5)

2.2 Shock polar analysis

The use of shock polar is very convenient for analyzing
and understanding shock wave reflection phenomena. For
the nonstationary shock wave reflection, it is known that
the flowfield should be transformed into a frame of refer-
ence attached to the reflection point (RR) or triple point
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Fig. 5 Schematic illustrations of the flow fields after the Galilean trans-
formations: a overall Mach reflection; and b overall regular reflection

(MR) before shock polar analysis is performed. Figure 5a, b
shows the flowfields of the asymmetric nonstationary reflec-
tions after the Galilean transformations. For the oMR wave
configuration (shown in Fig. 5a), the triple points (T1 and
T2) on each side of the virtual wall should be fixed, respec-
tively, by the transformations and then the shock polar could
be plotted. The configuration consists of two incident shock
waves (i1 and i2), two reflected shock waves (r1 and r2), a
Mach stem (m) and two slipstream lines (s1 and s2). The
boundary conditions for an oMR are:

θ1 − θ3 = θ5 = δ1 (6)

and

θ2 − θ4 = θ6 = δ2. (7)

In addition, since no obvious wave structures appear
behind the Mach stem, the pressure on each side of the virtual
wall should also be equal:

p3 = p5 = p6 = p4. (8)

When the reflection is symmetric, θ1 = θ2, θ3 = θ4,
θ5 = θ6 and δ1 = δ2.

For the oRR wave configuration (shown in Fig. 5b), the
reflection point R should be transformed to be stationary and
then shock polar analysis could be performed. Two incident
shock waves (i1 and i2), two reflected shock waves (r1 and r2)
and a slipstream line are contained in the configuration. The
boundary conditions for an oRR are:

θ1 − θ3 = θ2 − θ4 = δ (9)

and

p3 = p4. (10)

When the reflection is symmetric, θ1 = θ2, θ3 = θ4 and
δ = 0.

Figure 6a–i is the schematic shock polar combination
of the asymmetric nonstationary reflections, from which it
is obvious that there are several different types of wave
configurations for different initial conditions. Figure 6a–c
shows the cases in which the R1-polar does not intersect the
R2-polar at all. In these situations, only oMR wave configu-
rations are possible in the flowfields. The oMR wave config-
uration, which consists of two MRs, has three possibilities
depending on the locations of intersections of the R1- and R2-
polars with the I-polar: two direct-Mach reflections (DiMR)
(shown in Fig. 6a), a DiMR and a stationary-Mach reflec-
tion (StMR) (shown in Fig. 6b), or a DiMR and an InMR
(shown in Fig. 6c). Figure 6d shows the situation in which
the R1-polar is tangent to the R2-polar. It is the extreme sit-
uation in which the oRR wave configuration becomes the-
oretically possible. Thus, this situation is regarded as the
detachment criterion for the reflection of asymmetric non-
stationary shock waves. Figure 6e–g shows the cases in which
both the oRR and oMR wave configurations are theoretically
possible. Similar to shock wave reflection in pseudo-steady
flows, the situations are also referred to as the reflections
in the dual solution domain. In these situations, the oMR
wave configuration may also be three different MR com-
binations: DiMR+DiMR (shown in Fig. 6e), DiMR+StMR
(shown in Fig. 6f) and DiMR+InMR (shown in Fig. 6g).
Figure 6h shows the limiting situation in which the oMR
wave configuration remains possible. In this shock polar
combination, the R1-polar intersects the R2-polar exactly at
the point located on the I-polar. The situation is regarded as
the von Neumann criterion for the asymmetric nonstation-
ary shock wave reflection. The shock polar solution of the
oRR wave configuration is presented in Fig. 6i. In this situa-
tion, although the R1- and R2-polar still intersect the I-polar,
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Fig. 6 The schematic shock polar combinations for different overall
wave configurations: a oMR (DiMR+DiMR); b oMR (DiMR+StMR)
c oMR (DiMR+InMR); d detachment criterion; e oRR or oMR
(DiMR+DiMR); f oRR or oMR (DiMR+StMR); g oRR or oMR
(DiMR+InMR); h von Neumann criterion; i oRR;

respectively, which indicates that an oMR wave configura-
tion consisting of two MRs could be obtained, the oMR wave
configuration would never occur. It is because a diverging

stream tube would be formed if this oMR wave configuration
appears, and such a stream tube cannot exist in this self-sim-
ilar nonstationary shock wave reflection. It should be noted
that since the oncoming flow Mach numbers with respect to
the triple points on the two sides are different in every oMR
case, there should be two different I-polars in the accurate
shock polar combination, while here only one is plotted just
for the purpose of schematic illustration.

