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tank model is based on Reynolds-averaged Navier–Stokes equations and renormalization group k–e model.

The equations are discretized based on the finite volume method. The pressure implicit splitting of
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Fully nonlinear wave–body interactions for a stationary floating structure under regular and irregular

waves for different water depths, wave heights and periods are studied in a 2-D numerical wave tank. The

operators scheme is employed to treat the pressure–velocity coupling and a compressive interface

capturing scheme is used to capture the free surface on mashes of arbitrary topology. The calculated

results for regular wave simulation, irregular wave propagation and wave impacts on floating body are

compared with the theoretical/experimental data and the numerical results agree well with analytical/

experimental solutions. The mean and maximum wave impacts, including rotational moment, on body are

obtained. The effects of water depth, wave height and period on forces and moment have been investigated

and the calculated results for irregular waves are compared with those induced by regular waves.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, many types of floating structures, such as floating
breakwater, jacket platform and man-made island, have been
used in coastal and ocean engineering. The safety of these
structures has a significant relation to the wave impacts. The
structures usually suffer from strong nonlinear loadings under
waves, especially under irregular waves. Therefore, prediction of
nonlinear regular and irregular wave forces on floating structures
is an important topic.

There are many correlative studies on the interactions between
the water waves and structures with different types, including the
fully submerged structures (Clement and Mas, 1995; Boo, 2002;
Koo et al., 2004; Vengatesan et al., 2006, etc.), vertical cylinders/
plates (Li and Lin, 2001; Pradip and Sukamal, 2006; Wang and Wu,
2010, etc.), the surface-piercing bodies (Nojiri and Murayama,
1975; Tanizawa and Minami, 1998; Fang and Chen, 2001; Koo and
Kim, 2007a, 2007b; Li and Lin, 2010, etc.) and so on.

Many researchers studied the interaction problem based on
theory and experimental analyses. Pradip and Sukamal (2006)
introduced a solution of shallow water wave force, using small
amplitude linear wave theory on two-dimensional (2-D) verti-
cally submerged circular thin plates under different configura-
tions. The total horizontal force and moment with respect to the
wave amplitude were obtained at different water depths and
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wave periods. Hanssen and Torum (1999) experimentally studied
the breaking wave forces on tripod concrete structure on shoal
using Morison’s equation. Ren and Wang (2003) studied the
irregular wave slamming on structure members with large
dimension in the splash zone. The time-domain and frequency-
domain analyses results of the irregular wave impact pressure on
the subface of the structure were presented.

Some of the other researchers investigated the interaction
problem using numerical wave tank. In Boo’s work (2002), a
time-domain numerical scheme was used to simulate the linear
irregular waves in numerical tank and the linear and nonlinear
irregular wave diffraction forces acting on a submerged structure
was predicted. Koo and Kim (2007a) studied the wave body
interactions for stationary floating single and double bodies using
a potential-theory-based fully nonlinear 2-D numerical wave tank.
Li and Lin (2010) investigated the fully nonlinear wave–body
interactions for a surface-piercing body in finite water depth with
flat/slop bottom topography. A 2-D numerical regular wave tank
was built, which mainly based on the spatially averaged Navier–
Stokes equations and the k–e model was used to simulate the
turbulence of flow. Clauss et al. (2010) studied the fully nonlinear
interactions between water waves and vertical cylinder arrays in a
numerical tank, which based on a finite element method (FEM).

Among studies presented above, the problems on interaction
between water waves and floating bodies have been interested
recently. The regular wave and/or current had been considered by
some authors (Koo and Kim, 2007a, 2007b; Li and Lin, 2010, etc.).
It is important to understand nonlinear interactions between
irregular waves and surface-piercing structures, compared with

www.elsevier.com/locate/oceaneng
www.elsevier.com/locate/oceaneng
dx.doi.org/10.1016/j.oceaneng.2012.01.019
mailto:linmian@imech.ac.cn
mailto:liyong@imech.ac.cn
dx.doi.org/10.1016/j.oceaneng.2012.01.019


Y. Li, M. Lin / Ocean Engineering 42 (2012) 93–10194
regular waves. In present paper, using a fully nonlinear 2-D
numerical wave tank, the wave forces and rotational moment
on a floating structure are investigated for regular and irregular
waves at different water depths, wave heights and periods.

