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a b s t r a c t

This paper presents an attempt to extend homogenization analysis for the effective

elastic moduli of triangular lattice materials with microstructural defects. The proposed

homogenization method adopts a process based on homogeneous strain boundary

conditions, the micro-scale constitutive law and the micro-to-macro static operator to

establish the relationship between the macroscopic properties of a given lattice

material to its micro-discrete behaviors and structures. Further, the idea behind

Eshelby’s equivalent eigenstrain principle is introduced to replace a defect distribution

by an imagining displacement field (eigendisplacement) with the equivalent mechan-

ical effect, and the triangular lattice Green’s function technique is developed to solve

the eigendisplacement field. The proposed method therefore allows handling of

different types of microstructural defects as well as its arbitrary spatial distribution

within a general and compact framework. Analytical closed-form estimations are

derived, in the case of the dilute limit, for all the effective elastic moduli of stretch-

dominated triangular lattices containing fractured cell walls and missing cells, respec-

tively. Comparison with numerical results, the Hashin–Shtrikman upper bounds and

uniform strain upper bounds are also presented to illustrate the predictive capability of

the proposed method for lattice materials. Based on this work, we propose that not only

the effective Young’s and shear moduli but also the effective Poisson’s ratio of triangular

lattice materials depend on the number density of fractured cell walls and their spatial

arrangements.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Materials with a lattice-like structure have been extensively utilized in a variety of engineering applications of
lightweight construction, thermal insulation and energy absorption due to their excellent properties including high
stiffness-to-weight ratios and multi-functional adaptabilities (Gibson and Ashby, 1997). Some lattice materials including
triangular honeycomb and triangulated truss structure possess repeating unit cells with fully triangulated elements, and
can be effectively modeled as a triangular lattice with a periodic unit cell comprising a few beams or trusses. For an intact
periodic triangular lattice, the effective elastic properties have been described through the application of simple beam
theory (for example, Gibson and Ashby, 1997; Wang and McDowell, 2003), or have been deduced by using homogenization
techniques (for example, Hohe and Becker, 1999; Kumar and McDowell, 2004; Gonella and Ruzzene, 2008).

In practice, many realistic lattice materials have non-periodic microstructures due to fractured/missing cell walls or
missing cells during the manufacturing process. Considerable effort has been devoted for the analysis of properties of
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lattice materials containing microstructural defects. Silva and Gibson (1997) performed a finite element study to find the
effect of randomly removing individual cell edges on the Young’s modulus and the elastic and plastic collapse stress in
regular hexagonal honeycombs as well as in Voronoi honeycombs. Albuquerque et al. (1999) proposed an experimentally
based equation for the dependence of Young’s modulus on defect concentration in the form of fractured cell walls in
hexagonal honeycombs. Guo and Gibson (1999) investigate the effects of missing cells on the Young’s moduli, the elastic
buckling strength and the plastic collapse strength of regular honeycombs using the finite element method (FEM). Using a
combination of analytical methods and FEM, Chen et al. (1999) investigated the influence of different types of
morphological imperfection on the yielding of 2D cellular solids. Chen et al. (2001) also numerically studied the effects
of holes and rigid inclusions on the elastic modulus and yield strength of regular honeycombs under bi-axial loading.
Wallach and Gibson (2001) calculated numerically the effect of randomly removing members of a three-dimensional truss
material on the Young’s modulus and compressive strength. Wang and McDowell (2003) used finite element simulations
to investigate the effects of fractured/missing cell walls on in-plane effective elastic stiffness and initial yield strength of
square and triangular cell metal honeycombs.

An alternative to those numerical and experimental procedures is theoretical investigation of the macroscopic
description of lattice materials with microstructural defects. Over the last several years many theoretical micromechanical
models based on Eshelby’s equivalent inclusion theory (Eshelby, 1957), which establishes the equivalency between an
eigenstrain field and an inhomogeneity distribution, have been developed and applied to predict the effective elastic
properties of heterogeneous materials with complex microstructures (see the reviews by Mura, 1987; Nemat-Nasser and
Hori, 1993). In these classic homogenization theories the microscopic level is described in terms of continuum mechanics,
therefore introducing a local or microscopic stress and strain distribution. Comparatively, the microscopic structure of
lattice materials is more convenient to be treated as a lattice of beams or trusses connected in vertices, and nodal force and
nodal displacement are considered as the local variables. Using the micro-continuous homogenization theories, it is often
difficult to accurately estimate the effects of micro-discrete behaviors and structures on the macroscopic properties of
lattice materials.