2.3 Analytical procedure

Since it is quite difficult and complicated to solve the asym-
metric nonstationary shock wave reflection by any approach
independently, in this paper, both the shock dynamic and the
shock polar methods are used in the course of the investiga-
tion. The analytical procedure of the study could be summa-
rized as follows:

1. Assume that the reflection is an oRR configuration, then
find the location of the virtual wall by (5).

2. Do the Galilean transformation and then perform the
shock polar analysis in the frame of reference attached
to the reflection point.

3. If the shock polar combination indicates that an oRR
occurs, it implies that the assumption is appropriate and
the flow parameters could be obtained from the shock
polar solution; if the shock polar combination suggests
that the solution lies in the dual solution domain, it needs
a further numerical simulation to confirm the wave con-
figuration type; if the shock polar combination indicates
that an oRR is impossible to occur, it implies that the
assumption is inappropriate and the following procedure
should be proceeded:

4. Find the location of the virtual wall by solving the set of
(3) and (4). Regard the reflection on each side of the vir-
tual wall as the shock reflection over the virtual wall, then
the MR type could be obtained by the domain of various
types of reflections in pseudo-steady flows. Figure out
the triple point trajectory angle on each side.

5. Do the Galilean transformation on each side and per-
form the shock polar analyses in the frames of reference
attached to the triple points, respectively. Then the flow
parameters could be obtained from the shock polar com-
bination.

3 The numerical methods

It is assumed that viscosity effects on nonstationary shock
wave reflection are negligible, so the governing equations
are simplified to be two-dimensional Euler equations, which
can be written as:
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Fig. 7 The governing unit
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where U, F and G denote the state variables and fluxes in x-
and y-directions, respectively:
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The equation of state for the perfect gas is given by:

e = p

γ − 1
+ 1

2
ρ(u2 + v2) (13)

here, the specific heat ratio is taken as 1.4.
In the present numerical simulation, the finite volume

method is employed. The governing equations can be con-
verted to the integral form over the governing volume:∫
	

∂U
∂t

dxdy +
∫



(Fdy + Gdx) = 0 (14)

where 	 and 
 denote the area and boundary of the govern-
ing volume, respectively. Quadrilateral unit is adopted as the
governing volume on the unstructured mesh and governing
variables are fixed at the center of the unit, as shown in Fig. 7.
The HLLC approximate Riemann solver [23] is used to com-
pute the numerical fluxes F(UL , UR) on the governing unit
boundaries and the second-order MUSCL scheme is used for
the reconstruction of UL and UR . Moreover, the second-order
MUSCL-Hancock scheme is applied for the discretization of
time-term [24]. Consequently, the numerical code is second-
order both in space and time.

The unstructured mesh is refined according to the density
gradient of the flow field and the maximum level of refine-
ment is five. The refinement is controlled by a threshold func-
tion which was originally proposed in [25]. If the function
value exceeds the refinement threshold value, the governing
unit is split into four subunits; if the function value is less than
the coarsening threshold value, the four subunits are reunited

Fig. 8 The computational model

to be one. The threshold function is given by:

ε = max

( |∇lρ|c − |∇lρ|i
α f ρc/dl + |∇lρ|i ,

|∇lρ|c − |∇lρ| j

α f ρc/dl + |∇lρ| j

)
(15)

where i and j denote two neighboring governing units, and
c denotes the midpoint of the boundary between these two
units. ∇l and dl are the gradient and spatial interval from the
center of unit i to the center of unit j. α f is a parameter with
a small value to avoid division by zero.

Figure 8 shows the computational model in this study.
Region 0 denotes the stationary air ahead of the incident
shock waves; regions 1 and 2 denote the air states behind the
incident shock waves, which are calculated by the Rankine–
Hugoniot relations for the given shock Mach numbers MS1

and MS2. The angle between the incident shock waves is θ0

and the boundary conditions are all marked in the figure. In
most parts of the present paper, the model in which the inci-
dent shock waves arrive at the wedge apex O at exactly the
same time is employed. However, for the purpose of extend-
ing the analysis to more general cases, the effect of mis-syn-
chronization is also discussed in the subsequent part of this
study.