With the development of computer technology and computa-
tion algorithm, the numerical wave tank has been developed to be
a promising tool to investigate various wave-related problems. In
order to study the problem of wave propagation, a fully nonlinear
numerical wave tank was presented by Zhang et al. (2006). In
their studies, desingularized boundary integral equation method
was coupled with the mixed Eulerian–Lagrangian formulation. Li
(2008) described a numerical tank for regular and irregular wave
propagation based on the Navier–Stokes equations and a spatial
fixed s-coordinate was used to transform the equations from the
sea bed to the still water level.

In present works, the numerical tank is built based on
Reynolds-averaged Navier–Stokes (RANS) equations and renor-
malization group (RNG) k–e two-equation model. The wave tank
is verified firstly and the simulated results are compared with the
theoretical/experimental solutions. Then, mean and maximum
wave forces and rotational moment are calculated. The force
spectra are obtained by fast Fourier transform (FFT), though
which the forces and moment are transformed from the time-
domain to frequency-domain.
y

xAtmosphere
StructureWave
2. Mathematical formulation

2.1. Governing equations

The governing equations are the RANS equations, which can be
written as follows:

@

@xj
ðujÞ ¼ 0, ð1Þ

@

@t
ðuiÞþ

@

@xj
ðujuiÞ ¼�

1

r
@p

@xi
þ

1

r
@

@xj
mef f

@uj

@xi
þ
@ui

@xj

� �� �
�Diuiþgi ð2Þ

where xj(j¼1,2) represents the coordinate component, uj is the
fluid velocity, p is the pressure, r is the density, g is the
acceleration of gravity, Di is the damping coefficient and the
damping term Diui is added to the momentum equation directly.
meff¼mþmf, m is the molecular viscosity, mf is the turbulent eddy
viscosity, mf¼Cmrk2/e. k is the turbulent kinetic energy, e is the
turbulent energy dissipation rate. In present paper, the RNG k�e
two-equation model is adopted to estimate the turbulence
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The values of constants in RNG k–e model are shown in
Table 1.
Table 1
Values of constants in turbulent model.

Constant Cm ak ae C1e C2e Z0 b

Value 0.0845 1.39 1.39 1.42 1.68 4.38 0.012
In order to capture the water–air free surface, an Eulerian
method named the volume of fluid (VOF) method is adopted. The
equation for the volume fraction is
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where a is the volume fraction of water and 1�a represents the
volume fraction of air. Volume fraction of each liquid is used as
the weighting factor to get the mixture properties, for the density
and molecule viscosity

r¼ arwþð1�aÞra, ð6Þ

m¼ amwþð1�aÞma ð7Þ

where rw and ra represent the density of water and air, respec-
tively. mw and ma are molecule viscosity coefficient of water and
air, respectively.

2.2. Boundary conditions

The entire study domain is shown in Fig. 1. There are totally
five types of boundary associated with the governing equations,
including inlet, outlet, structure, bed and atmosphere. In addition,
in order to absorb the wave energy reflection from end-wall and
re-reflection from input boundary, artificial damping zones are
located at the two ends of domain.

Boundary conditions associated with regular and irregular
waves are prescribed along the inlet of computational domain.
The pressure and turbulence quantities, such as k and e, are set to
be zero normal gradients. To simulate wave-structure interaction
steadily for a long time, a special damping scheme is employed in
front of the inlet boundary, which can be used to prevent the re-
reflection from the left boundary. For the left damping zone, the
velocity in this area is modified by ui ¼ um

i þD0iðui�um
i Þ at the end

of each time step. This damping scheme is employed to damp out
only the reflected waves from the structure while preserving the
incident waves. Similar treatment methods are used by many
researches for wave-structure interaction problem (Koo and Kim,
2007a, 2007b; Li et al., 2007, etc.). In the damping scheme, um

i is
the theoretical wave velocity and D’

i is the dissipative coefficient,
which can be written as (Troch and Rouck, 1998)
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where l is the length of damping zone. Troch and Rouck (1998)
found that the elliptic type damping function performs better
than the linear type and the cosine type.

At the outlet, non-reflective boundary condition combines
damping zone and the radiation boundary condition. The velocity
is specified by Sommerfeld radiation condition (SRC), expressed
by
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Fig. 1. Sketch of a fixed floating body.