The goal of this paper is to present a micro-discrete homogenization method for derivation of the overall macroscopic
response of triangular lattice materials with fractured cell walls and missing cells. To achieve our goal, we first will
propose a general homogenization process for the modeling of lattice materials based on homogeneous strain boundary
conditions, a micro-scale constitutive law and a micro-to-macro static operator. One can find similar homogenization
process for discrete media (for example, Ostoja-Starzewski, 2002; Florence and Sab, 2006) and for granular material (for
example, Cambou et al., 1995; Nicot and Darve, 2005). Second, we will generalize Eshelby’s equivalent inclusion theory to
establish the equivalency between an imagining displacement (eigendisplacement) field and a defect distribution in the
triangular lattice, such that distribution of defects can be replaced by the eigendisplacement field with the equivalent
mechanical effect. Third, we will develop the lattice Green’s function technique, which has been studied in many problems
of condensed matter physics (for example, Horiguchi, 1972; Economou, 1983; Cserti, 2000), for calculation of the
eigendisplacement field. Using the homogenization process, the eigendeformation method and the triangular lattice
Green’s function, the dilute solutions of effective moduli of stretch-dominated triangular lattices containing fractured cell
walls and missing cells will finally be derived and compared with some numerical results available in the literature and
the results from micro-continuous homogenized models.

Both symbolic and index notations are used in the present paper; for instance, the strain tensor is denoted by either E
or Eij. In the symbolic notation, ‘.’ and ‘7’ stand for the first- and second-order contractions, ‘�’ denotes the tensor product.
2. Micromechanics of a two-dimensional triangular truss framework

2.1. Two-scale description

Consider the homogenized macro-continuum under conditions of quasi-static equilibrium; see Fig. 1 for a schematic
diagram. Associated with a material point is a microstructure which characterizes a representative volume element (RVE)
of a two-dimensional triangular truss framework containing many truss defects (hereafter representing fractured cell
walls) or cell defects (hereafter representing missing cells). The RVE contains a sufficient number of truss elements such
that the material is statistically homogeneous. For the sake of simplicity, body forces will not be considered in this paper.

In the RVE, the important static quantity for a truss connecting two nearest-neighboring joints (nodes) p and q is the
elastic force f (pq) in the truss. The associated kinematic variable between nodes p and q is the relative displacement

uðpqÞ ¼ uðqÞ�uðpÞ ð2:1Þ

where u(p) and u(q) are the displacement of nodes p and q, respectively. An linear elastic constitutive relation is considered,
which relates the normal and tangential components f n

(pq)
and f t

(pq)
of the force f (pq) to the normal and tangential

components un
(pq)

and ut
(pq)

of the relative displacement u(pq) and to the axial stiffness kn
(pq)

and the bending stiffness kt
(pq)

of
trusses in normal and tangential direction

f ðpqÞ
n ¼ kðpqÞ

n uðpqÞ
n , f ðpqÞ

t ¼ kðpqÞ
t uðpqÞ

t ð2:2Þ
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Fig. 1. An homogenized macro-continuum consisting of a two-dimensional triangular truss framework with microstructural defects (RVEs): (a)

macrostructure, (b) microstructure (truss defects and cell defects).
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The linear elastic constitutive relation can also be expressed by stiffness matrix K(pq)

f ðpqÞ
¼K ðpqÞ

� uðpqÞ, K ðpqÞ
¼ kðpqÞ

n nðpqÞ � nðpqÞ þkðpqÞ
t ðI�nðpqÞ � nðpqÞÞ ð2:3Þ

where n(pq) are the unit vectors of the truss connecting nodes p and q, I is the second order identity tensor (Kronecker delta
symbol).

At the macroscopic level, the important kinematic and static quantities are the macro stress tensor R and the macro
strain tensor E. With this linear elastic constitutive relation in the RVE, the macroscopic constitutive relationship is also
elastic. One then defines classically the effective modulus tensor C at material point through the relationship between
R and E

R¼ C : E ð2:4Þ

2.2. Homogenization process

Within the framework of the micromechanics, the macroscopic stress–strain relationship for the RVE needs to be
derived from the local constitutive relation for a truss. For this purpose it is necessary to link the global representative
variables (i.e. macro stress R and macro strain E) to the local variables (i.e., elastic force f (pq) and relative displacement
u(pq)). The micromechanical expression for the macro stress tensor in terms involving internal forces of the RVE, which has
been documented by many authors (for example, Christoffersen et al., 1981; Donev and Torquato, 2003; Nicot and Darve,
2005), is given by

R¼
1

2S

X
c

ðf ðcÞ � lðcÞ þ lðcÞ � f ðcÞÞ ð2:5Þ

where f (c) is the elastic force in the cth truss, l(c) is the branch vector connecting the two nodes of the cth truss. The sum is
extended to all the trusses over the area S of the RVE.