4 Results and discussion

4.1 The overall Mach and regular reflections

Figure 9a shows the shock polar combination for the reflec-
tion of incident shock waves MS1 = 4.0, MS2 = 3.8 and
the intersecting angle θ0 = 100◦. This case corresponds to
the first type of reflections illustrated in Fig. 6. As can be
seen the R1- and R2-polars do not intersect each other, which
suggests that only oMR wave configuration is theoretically
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Fig. 9 The asymmetric nonstationary shock reflection of MS1 = 4.0,
MS2 = 3.8 and θ0 = 100◦: a shock polar combination; and b numerical
result

possible. Furthermore, the intersection of the R1-polar and
the left-hand branch of the I1-polar, together with the inter-
section of the R2-polar with the right-hand branch of the
I2-polar, indicate that two DiMRs are involved in this oMR
wave configuration. It should be mentioned here again that
since the oncoming flow Mach numbers after the Galilean
transformations depend partly on the triple point trajectory
angles on each side of the virtual wall, they are thus different
and hence the incident shock polar curves (I1- and I2-polars)
are not identical either. Figure 9b shows the numerical result
of this reflection. It is clear that two DMRs occur in the flow-
field. The virtual wall surface, which is derived by the shock
dynamic analysis, is located between the two DMRs and per-
pendicular to the Mach stem. In addition, the pressure ratios
behind the Mach stem, which are obtained by the numeri-
cal simulation, agree well with those from the shock polar
combination.

Figure 10a is the shock polar combination for the reflec-
tion of incident shock waves MS1 = 4.0, MS2 = 2.42
and the intersecting angle θ0 = 100◦. In this situation, the
R1- and R2-polars still do not intersect each other. However,
unlike the above case, here the intersection point of R2- and

Fig. 10 The asymmetric nonstationary shock reflection of MS1 = 4.0,
MS2 = 2.42 and θ0 = 100◦: a shock polar combination; and b numer-
ical result

I2-polars is located exactly at the middle line, which suggests
that a StMR would appear on I2 side. This kind of reflection
combination is schematically illustrated in Fig. 6b. Note that
the pressure ratios, which are denoted by the ordinates of the
intersection points, are not exactly equal, yet they do not dif-
fer considerably in quantity (only about 3.5 % as shown in
Fig. 10a) and hence can be easily matched in the flowfield.
The numerical result of this asymmetric reflection is shown
in Fig. 10b, in which a StMR and a TMR appear on each
side, respectively. It can be seen that the triple point of the
reflection on I2 side lies on the virtual wall surface and trav-
els along it. This is because that when I1 meets I2 at wedge
apex O at the start stage of this reflection, the Mach stem
length is exactly zero, while a StMR is a reflection in which
the Mach stem length is a constant, thus the triple point on
I2 side would always be located on the virtual wall surface
to maintain the Mach stem length as a constant of zero.

Figure 11a presents the shock polar combination for
MS1 = 2.0, MS2 = 1.4 and θ0 = 100◦, which corresponds
to the reflection type shown in Fig. 6c. In this reflection,
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Fig. 11 The asymmetric nonstationary shock reflection of MS1 = 2.0,
MS2 = 1.4 and θ0 = 100◦: a shock polar combination; and b numerical
result

the R1- and R2-polars intersect the left-hand branches of the
I1- and I2-polars, respectively, which implies that an oMR
wave configuration consisting of a DiMR and an InMR would
be obtained. Same as the above case, although the pressure
ratios on each side are not completely equal, it could be easily
matched in the flowfield for the pressure difference is quite
small (only about 2.5 %). Figure 11b shows the numerical
result of the reflection, in which a SMR and an InMR appear
on each side, respectively. It can be seen that the virtual wall
surface in this case does not lie between the two reflections.
Note again that the Mach stem length is zero when the inci-
dent shock wave I1 encounters I2 at the wedge apex O, which
indicates that the triple point of the InMR also collides with
the virtual wall at this moment. It is known that for a typical
InMR, if the triple point collides with the wedge wall, the
InMR would terminate and turn into a transitioned regular
reflection (TRR) [26]; however, in the present asymmetric
reflection, the virtual wall surface is not a real, non-pene-
trated wall, thus the triple point could pass through it and
then continue travelling along the triple point trajectory. For
this reason, the virtual wall has no intersection with the Mach
stem, but still be perpendicular to it.