Y. Li, M. Lin / Ocean Engineering 42 (2012) 93–101 95
where c is the wave propagation velocity at the end point of
damping zone. As for the damping zone, Diui damping term is
added to the momentum equation, showed as Eq. (2) and Di is
expressed as

Di ¼ yi

ffiffiffi
g

d

r
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l
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ð10Þ

where x0 is the distance from origin to the starting point of
damping zone. n and yi are the damping coefficients, n¼2, yi¼0.6.

As for the structure wall and bed boundaries, no slip wall
boundary condition and wall function are used. At the atmo-
sphere boundary, the total pressure is set to zero and k and e are
set to zero normal gradient.

2.3. Regular and irregular wave simulations

The velocity vector of regular wave is specified by Stokes wave.
The theoretical velocity of second-order Stokes regular wave can
be expressed by
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where H, o, a and d are wave height, frequency, wave number and
water depth, respectively. x is the distance from origin to the
wave-making point.

In the irregular wave simulation, the modified JONSWAP
spectrum is chosen as the target spectrum, which can be
expressed as follows (Goda, 1999):
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where H1/3 and T1/3 are the significant wave height and period,
respectively. f is the frequency. g is the peak enhancement factor,
g¼3.3. Tp and fp denote the wave period and the frequency at the
spectral peak, respectively.

The surface fluctuations and velocities of irregular wave in
wave-making region can be obtained with
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, Doi¼oi�oi�1, _oi is a random variable

number between oi�1�oi, ei and N denote a random variable
number between 0 and 2p and the total number of sampling,
respectively.
2.4. Numerical implementation

The equations are discretized based on the finite volume
method (FVM). The central difference scheme and quadratic
upwind interpolation of convective kinematics (QUICK) scheme
are employed to represent the diffusion term and convection
term, respectively. The preconditioning conjugate gradient (PCG)
method is employed for solving the algebraic equations. The
Navier–Stokes equations are solved numerically by the pressure
correction method in two major steps. Firstly, the intermediate
velocity field is obtained by solving the momentum equations.
Secondly, the pressure correction is achieved by the Poisson
equation, which can be derived by the combination of the
continuity and the momentum equations. And then, the inter-
mediate velocity is corrected by the divergence-free velocity,
which can be obtained by the pressure correction. The pressure
implicit splitting of operators (PISO) scheme is employed to treat
the pressure–velocity coupling. k and e equations are coupled in
the scheme and solved by a segregated approach. For free surface
simulation, a compressive interface capturing scheme for arbi-
trary meshes (CICSAM) is used to capture the fluid interfaces on
mashes of arbitrary topology (Ubbink and Issa, 1999). Further-
more, the Courant number is used to obtain the time step at the
every beginning of calculation cycle, defined as

Cn ¼
uiDt

Dxi
ð20Þ

where Dt is the time step and Dxi represents the mesh size.
The code is programmed based on the open source Cþþ CFD

toolbox named open field operation and manipulation (Open-
FOAM). OpenFOAM provides a fundamental platform to write
new solvers for different problems and the tensorial approach and
object oriented techniques are used. For example, a new direct
simulation Monte Carlo (DSMC) foam has been written within the
framework of OpenFOAM by Scanlon et al. (2010). In their cases,
the new foam shows very good agreement with data provided by
both analytical solutions and other contemporary DSMC codes.

In present work, a new two-fluid code, called waveFoam, has
been written within the framework of OpenFOAM. The version
used here is 1.7.1, which can be downloaded freely through the
internet (OpenCFD 2010). In the waveFoam solver, the inflow
boundary and two damping zones are added and the interface
capturing scheme in OpenFOAM for two-phase flow is improved
(Li and Lin, 2010).
3. Numerical results and discussion

3.1. Model validation

3.1.1. Regular wave simulation

The total length of the numerical tank is 8.0L with sponge
layers at its two ends, each with a length of 2.0L. The numerical
case is performed with following input: H¼0.5 m, T¼3.0 s,
d¼5.0 m and Cn¼0.1. Fig. 2 shows the time series of wave profile
at 4.0L from the beginning of tank and the numerical results
compared with the analytical solutions. It can be seen that the
numerical results agree well with analytical solutions, which
indicates that the two sponger layers can absorb the nonlinear
wave effectively.