Dissimilar to the micromechanical interpretation of macroscopic stress tensor, an accepted general way of averaging
the nodal displacement in order to get the macroscopic strain tensor has been lacking. The underlying reason is that the
concept of kinematic compatibility does not exist naturally inside discrete structures. In order to circumvent this difficulty
homogeneous strain boundary conditions are assumed to be associated with prescribed displacements u(b) of boundary
node b, i.e.

uðbÞ ¼ e0 � xðbÞ ð2:6Þ

where e0 is a constant strain tensor, x(b) is the position of node b in the original configuration. Based on the equivalency
between the lattice and the homogenized continuum, the displacement at the boundary of the homogenization continuum
must be prescribed by

u0 ¼ e0 � x ð2:7Þ

Note that applying Gauss’s theorem, E is associated to prescribed displacement u0 at the boundary given by

E¼
1

2S

Z
@S
ðu0 � nþn� u0ÞdG ð2:8Þ
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Fig. 2. General homogenization process for lattice materials.
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This leads, according to the boundary conditions (2.7), to

E¼
1

2S

Z
@S
ðu0 � nþn� u0ÞdG¼

1

2S

Z
@S
ððe0 � xÞ � nþn� ðe0 � xÞÞdG¼ e0 ð2:9Þ

Now that the macro strain tensor of the RVE E equals e0 for any compatible displacement field obeying (2.6), one can
define an homogenization process combining homogeneous strain boundary conditions (2.6), the local constitutive
equations (2.3) and the static average operator (2.5) to allow the macro stress tensor and the macro strain tensor to be
related (Fig. 2).

2.3. Effective moduli of a perfect periodic triangular lattice of trusses

For a two-dimensional perfect periodic triangular lattice of trusses subjected to homogeneous strain E, it can be easily
proved that the discrete displacement field given by

uðpÞ0 ¼ E � xðpÞ ð2:10Þ

satisfies the quasi-static force equilibrium equations when node p is inside the lattice, or obeys boundary conditions (2.6)
if node p is at the boundary of the lattice. Here x(p) is the position vector of node p in the original microstructural
configuration. Therefore, (2.10) is the displace solution of the perfect triangular lattice. Using the homogenization process
shown in Fig. 2, closed-form solutions for the elastic tensor of the lattice are written as

C
0

ijst ¼
l20ðkn�ktÞ

S

X
c

nðcÞi nðcÞj nðcÞs nðcÞt

þ
l20kt

4S

X
c

ðdisn
ðcÞ
j nðcÞt þditn

ðcÞ
j nðcÞs þdjsn

ðcÞ
t nðcÞi þdjtn

ðcÞ
i nðcÞs Þ i,j,s,t¼ 1,2 ð2:11Þ

where l0 is the distance between two nodes. When the size of the lattice is far greater than l0 we see that

C
0

1111 ¼ C
0

2222 ¼

ffiffiffi
3
p
ð3knþktÞ

4
, C

0

1122 ¼ C
0

2211 ¼

ffiffiffi
3
p
ðkn�ktÞ

4
, C

0

1212 ¼

ffiffiffi
3
p
ðknþktÞ

4
ð2:12Þ

(2.12) shows that the equivalent continuum is isotropic and has two independent effective elastic constants. Especially
for a stretch-dominated triangular structure that only deform along their longitudinal direction, its stiffness matrix takes
the form

kn ¼
Est

l
, kt ¼ 0 ð2:13Þ

where Es is the Young’s modulus of the truss, t the thickness and l the length. Under the plane stress deformations, the
effective Young’s modulus E0, the shear modulus m0 and the effective Poisson’s ratio n0 of the stretch-dominated triangular
lattice is of form

C
0

1111 ¼ C
0

2222 ¼
E0

1�ðn0Þ
2
¼

3
ffiffiffi
3
p

kn

4

C
0

1122 ¼ C
0

2211 ¼
E0n0

1�ðn0Þ
2
¼

ffiffiffi
3
p

kn

4
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C
0

1212 ¼ m0 ¼
E0

2ð1þn0Þ
¼

ffiffiffi
3
p

kn

4
ð2:14Þ

From (2.13) and (2.14), the elastic moduli E0, m0 and n0 are given by

E0

Es
¼

2
ffiffiffi
3
p

t

3l
ð2:15Þ

m0

Es
¼

ffiffiffi
3
p

t

4l
ð2:16Þ

n0 ¼
1

3
ð2:17Þ

It is important to point out that (2.15)–(2.17) have been obtained by applying the simple beam theory (for example,
Gibson and Ashby, 1997; Wang and McDowell, 2003; Fleck and Qiu, 2007).

3. Eigendeformation method for triangular lattice with defects

For a triangular lattice with microstructural defects, it may not be feasible to directly derive the discrete displacement
field under homogeneous strain boundary conditions (2.6). The difficulty arises because of non-periodic defects, which
produces nonuniform distribution of internal forces and deformation. To this end, we shall introduce the concept of
eigenstrains in continuum mechanics into micromechanical modeling of a triangular lattice with defects. The hetero-
geneous problem of triangular lattice structure can be reduced to another homogeneous medium problem which could be
analytically solved in principle.