Fig. 12 The asymmetric nonstationary shock reflection of MS1 = 5.5,
MS2 = 5.0 and θ0 = 70◦: a shock polar combination; and b numerical
result

The shock polar combination for MS1 = 5.5, MS2 = 5.0
and θ0 = 70◦ is shown in Fig. 12a, from which it is obvi-
ous that the two reflected shock wave polar curves intersect
each other, in addition to the intersections of the R1- and
R2-polars with the I-polar. Consequently, it is suggested that
there are two theoretically possible solutions: the oRR and
oMR (DiMR+DiMR) wave configurations. In this situation,
the reflection lies in the so-called dual solution domain. Fig-
ure 12b presents the numerical result of this reflection. An
oRR wave configuration, which is complemented by a slip-
stream, occurs in the flowfield. The pressure ratio behind the
reflected shock waves, which is obtained from the numerical
result, is concordant with that from the shock polar combi-
nation, as shown in Fig. 12a.

When MS1 = 4.0, MS2 = 1.5 and θ0 = 70◦, the
asymmetric reflection is still in the domain of dual solution.
Figure 13a shows the shock polar combination of this reflec-
tion, which is also illustrated by Fig. 6g schematically. It
is suggested that both the oRR and the oMR consisting of
a DiMR and an InMR are possible. Figure 13b shows the
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Fig. 13 The asymmetric nonstationary shock reflection of MS1 = 4.0,
MS2 = 1.5 and θ0 = 70◦: a shock polar combination; and b numerical
result

numerical result of this reflection and once again an oRR
wave configuration appears in the flowfield. Consequently, it
could be deduced that the oRR, instead of the oMR wave con-
figuration, would always occur in the dual solution domain
for the asymmetric nonstationary shock reflection. This con-
clusion comes as no surprise because the shock reflection
in pseudo-steady flows, which could also be regarded as the
symmetric nonstationary shock reflection, just agrees with
the detachment criterion.

Figure 14a presents shock polar combination for the asym-
metric reflection of MS1 = 4.0, MS2 = 1.5 and θ0 = 60◦,
which corresponds to the reflection type schematically illus-
trated by Fig. 6i. In this reflection, although the R1- and
R2-polars intersect the I-polar, respectively, the oMR wave
configuration is impossible. The reason could be specified
as follow: if an oMR wave configuration which consists of
an InMR and a DiMR appears in the present case, a diverg-
ing slipstream tube would be formed which indicates that the
Mach stem would be shortened with time. However, when
the two incident shock waves encounter each other at wedge
apex O, the reflection is just established. At this moment,
the Mach stem length is zero and it could not be short-
ened further! Consequently, the diverging slipstream tube
shaped oMR wave configuration could never appear in this

Fig. 14 The asymmetric nonstationary shock reflection of MS1 = 4.0,
MS2 = 1.5 and θ0 = 60◦: a shock polar combination; and b numerical
result

self-similar shock reflection. Figure 14b shows the numeri-
cal result and an oRR wave configuration is obtained, which
confirms the above theoretical consideration.

4.2 Several special reflection wave configurations

Figure 15a shows the numerical result for the asymmetric
reflection of MS1 = 3.0, MS2 = 1.8 and θ0 = 90◦. An
oMR wave configuration which consists of a TMR and an
InMR occurs in the flowfield. It is observed that the InMR
appeared in the present reflection is somewhat different with
the one shown in Fig. 11b. In Fig. 11b, the reflected shock
wave of the InMR is curved along its entire length; while
in the present case, the reflected shock wave has a straight
portion which extends from the triple point to a kink, namely
K. Behind the kink K the reflected shock wave is curved
along its entire length. This wave configuration is analogous
to the TMR wave configuration which is one of the catego-
ries of the DiMR. Figure 15b shows the numerical result for
the asymmetric reflection of MS1 = 5.0, MS2 = 2.65 and
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Fig. 15 The special types of inverse-Mach reflections: a the transi-
tional-Mach reflection shape; and b the double-Mach reflection shape

θ0 = 80◦, in which a DMR and an InMR are obtained. It is
clear that the second Mach stem and the second slipstream
are formed in this InMR wave configuration, which is similar
to the structures formed in a DMR. Hence, the wave con-
figurations presented in Fig. 15a,b may be regarded as the
inverse-transitional-Mach reflection (InTMR) and inverse-
double-Mach reflection (InDMR), respectively, which so far
have never been observed in both computations and experi-
ments. The typical InMR presented in Fig. 11b, of which the
wave configuration is analogous to a SMR, could be referred
to as the inverse-single-Mach reflection (InSMR). Further-
more, the transition criteria between InSMR-InTMR and
InTMR-InDMR may be deduced as MT