3.1.2. Irregular wave simulation

The irregular waves are simulated without structure for the
whole repetition period of 120T. Fig. 3 illustrates the time series of
irregular waves at 4.0L from the beginning of tank. FFT is used to
analyze the frequency spectrum. For the cases of H1/3¼0.5 m and
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H1/3¼0.3 m, comparison of wave spectrum at x¼4.0L with the
target spectrum is presented in Fig. 4. It can be seen that the
incident wave spectra of two cases are consistent with the target
spectra. The results indicate that the present numerical wave tank
can be used to generate continuous irregular waves for a long time.

3.1.3. Wave propagation over a submerged structure

To verity the free surface profile during wave-structure inter-
action, the propagation of waves over structure in a laboratory
flume (Luth et al., 1994) is considered. Fig. 5 shows the geometry
of submerged structure experiment. The experiment is referred
by many other researchers (Lin and Li, 2002; Janssen et al., 2006,
etc.). Incident waves have period 2.86 s and amplitude 0.02 m.
The time step is 0.01 s and the computation time is carried out up
to 55 s. Fig. 6 illustrates a comparison of computed and measured
free surface elevation time series at x¼20.04 m, 24.04, 28.04 m,
30.44 m, 33.64 m and 41.04 m. The comparison shows a good
agreement of the surface elevations, which indicates that the
present model can be able to simulate the free surface correctly
during wave–structure interaction.
3.1.4. Wave impact simulation

The wave height is chosen as 0.07 m and x, where
x¼ o2=g

	 

B=2
	 


, is chosen as 0.2, 0.5, 0.75, 1.0, 1.5 and 1.75.
Water depth is equaled to the wave length and h¼0.25 m,
B¼0.5 m. The results of impact simulation are compared with
the experimental results of Nojiri and Murayama (1975), analy-
tical solution of Maruo (1960), BEM results of Koo and Kim
(2007a) and numerical results of Li and Lin (2010) with k–
e model.

Figs. 7–9 show the comparison of the force components and
moment, where Fx and Fy are the force component in the x and y

direction and M is the moment about the z axis. Fx, Fy and M are
normalized by rgLh(H/2), rgLB(H/2) and rgLhB(H/2), respectively.
The first-harmonic force components and rotational moment are
calculated using Fourier analysis. The calculated results are
shown to be in good agreement with experimental and analytical
data except the region of x41.5. Koo and Kim (2007a) considered
the floating bodies based on potential theory and boundary
element method (BEM). The comparison between the BEM results
and present results shows that the present results based on
turbulent theory are more close to experimental data than Koo
and Kim’s, which indicates that the turbulence of fluid has an
important influence on the wave–body interaction.

The present results based on RNG model are also compared
with that based on standard k–e model. It can be seen that the
prediction of forces for the RNG model are slightly closer to the
experimental results than the standard k–e model. The RNG
approach results in a modified form of the epsilon equation,
which attempts to account for the different scales of fluid motion.
The comparison shows that the RNG model produces better
results than the standard k–e model. Fig. 10 shows the compar-
ison of total forces in x direction for k–e model and RNG k–e
model. The normalized horizontal total force calculated by RNG
k–e model is slightly less than that by k–e model.

3.2. Effect of water depth on the wave impacts

After the validation of the numerical model, the wave forces
and the rotational moments are investigated for a fixed floating
structure under different water depths. Table 2 indicates the
input property of water depth. The value of dimensionless d/L
ranges from 0.18 to 0.43, which belongs to the finite water depth.
The wave period T and wave height H are 3.0 s and 0.3 m,
respectively.

Fig. 11 shows the average and maximum normalized forces
and moment on the floating structure, which obtained using the
absolute values of calculated results. For regular waves, the
average and maximum normalized forces and moment decrease
with the increase of the dimensionless water depth. For irregular
waves, the maximum forces and moment induce by irregular
waves reach the values of maximum peak at d/L¼0.36, while the
average values change slightly. The maximum forces and moment
induced by irregular waves are 75% greater than those induced by
regular waves, while the average values are 26% lower than that
induced by regular waves.
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3.3. Effect of incident wave height on the wave impacts

For the purpose of investigating the effect of incident wave
height on wave loadings, there are totally ten numerical cases are
simulated for regular and irregular waves. The water depth d and
period T are 5.0 m and 3.0 s, respectively. Table 3 indicates the
input property of wave height.