3.1. Eigendeformation method

Consider a perfect triangular truss structure subjected to homogeneous strain boundary conditions (2.6), and let B

denote the set of trusses in the lattice. According to (2.10), the force f 0
(c)

and the deformation u0
(c)

of the cth truss with
length vector l(c) are given by

f ðcÞ0 ¼K ðcÞ � uðcÞ0 , uðcÞ0 ¼ E � lðcÞ ð3:1Þ

When some trusses are removed from the lattice at random, the total deformation within the lattice is addition of the
original deformation u0

(c)
and a disturbance deformation field u0(c), which is unknown at present and to be determined

later. Let B0 denote the set of all removed trusses. The force field within the lattice with defects can be written as

f
ðcÞ
¼

K ðcÞ � ðuðcÞ0 þu0ðcÞÞ c 2 B�B0

0� ðuðcÞ0 þu0ðcÞÞ c 2 B0

8<
: ð3:2Þ

In analogy with the Eshelby’s equivalent eigenstrain method, a suitable transformation deformation (eigendeforma-
tion) field

uðcÞ ¼
0 c 2 B�B

0

~uðcÞ c 2 B
0

(
ð3:3Þ

is chosen to superpose with the deformation field of the perfect triangular lattice, such that the resulting force field within
the lattice

f
ðcÞ
¼

K ðcÞ � ðuðcÞ0 þu0ðcÞÞ c 2 B�B

K ðcÞ � ðuðcÞ0 þu0ðcÞ� ~uðcÞÞ c 2 B
0

8<
: ð3:4Þ

is the same as that of the lattice with defects under the same boundary conditions (2.6), i.e.,

f
ðcÞ
¼

K ðcÞ � ðuðcÞ0 þu0ðcÞÞ

K ðcÞ � ðuðcÞ0 þu0ðcÞ� ~uðcÞÞ
¼

K ðcÞ � ðuðcÞ0 þu0ðcÞÞ c 2 B�B0

0� ðuðcÞ0 þu0ðcÞÞ c 2 B0

8<
:

8<
: ð3:5Þ

From (3.5) the eigendeformation needs to satisfy the consistency condition

uðcÞ0 þu0ðcÞ� ~uðcÞ ¼ 0 8c 2 B
0

ð3:6Þ

Based on the mechanical equivalence between the triangular lattice with defects and the perfect triangular lattice with
the eigendeformation, the macro stress tensor of the lattice with defects has the form

R¼
1

2S

X
c2B

K ðcÞ � ðuðcÞ0 þu0ðcÞÞ � lðcÞ þ lðcÞ � K ðcÞ � ðuðcÞ0 þu0ðcÞÞ
h i

�
1

2S

X
c2B

ðK ðcÞ � ~uðcÞ � lðcÞ þ lðcÞ � K ðcÞ � ~uðcÞÞ ð3:7Þ
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Divide the set of trusses in the perfect triangular lattice into a number of subsets, B¼B1[B2y[Bn. Each subset
composes of the trusses with the same stiffness tensor and length vector, and these trusses can be linked into an one-
dimensional chain whose two endpoints lies on the boundary of the lattice. As a result, the summation expression of the
first item on the right-hand side of (3.7) has the form

1

2S

X
c2B

K ðcÞ � ðuðcÞ0 þu0ðcÞÞ � lðcÞ þ lðcÞ � K ðcÞ � ðuðcÞ0 þu0ðcÞÞ
h i

¼
1

2S

Xn

i ¼ 1

K ðiÞ �
X
c2Bi

ðuðcÞ0 þu0ðcÞÞ

 !
� lðiÞ þ lðiÞ � K ðiÞ �

X
c2Bi

ðuðcÞ0 þu0ðcÞÞ

 !" #
ð3:8Þ

in which K(i) and l(i) are the stiffness tensor and the length vector of the trusses in the subset Bi, respectively. To satisfy
displacement boundary conditions (2.6), one can derive thatX

c2Bi

ðuðcÞ0 þu0ðcÞÞ ¼ E � ðxðiÞend�xðiÞstartÞ, i¼ 1,:::,n ð3:9Þ

where xstart
(i)

and xend
(i)

are the two endpoints of the one-dimensional chain constructed by the trusses of subset Bi, whereas
according to (2.10) we haveX

c2Bi

uðcÞ0 ¼ E � ðxðiÞend�xðiÞstartÞ i¼ 1,:::,n ð3:10Þ

Comparison of (3.9) and (3.10) leads toX
c2Bi

u0ðcÞ ¼ 0 i¼ 1,:::,n ð3:11Þ

From (3.7), (3.8) and (3.11), the macro stress tensor in (3.7) is simplified as

R¼
1

2S

X
c2B

ðK ðcÞ � uðcÞ0 � lðcÞ þ lðcÞ � K ðcÞ � uðcÞ0 Þ�
1

2S

X
c2B

0

ðK ðcÞ � ~uðcÞ � lðcÞ þ lðcÞ � K ðcÞ � ~uðcÞÞ ð3:12Þ

Consequently, the key problem of estimation of effective properties of a lattice with defects is transferred to solve the
eigendeformation field satisfying the consistency condition (3.6).