2 = 1 and MT ′
2 =

1 + ε (where ε → 0), which are similar to those in the
pseudo-steady reflection [26]. However, the further detailed
study is needed in the future to confirm the inference. In
addition, since the InMR has some special configurations,
it is reasonable to suppose that the TMR- and DMR-shaped
StMRs, which are never recorded in the past either, would
also exist in the asymmetric reflection.

Fig. 16 The asymmetric nonstationary shock reflection of MS1 = 5.0,
MS2 = 1.5 and θ0 = 100◦: a shock polar combination; and b numerical
result

Figure 16a is the shock polar combination for MS1 =
5.0, MS2 = 1.5 and θ0 = 100◦. By the above analyti-
cal approach, it is predicted that only the oMR wave con-
figuration is theoretically possible. If the oMR occurs, the
I′1- and I2-polars are the incident shock polar curves and the
R′

1- and R2-polars are the reflected shock polar curves. It is
seen that an InMR and a DiMR would appear in theory. How-
ever, note that the pressure ratios obtained from the InMR
and DiMR differ considerably in quantity (about 14 % as
shown in Fig. 16a), which could not be matched by the flow-
field of the reflection on each side. This great pressure gap
hence makes the oMR wave configuration impossible and a
new configuration would appear. In the pseudo-steady shock
reflection, if the flow behind the incident shock wave is sub-
sonic with respect to the reflection point R (shown in Fig. 17a
as M R

1 < 1), a reflected shock wave seems to be unnec-
essary since the subsonic flow is able to continuously turn
to negotiate the wedge surface. In reality, however, a Mach
reflection is always obtained because the flow particle near
the wedge surface does not “know” about the obstacle until
it passes through the incident shock wave and hence it needs
a reflected shock wave to negotiate a sudden new boundary
condition [26]. However, in the asymmetric nonstationary
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Fig. 17 The reflections in which M R
1 < 1 : a shock polar combination;

and b numerical result

shock reflection, although the situation is similar, there is
an important difference: the flow passing through the inci-
dent shock wave I1 should negotiate to the slipstream instead
of the trajectory of the reflection point R (which means the
wedge wall in Fig. 17a). If the left side reflection is an InMR,
the slipstream direction is much easier to be negotiated than
the trajectory of R (as shown in Fig. 17b), which makes the
reflected shock wave on the right side unnecessary. Conse-
quently, the InMR triggers the incident shock wave I1 to act as
a strong, non-reflection oblique shock wave. In this situation,
as shown in Fig. 16a, the incident shock wave curves I1- and
I2-polars are identical and the flow state behind the incident
shock wave I1 is denoted by the point located on the strong
portion of the I1-polar, which also denotes the state behind
the reflected shock wave R2. Thus, the pressure on each side
could eventually be identical. Figure 16b presents the numer-
ical result of this reflection, in which an InMR wave configu-
ration appears on the left side yet no reflection occurs on the
right side. The incident shock wave I1 is bent up slightly to
negotiate the flow passing through it to the direction parallel
to the slipstream. Since no typical Mach stem is obtained in
this reflection, the InMR is converted to a RR and the overall
configuration could be regarded as a special oRR wave con-
figuration. Nevertheless, it should be pointed out that this
special reflection wave configuration is formed only when
the two incident shock wave Mach numbers differ greatly,

for which the pressure behind the Mach stem on each side
could not be matched and the above-mentioned analytical
approach gets invalid. In most situations of the asymmetric
nonstationary shock reflections, the assumption of the vir-
tual wall is appropriate and the shock dynamic–shock polar
combined analytical approach is still available.