The simulations are performed for 200T. Partial records of H/
d¼0.06 for regular and irregular waves are shown in Fig. 12. The
normalized forces and moment induced by regular wave have the
same frequency as the incident wave. The normalized Fy is less
than Fx, while it significantly larger than zero. As for the vertical
structure reposed on seabed, the flow pattern is essentially
symmetric about the structure in the y direction and the force
in this direction is close to zero (Li and Lin, 2001). From Fig. 12, it
can also be seen that the largest forces and moment are all
induced by irregular wave.

Fig. 13 shows the average and maximum normalized forces
and moment on the surface-piercing structure. The average forces
and moment for regular and irregular waves and the maximum
values induced by regular waves increase with the increase of the
incident wave height linearly. The maximum forces and moment
induced by irregular waves increase rapidly with H/d and can be
100% greater than those induced by regular waves. Furthermore,
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Table 2
Water depth inputs.

Case 1 2 3 4 5

d [m] 2.0 3.0 4.0 5.0 6.0

d/L 0.18 0.24 0.3 0.36 0.43
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Table 3
Incident wave height inputs.

Case 1 2 3 4 5

H [m] 0.1 0.2 0.3 0.4 0.5

H/d 0.02 0.04 0.06 0.08 0.10
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the average forces and moment induced by irregular waves are
less than those induced by regular waves and the difference
between them increases with H/d.

In the spectral analysis, the force and moment spectra are
obtained by FFT. The amplitude spectra of the normalized forces
in the x and y directions for irregular waves are shown in Fig. 14.
It can be seen that the spectrum of normalized Fx for H/d¼0.08
has multiple peaks. The first peak frequency of the spectrum is
the same as that of H/d¼0.04. Ren and Wang (2003) found that
the impact pressure spectrum had multiple peaks and the first
peak frequency of the pressure spectrum was equaled to that of
the incident wave spectrum.

Fig. 15 shows the comparison of amplitude spectra for normal-
ized Fx between regular and irregular waves at H/d¼0.06. The
shape of the spectrum for irregular wave is basically similar to
that for regular wave, while the value of first peak is less than that
induced by regular wave. In addition, the energy for irregular
wave is more concentrated and the spectrum of normalized Fx for
regular wave of H/d¼0.06 also has multiple peaks. The figure
indicates that the regular wave has more energy than irregular
wave under the same inputs.

3.4. Effect of incident wave period on the wave impacts

In this section, effect of incident wave period on the wave
impacts is illustrated. The water height H and water depth d are
0.3 m and 5.0 m, respectively. Table 4 indicates the input property
of wave period and the value of dimensionless period ranges from
2.8 to 5.6.

Fig. 16 shows the average and maximum normalized forces
and moment versus relative wave period. For irregular waves, the
maximum normalized Fx reaches the value of maximum peak at

T
ffiffiffiffiffiffiffiffi
g=d

p
¼4.9 and the magnitude gradually increases up to 150% of

the value at T
ffiffiffiffiffiffiffiffi
g=d

p
¼2.8. The normalized Fx for regular waves and

the average values for irregular waves reach the maximum peak

values at about T
ffiffiffiffiffiffiffiffi
g=d

p
¼3.5. And then, all of them decrease

slightly with the increase of dimensionless period.



20
-2

-1

0

1

2

3

4

F
x 

(N
or

m
al

iz
ed

)

Regular wave              Irregular wave

20
-1.5

-1.0

-0.5

0.0

0.5

1.0

F
y 

(N
or

m
al

iz
ed

)

20
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

M
 (

N
or

m
al

iz
ed

)

25 30 35 40 45 50
t/T

25 30 35 40 45 50
t/T

25 30 35 40 45 50
t/T

Fig. 12. Time series of calculated normalized horizontal force (top), vertical force

(middle) and moment (bottom).
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Fig. 13. Average and maximum normalized horizontal force (top), vertical force
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Fig. 14. Amplitude spectra of normalized forces for irregular wave.
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As for the normalized Fy, the average and maximum normal-

ized forces for regular waves increase linearly with T
ffiffiffiffiffiffiffiffi
g=d

p
, while

the forces induced irregular waves increase nonlinearly. The
average and maximum normalized moments increase with the

increase of T
ffiffiffiffiffiffiffiffi
g=d

p
from 2.8 to 4.9. The maximum moments

decrease and the average values nearly keep unchanged when

T
ffiffiffiffiffiffiffiffi
g=d

p
44.9.