To find the relationship between the eigendeformation and the corresponding perturbation deformation, we extend the
definition of the eigendeformation prescribed on the trusses in the subset B0 to the whole lattice, i.e,

~uðcÞ ¼
0 c 2 B�B0

~uðcÞ c 2 B0

(
ð3:13Þ

Then (3.4) is rewritten as a unified fashion over the set B

f
ðcÞ
¼K ðcÞ � ðuðcÞ0 þu0ðcÞ� ~uðcÞÞ c 2 B ð3:14Þ

and the force equilibrium equations for a generic node p take a form

X6

a ¼ 1

f
ðpqaÞ
¼
X6

a ¼ 1

K ðaÞ � uðpqaÞ
0 þ

X6

a ¼ 1

K ðaÞ � u0ðpqaÞ�
X6

a ¼ 1

K ðaÞ � ~uðpqaÞ ¼ 0 ð3:15Þ

According to (2.7), the deformation field uðpqaÞ
0 in a perfect triangular lattice is given by uðpqaÞ

0 ¼ E � lðpqaÞ, which leads toP6
a ¼ 1 K ðaÞ � uðpqaÞ

0 ¼ 0. The force equilibrium Equations (3.15) reduces to

X6

a ¼ 1

K ðaÞ � u0ðpqaÞ�
X6

a ¼ 1

K ðaÞ � ~uðpqaÞ ¼ 0 ð3:16Þ

which implies the disturbance deformation field can be related to the eigendeformation distribution via (3.16).
Considering the contribution of eigendeformation distribution to the equations of equilibrium is similar to that of a type
of body force, i.e.

X6

a ¼ 1

K ðaÞ � u0ðpqaÞ þXðpÞ ¼ 0, XðpÞ ¼ �
X6

a ¼ 1

K ðaÞ � ~uðpqaÞ ð3:17Þ

the triangular lattice Green’s function can be used to derive the relationship between the eigendeformation and the
corresponding perturbation deformation.
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3.2. Lattice Green’s function for an infinite and perfect triangular lattice of trusses

Consider an infinite and perfect triangular lattice which consists of all nodes specified by position vector x given in
the form

x¼ l1a1þ l2a2 ð3:18Þ

where a1 and a2 are independent primitive translation vectors, such that the position vectors of the nearest neighbors of a
generic node p are rewritten as follows

xðq1Þ ¼ xðpÞ þ lð1Þ ¼ xðpÞ þ2a1, xðq4Þ ¼ xðpÞ þ lð4Þ ¼ xðpÞ�2a1,

xðq2Þ ¼ xðpÞ þ lð2Þ ¼ xðpÞ þa1þa2, xðq5Þ ¼ xðpÞ þ lð5Þ ¼ xðpÞ�a1�a2,

xðq3Þ ¼ xðpÞ þ lð3Þ ¼ xðpÞ�a1þa2, xðq6Þ ¼ xðpÞ þ lð6Þ ¼ xðpÞ þa1�a2

ð3:19Þ

Without loss of generality, one may assume that the lattice is in static balance by applying the external nodal forces
ff ext
g to all nodes of the lattice. Then, the elastic force on node p induced by the displacements of its neighbors (or itself)

must be balanced by an external force as given in the equation

X6

a ¼ 1

f ðpqaÞ ¼
X6

a ¼ 1

K ðaÞ � ðuðqaÞ�uðpÞÞ ¼ �f extðpÞ
ð3:20Þ

Introducing the lattice Green’s function to represent the displacement of the lattice at one node resulting from a unit
external force acting on the lattice at another node, the total displacement on node p can be rewritten as

uðpÞ ¼
X

p0
Gðxðp

0 Þ�xðpÞÞ � f extðp0 Þ
ð3:21Þ

where the summation with respect to p0 is referred to all nodes exerted by external forces. Substitution of (3.21) into (3.20)
gives the equilibrium equation in terms of the lattice Green’s function

f extðpÞ
¼ �

X6

a ¼ 1

K ðaÞ �
X

p0
Gðxðp

0 Þ�xðpÞ�lðaÞÞ�
X

p0
Gðxðp

0 Þ�xðpÞÞ

 !
� f extðp0 Þ

" #

¼�
X

p0

X6

a ¼ 1

K ðaÞ � ðGðxðp
0 Þ�xðpÞ�lðaÞÞ�Gðxðp

0 Þ�xðpÞÞÞ

" #
� f extðp0 Þ

ð3:22Þ

We find from (3.22) the lattice Green’s function for an infinite and perfect triangular lattice of trusses is the solution of
the following equation

X6

a ¼ 1

K ðaÞ � ðGðxðp
0 Þ�xðpÞ�lðaÞÞ�Gðxðp

0 Þ�xðpÞÞÞ ¼�IdðxðpÞ,xðp
0 ÞÞ ð3:23Þ

or the compact form

X6

a ¼ 1

K ðaÞ � ðGðl�lðaÞÞ�GðlÞÞ ¼�IdðlÞ ð3:24Þ

where d is the Dirac delta function.
To derive the lattice Green’s function, we take periodic boundary conditions along the directions parallel to the two

primitive translation vectors. Consider a perfect triangular lattice with L1 and L2 lattice nodes in the directions a1 and a2,
respectively. L1 and L2 are an even integer so as to be irrelevant in the limit L1-N and L2-N, respectively. The total
number of nodes in the lattice is L1L2. It is convenient, therefore, introduce the Fourier transform