4.3 Domains of various types of reflections

Applying the above-mentioned approach, the domains and
transition boundaries of various types of reflection wave
configurations could be predicted analytically. Figure 18a–d
presents the domains for the intersecting angle
θ0 = 100◦, 90◦, 80◦ and 75◦, respectively. The ordinates
denote the Mach numbers of the incident shock wave I1 and
the abscissas denote the Mach numbers of I2. The black
solid lines, which are derived by the detachment criterion
for asymmetric shock reflection, show the transition bound-
aries between the oRR and oMR wave configurations. The
dashed lines present the boundary between the InMR and the
DiMR, while the dot dash lines and the double dot dash lines,
which are calculated from MT

2 = 1 and MT ′
2 = 1 + ε (where

ε → 0) [26], present the boundaries of SMR-TMR and TMR-
DMR, respectively. It should be noted that the PTMR wave
configuration, which is put forward in [26], is classified as
TMR here, to avoid the analytical results too complex. The
lines with blue colour denote the reflection configurations on
I1 side, e.g., a TMR wave configuration appears on I1 side
for MS1 = 5.0, MS2 = 2.5 and θ0 = 100◦; the lines with red
colour denote the reflection configurations on I2 side, e.g., an
InMR wave configuration appears on I2 side for MS1 = 5.0,
MS2 = 2.5 and θ0 = 100◦. Thus, it could be known that an
oMR wave configuration which consists of a TMR and an
InMR is formed in the case of MS1 = 5.0, MS2 = 2.5 and
θ0 = 100◦. Consequently, the overall reflection wave config-
uration, together with the reflection types on both sides of the
virtual wall, could be obtained from Fig. 18 for every com-
bination of MS1 and MS2. It is shown that the oRR domain
enlarges with the increase of θ0, which is due to the fact that
an oRR is more likely to form if the angle between the two
shock waves is relatively small. The numerical results, which
are plotted by various symbols and marked with the reflection
types on both sides for the oMR cases, show good agreement
with the analytical domains.

4.4 The effect of mis-synchronization

It should be noted that two nonstationary shock waves meet-
ing at the wedge apex at exactly the same time, as discussed
above, is just an extremely ideal condition, while the asym-
metric shock wave reflection with mis-synchronization is
more likely to occur in reality. Thus, it is necessary here to
discuss the effect of mis-synchronization in this asymmetric
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Fig. 18 The domains of various types of reflection wave configurations (In-InMR, S-SMR, T-TMR, D-DMR): a θ0 = 100◦; b θ0 = 90◦;
c θ0 = 80◦; d θ0 = 75◦

shock wave reflection. In the mis-synchronized cases, the
incident shock waves arrive at the apex at different moments,
as illustrated in Fig. 19a, so a mis-synchronization distance
δx , which indicates the distance between the late wave I2 and
the apex O at the moment when the early wave I1 reaches the
apex O, would exist. Consequently, the early wave I1 would
diffract around the wedge and a vortex would be formed,
and then the late wave I2 would interact with both the dif-
fracted shock wave and the vortex. At the early stage of the
interaction, the intersecting angle between the late wave I2

and the diffract shock wave is quite small, so an oRR config-
uration would be obtained. However, since the intersecting
angle increases with time, the transition from an oRR to an
oMR might occur in some later stage. Figure 19b illustrates

the flowfield structures at the exact moment of the transition.
If this transition occurs when the late wave I2 still interacts
with the diffracted shock wave, the triple point trajectories
of the oMR would not be straight, because this oMR config-
uration is formed by an interaction between a planar and a
curved shock wave. Later on, when the late wave I2 starts to
interact with the early wave I1 directly, the triple point tra-
jectories would become straight, and the self-similar reflec-
tion configuration would eventually be established. The triple
point trajectories are illustrated as dot dash lines in Fig. 19b.
The dash lines, however, indicate the extension lines of the
straight parts of the triple point trajectories, and they finally
meet at the point B, which could be regarded as the origin of
the subsequent self-similar oMR configuration.
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Fig. 19 The illustrations of asymmetric nonstationary shock reflection
with a mis-synchronization distance: a the initial moment; and b the
moment of the transition from an oRR to an oMR