In addition, the maximum forces and moment induced by
irregular waves are much greater than that induced by regular
waves and the average forces and moment induced by irregular
waves are less than those induced by regular waves. For example,

in case of T
ffiffiffiffiffiffiffiffi
g=d

p
¼4.9, the maximum normalized Fx for irregular

wave is 120% greater than that for regular wave, while the
average value is 21% lower than that induced by regular wave.

The amplitude spectra of the normalized Fx and Fy are shown
in Fig. 17. It can be seen that the peak value of spectrum for

normalized Fx at T
ffiffiffiffiffiffiffiffi
g=d

p
¼4.9 is nearly the same as that at

T
ffiffiffiffiffiffiffiffi
g=d

p
¼3.5, while the peak of T

ffiffiffiffiffiffiffiffi
g=d

p
¼4.9 for normalized Fy is

166% greater than that of T
ffiffiffiffiffiffiffiffi
g=d

p
¼3.5. The wave period has a

more important influence on spectrum peak of the normalized Fy

than that of normalized Fx.
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Table 4
Incident wave period inputs.

Case 1 2 3 4 5

T [s] 2.0 2.5 3.0 3.5 4.0

T
ffiffiffiffiffiffiffiffi
g=d

p
2.8 3.5 4.2 4.9 5.6
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Fig. 18 shows the comparison of amplitude spectra for normal-
ized Fx between regular and irregular waves at T

ffiffiffiffiffiffiffiffi
g=d

p
¼4.2. The

value of main peak for irregular wave is less than that for regular
wave and the energy for irregular wave is also more concentrated.
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Fig. 16. Average and maximum normalized horizontal force (top), vertical force

(middle) and moment (bottom).
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4. Conclusion

In present paper, wave–body interactions for a floating struc-
ture under regular and irregular waves are simulated in a 2-D
fully nonlinear numerical wave tank.

The tank model is based on RANS equations and RNG k–e
model. The equations are discretized based on the FVM. The PISO
scheme is employed to treat the pressure–velocity coupling and a
CICSAM is used to capture the fluid interfaces on mashes of
arbitrary topology. A new two-fluid code, called waveFoam, has
been written within the framework of OpenFOAM. The inflow
boundary and two damping zones are added into the code and the
interface capturing scheme in OpenFOAM for two-phase flow is
improved. The simulated results for regular wave, irregular wave
and wave impacts are compared with the theoretical/experimen-
tal data. The numerical results are shown to be in good agreement
with analytical/experimental solutions. Then, the mean and
maximum wave impacts at different wave heights and periods
are calculated and the force spectrum is obtained by FFT.

The average and maximum normalized forces and moment
induced by regular waves decrease with the increase of the
dimensionless water depth. For irregular waves, the maximum
forces and moment induce by irregular waves reach the values of
maximum peak at d/L¼0.36, while the average values change
slightly. The maximum forces and moment induced by irregular
waves are much greater than those induced by regular waves,
while the average values are lower than that induced by
regular waves.

The average forces and moment for regular and irregular
waves and the maximum values induced by regular waves
increase with the increase of the incident wave height linearly.
The maximum forces and moment induced by irregular waves
increase rapidly with H/d and the average values are less than
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those induced by regular waves. The spectrum of normalized Fx

has multiple peaks in some cases and the first peak frequency of
the force spectrum is equaled to that of the incident wave
spectrum. Furthermore, the value of first peak for irregular waves
is less than that for regular wave under the same inputs.

As for the effect of incident wave period on the wave impacts,
the maximum normalized Fx for irregular waves reaches the
value of maximum peak at T

ffiffiffiffiffiffiffiffi
g=d

p
¼4.9 and the average and

maximum normalized Fx for regular waves reach the maximum
peak values at about T

ffiffiffiffiffiffiffiffi
g=d

p
¼3.5. The average and maximum

normalized Fy for regular waves increase linearly with T
ffiffiffiffiffiffiffiffi
g=d

p
,

while the forces for irregular waves increase nonlinearly. The
average and maximum normalized moments increase with the
increase of T

ffiffiffiffiffiffiffiffi
g=d

p
from 2.8 to 4.9. The maximum moments

decrease and the average values nearly keep unchanged when
T

ffiffiffiffiffiffiffiffi
g=d

p
44.9. In the spectral analysis, it is found that the wave

period has a more important influence on spectrum peak of the
normalized Fy than that of normalized Fx.
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