GðlÞ ¼
1

L1L2

X
k

ĜðkÞeikUl ð3:25Þ

dðlÞ ¼
1

L1L2

X
k

eikUl ð3:26Þ

of the lattice Green’s function and the delta function into (3.24), and we can find

ĜðkÞ ¼
X6

a ¼ 1

K ðaÞð1�e�ikUlðaÞ Þ

" #�1

ð3:27Þ

Substituting (3.27) into (3.25) yields the solution of equation (3.24)

GðlÞ ¼
1

L1L2

X
k

X6

a ¼ 1

K ðaÞð1�e�ikUlðaÞ Þ

" #�1

eikUl ð3:28Þ
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Owing to the periodic boundary conditions, the wave vector k in (3.28) is limited to the first Brillouin zone and is
given by

k¼
m1

L1
b1þ

m2

L2
b2 ð3:29Þ

where m1 and m2 are integers such that –Li/2r mir Li/2 for i¼1,2, and bj are the reciprocal lattice vectors defined by

ai � bj ¼ 2pdij, i,j¼ 1,2 ð3:30Þ

When combining (3.28), (3.29) and (3.30) and setting

x1 ¼
2pm1

L1
, x2 ¼

2pm2

L2
, ð3:31Þ

the lattice Green’s function for an infinite and perfect triangular lattice takes the form

GðlÞ ¼
1

L1L2

X
ðx1 ,x2Þ

xðx1,x2Þ
�1eiðl1x1þ l2x2Þ ð3:32Þ

with

xðx1,x2Þ ¼K ð1Þð2�ei2x1�e�i2x1 ÞþK ð2Þð2�eiðx1þx2Þ�e�iðx1þx2ÞÞþK ð3Þð2�eiðx1�x2Þ�e�iðx1�x2ÞÞ ð3:33Þ

Furthermore, we set 2p/L1¼dx1, 2p/L2¼dx2 and let L1-N and L2-N. The discrete summation over (m1, m2) in (3.32)
may be recast into an integral form as follows

GðlÞ ¼
1

ð2pÞ2

Z p

�p

Z p

�p
½K ð1Þð2�ei2x1�e�i2x1 ÞþK ð2Þð2�eiðx1þx2Þ�e�iðx1þx2ÞÞ

þK ð3Þð2�eiðx1�x2Þ�e�iðx1�x2ÞÞ��1eiðl1x1þ l2x2Þdx1dx2 ð3:34Þ

The components of the integral expression of the lattice Green’s function are, respectively,

G11ðl1,l2Þ ¼
1

p2

Z p

0

Z p

0

½2ktð1�cos2x1Þþð3knþktÞð1�cosx1cosx2Þ�cosl1x1cosl2x2dx1dx2

9xðx1,x2Þ9

G12ðl1,l2Þ ¼ G21ðl1,l2Þ ¼
1

p2

Z p

0

Z p

0

ffiffiffi
3
p
ðkn�ktÞsinx1sinx2sinl1x1sinl2x2dx1dx2

9xðx1,x2Þ9

G22ðl1,l2Þ ¼
1

p2

Z p

0

Z p

0

½2knð1�cos2x1Þþðknþ3ktÞð1�cosx1cosx2Þ�cosl1x1cosl2x2dx1dx2

9xðx1,x2Þ9

xðx1,x2Þ
�� ��¼ ½2knð1�cos2x1Þþðknþ3ktÞð1�cosx1cosx2Þ�

�½2ktð1�cos2x1Þþð3knþktÞð1�cosx1cosx2Þ��3ðkn�ktÞ
2sin2x1sin2x2 ð3:35Þ

3.3. General expressions of effective elastic moduli of triangular lattice with defects

With the help of the lattice Green’s function, the contribution of the eigendeformation field to the disturbance
deformation of the cth truss is

u0ðcÞ ¼
X
c02B0
ðGðxðq

0 Þ�xðqÞÞ�Gðxðp
0 Þ�xðqÞÞþGðxðp

0 Þ�xðpÞÞ�Gðxðq
0 Þ�xðpÞÞÞ � K ðc

0 Þ
U ~uðc

0 Þ

¼
X
c02B0
ðGðlðqq0 Þ

Þ�Gðlðqp0 Þ
ÞþGðlðpp0 Þ

Þ�Gðlðpq0 Þ
ÞÞ � K ðc

0 Þ
� ~uðc

0 Þ
ð3:36Þ

where xðp
0 Þ and xðq

0 Þ are the position vectors of the two ends of the c0th truss, x(p) and x(q) the position vectors of the cth
truss. Substituting (3.36) into (3.6) yields

~uðcÞ�
X
c02B0
ðGðlðqq0 Þ

Þ�Gðlðqp0 Þ
ÞþGðlðpp0 Þ

Þ�Gðlðpq0 Þ
ÞÞ � K ðc

0 Þ
� ~uðc

0 Þ
¼ uðcÞ0 8c 2 B

0

ð3:37Þ

Combining equation (3.37) for each truss in the subset B0 and solving the system of linear equations, the
eigendeformation field will have the following form