Figure 20a–c shows asymmetric nonstationary shock
reflections for MS1 = 4.0, MS2 = 2.42 and θ0 = 100◦,
with mis-synchronization distances δx=1.5, 3.0 and 4.5 mm,
respectively. These mis-synchronization distances are equiv-
alent to 3, 6 and 9 % of the shock tube width h, respec-
tively, and the results in these figures are the flowfields at
the moments when the late shock waves I2 arrive at nearly
the same x-direction locations. It can be seen that although
different wave and vortex structures are formed around
the apex O for different mis-synchronization distances δx ,
almost the same asymmetric shock wave reflection configu-
rations are obtained. That is, a DiMR appears on I1 side, and a
StMR, in which the triple point travels along the virtual wall,
appears on I2 side. This configuration is also the same as the
one in the ideal condition, i.e., the synchronized reflection,
as shown in Fig. 10b. Compared to the synchronized case, in
which the virtual wall originates at the apex O, in the mis-
synchronized case, however, the virtual wall originates at the
point B instead. This is because the point B, as discussed

above and shown in Fig. 19b, could be regarded as the origin
of the self-similar oMR configuration. From these results, It
could also be found that the distance from the origin B to the
apex O has a linear relation with δx , that is, larger δx would
lead to a larger distance between B and O. Figure 20d shows
a different mis-synchronized case, in which the shock wave
I1, instead of I2, is the late wave, and the distance between I1

and the apex O is δy = 3.0 mm at the moment when the early
wave I2 arrives at apex O. In this situation, the shock wave
I2 would diffract around the apex O at the early stage, thus
the origin B is located on I1 side. Compared to the δx = 3.0
case shown in Fig. 20b, here the distance from B to O is
much shorter, and this is because I2 is the relatively weak
wave and thus would interact with I1 soon after passing the
apex. It can be seen that almost the same oMR configuration,
which consists of a StMR and a DiMR, is also formed in
this situation. Consequently, no matter δx or δy exists, the
same asymmetric shock wave reflection configuration as the
ideal synchronized case would appear, although some differ-
ent flowfield structures appear around the wedge apex. Thus,
the above-mentioned shock dynamic–shock polar combined
analytical method could also be performed in the synchro-
nized cases to predict the reflection configuration.

It should also be mentioned that the reflection flowfields
for different mis-synchronization distances on the same side
(e.g., the ones shown in Fig. 20a–c), including the wave and
vortex structures around the apex, are in fact the flowfields
of a unique case but at different stages. For example, for an
asymmetric reflection in which the mis-synchronization dis-
tance is 2δx and the width of the tube is 2h, the flowfield
configuration is similar to the one in Fig. 19a in which the
distance is δx and the width is h, only with linear increases
of space and time scales. Consequently, there are only three
essentially different flowfield configurations for a combina-
tion of the given incident shock Mach numbers and inter-
secting angle: the ideal synchronized one, the one with a
mis-synchronization distance on I1 side and the one with a
mis-synchronization distance on I2 side. Moreover, it should
be noted that the latter two would gradually approach the
ideal synchronized one with time, because the effect of δx or
δy would get smaller with the increase in size of the asym-
metric reflection configuration.

5 Conclusions

The reflections of asymmetric nonstationary shock waves are
analytically and numerically investigated in this paper. The
shock dynamic and shock polar approaches are combined to
predict the wave configurations of the reflections. Numerical
simulations are performed for validation and agree well with
the analytical predictions. The results obtained in the paper
could be summarized as follows:
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Fig. 20 The asymmetric
nonstationary shock reflections
of MS1 = 4.0, MS2 = 2.42 and
θ0 = 100◦ with different
mis-synchronization distances:
a δx = 1.5 mm; b δx = 3.0
mm; c δx = 4.5 mm;
d δy = 3.0 mm

1. The overall Mach and regular reflection wave configura-
tions are obtained by both analyses and computations. It is
shown that the inverse- and stationary-Mach reflections,
which are so far only observed in unsteady or asymmetric
steady shock wave reflections, are also found to exist in
the asymmetric nonstationary shock wave reflections.

2. It is figured that only overall regular reflection could
appear in the dual solution domain, which is the same
as the behavior of the shock wave reflection in pseudo-
steady flows.

3. Two special types of inverse-Mach reflections, which are
analogous to the transition-Mach reflection and double-
Mach reflection, are observed in numerical results. A spe-
cial type of overall regular reflection, in which one of the
incident shock waves is not reflected, is also found. The
reason for the existence of the reflection configuration is
theoretically illustrated.

4. The domains and transition boundaries of various types of
reflections are predicted analytically for the intersecting
angle θ0 = 100◦, 90◦, 80◦ and 75◦. The overall wave
configuration, with the reflection types on both sides,
could be obtained from the figures.

5. For the asymmetric reflection with a mis-synchronization
distance at the initial moment, the same reflection con-
figuration as the corresponding synchronized one would
be obtained, and thus could also be analytically predicted
by the shock dynamic–shock polar combined method.
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