~uðcÞ ¼
X
c02B0

T ðc,c0 Þ
� uðc0Þ0 8c 2 B

0

ð3:38Þ

From (3.38), the macro stress tensor of the triangular lattice with defects (3.12) can be rewritten as

R¼
1

2S

X
c2B

ðK ðcÞ � uðcÞ0 � lðcÞ þ lðcÞ � K ðcÞ � uðcÞ0 Þ�
1

2S

X
c2B

0

X
c02B0
ðK
ðc,c0 Þ
� uðc0Þ0 � lðcÞ þ lðcÞ � K

ðc,c0 Þ
� uðc0Þ0 Þ ð3:39Þ



X. Liu, N. Liang / J. Mech. Phys. Solids 60 (2012) 1722–17391730
with

K
ðc,c0 Þ
¼K ðcÞ � T ðc,c0 Þ

ð3:40Þ

Consequently, the effective elastic stiffness tensor of a triangular lattice with arbitrarily shaped defects is obtained in a
unified way as

Cijst ¼ C
0

ijst�
l20
4S

X
c2B

0

X
c02B0
ðK
ðc,c0Þ

is nðcÞj nðc0Þt þK
ðc,c0Þ

it nðcÞj nðc0Þs þK
ðc,c0Þ

js nðcÞi nðc0Þt þK
ðc,c0Þ

jt nðcÞi nðc0Þs Þ ð3:41Þ

where C
0

ijst is given by (2.11).

4. Elastic moduli of stretch-dominated triangular lattice with defects

In this section, we apply the general procedure of Section 3 to estimate the effective elastic properties of an infinite
triangular lattice containing a dilute concentration of defects. Let us consider an infinite perfect stretch-dominated
triangular structure with cell size l0 and axial stiffness kn, and prescribe the homogeneous strain E at infinity. Some trusses
with the number density f are fractured and removed from the lattice. In order to investigate the contribution of the
interaction between adjacent fractured trusses around each lattice node into the effective moduli of lattice structure, the
following four types of defect modes will be discussed: (i) single-truss defect, i.e., only one truss is allowed to be fractured
at a node; (ii) double-truss defect, i.e., a couple of trusses with 1801 angles are allowed to be fractured at a node; (iii) triple-
truss defect, i.e., three trusses which form 1201 angles with each other are allowed to be fractured at a node; (iv) cell
defect, i.e., all six trusses connecting a node and its nearest neighbors are fractured; see Fig. 3 for a schematic diagram. For
each defect mode, the predictions are obtained under the condition of dilute distribution. The dilute solutions are rigorous
at small defect densities.

4.1. Case 1: Single-truss defects

Consider a truss connecting two nearest-neighboring nodes p and q and remove it from the infinite perfect
stretch-dominated triangular lattice, as shown in Fig. 3(a), the eigendeformation prescribed on the truss can be given
from (3.37) by

~uðpqÞ
¼ ½I�2ðGð0Þ�Gðl0nðpqÞÞÞ � knnðpqÞ � nðpqÞ��1 � E � l0nðpqÞ ð4:1Þ

where n(pq) is the unit vector of the truss defect. Without loss of generality, we assume n(pq) have the following three
directions

yða ¼ 1Þ
¼ 01 : nða ¼ 1Þ ¼ ð1,0Þ;

yða ¼ 2Þ
¼ 601 : nða ¼ 2Þ ¼ 1

2 ,
ffiffi
3
p

2

� �
;

yða ¼ 3Þ
¼ 1201 : nða ¼ 3Þ ¼ �1

2 ,
ffiffi
3
p

2

� �
; ð4:2Þ

Combining (4.2), (4.1), (3.35), (3.40) and (3.41) and omitting the details of derivation for brevity, the overall elastic
stiffness tensor of the lattice containing a single-truss defect is derived as follows:

CðbÞijst ¼
knl20

S

X
c

nðcÞi nðcÞj nðcÞs nðcÞt �
1

DðaÞ
nðaÞi nðaÞj nðaÞs nðaÞt

 !
ð4:3Þ
Fig. 3. The four types of defect modes in a triangular cell: (a) single-truss defect, (b) double-truss defect, (c) triple-truss defect, (d) cell defect.



X. Liu, N. Liang / J. Mech. Phys. Solids 60 (2012) 1722–1739 1731
where

DðaÞ ¼
1� 2

p2

R p
0

R p
0

ð1�cos2x1Þð1�cosx1cosx2Þdx1dx2

ð3�2cos2x1�cosx1cosx2Þð1�cosx1cosx2Þ�sin2x1sin2x2

if a¼ 1

1
p2

R p
0

R p
0

ð1�cos2x1Þð1�cosx1cosx2Þdx1dx2

ð3�2cos2x1�cosx1cosx2Þð1�cosx1cosx2Þ�sin2x1sin2x2

if a¼ 2,3

8><
>: ð4:4Þ

Taking into account the symmetry of the lattice, D(a) is independent of the orientation, that is

1

p2

Z p

0

Z p

0

ð1�cos2x1Þð1�cosx1cosx2Þdx1dx2

ð3�2cos2x1�cosx1cosx2Þð1�cosx1cosx2Þ�sin2x1sin2x2

¼
1

3
ð4:5Þ

The numerical calculation using package DECUHR for automatic integration of singular functions over a hyper-
rectangular region (Espelid and Genz, 1994) also gives the same result as (4.5).

When some single-truss defects are evenly distributed and randomly oriented throughout an infinite triangular lattice
and the system is ‘‘dilute’’, i.e. each of the single-truss defects can be treated independently, without any contribution from
each other. In this case, averaging over the single-truss defect array is thus reduced simply to summation over the three
directions (a¼1,2,3). From (4.3), analytical solutions of the effective moduli of triangular lattice with single-truss defects
have the form

Cijst ¼
knl20

S

X
c

nðcÞi nðcÞj nðcÞs nðcÞt �
3knl20N

S

X3

a ¼ 1

fðaÞnðaÞi nðaÞj nðaÞs nðaÞt ð4:6Þ

where N is the total number of trusses of the perfect lattice, f(a) is the number density of the single-truss defects oriented
in n(a) (a¼1,2,3). Considering the number densities of single-truss defects are the same in the three directions
(i.e., f(a)

¼f/3) and the lattice structure is infinite (i.e., N-N), one has the following set of equations

C1111 ¼ C2222 ¼
3
ffiffiffi
3
p

knð1�3fÞ
4

, C1122 ¼ C2211 ¼ C1212 ¼

ffiffiffi
3
p

knð1�3fÞ
4

ð4:7Þ

For plane stress, the effective Young’s modulus E*, the shear modulus m* and the effective Poisson’s ratio n* are

En

E0
¼ 1�3f or

En

Es
¼ ð1�3fÞ

2
ffiffiffi
3
p

t

3l
ð4:8Þ

mn

m0

¼ 1�3f or
mn

Es
¼ ð1�3fÞ

ffiffiffi
3
p

t

4l
ð4:9Þ

nn

n0
¼ 1 or nn ¼ 1

3
ð4:10Þ

To verify the formulation presented above and evaluate the suitability of the dilute model, an intact periodic triangular
lattice with the relative density

r¼ 2
ffiffiffi
3
p

t

l
¼ 0:15 ð4:11Þ

is weaken by the truss defects whose number density f is varied in the range of 0–0.32. Substituting (4.11) into (4.8) and
(4.9), the normalized Young’s modulus and shear modulus are then plotted in Fig. 4 against the number density of the truss
defects. For comparison, the reference results which have been taken from Wang and McDowell (2003) using the FEM are
included in Fig. 4. One can show that the dilute solutions for the Young’s modulus and the shear modulus are in excellent
agreement with the numerical results up to the number density f¼0.16. Additionally, the successfulness of the
comparison implies that the effective Poisson’s ratio of a stretch-dominated triangular lattice containing randomly
dispersed truss defects keeps 1/3 for the number density 0ofo0.16. From Fig. 4 it is also seen that the dilute results are
lower than the FEM data at a number density of about 0.32. It is due to the reason that the interactions between truss
defects are ignored. Though this is an open problem of the dilute approximation, it may fall outside practical application
limits considering the approximation of non-interacting truss defects remains accurate at relatively high number density
of the truss defects.

4.2. Case 2: Double-truss defects

If a couple of trusses in the infinite perfect stretch-dominated triangular lattice are fractured, which connect node p and
its nearest-neighboring nodes qa and qb and form 1801 angles with each other, as shown in Fig. 3(b), (3.37) can be
rewritten as

~uðpqaÞ�2ðGð0Þ�GðlðpqaÞÞÞ � K ðpqaÞ � ~uðpqaÞ�ðGðlðqaqbÞÞ�GðlðqapÞ
ÞþGð0Þ�GðlðpqbÞÞÞ � K ðpqbÞ � ~uðpqbÞ ¼ E � lðpqaÞ

~uðpqbÞ�2ðGð0Þ�GðlðpqbÞÞÞ � K ðpqbÞ � ~uðpqbÞ�ðGðlðqbqaÞÞ�GðlðqbpÞ
ÞþGð0Þ�GðlðpqaÞÞÞ � K ðpqaÞ � ~uðpqaÞ ¼ E � lðpqbÞ ð4:12Þ
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Fig. 4. Effects of number density of truss defects on the effective Young’s modulus and shear modulus of triangular lattice.
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Here where lðpqiÞ, K ðpqiÞ and ~uðpqiÞ(i¼a,b) are the length vector, the stiffness matrix and the eigendeformation of truss
(pqi), respectively. By the requirement of symmetry of nodes qa and qb with respect to node p, we find easily that

lðpqaÞ ¼ �lðpqbÞ ¼ l0nðpqaÞ, K ðpqaÞ ¼K ðpqbÞ ¼ knnðpqaÞ � nðpqaÞ, K ðpqaÞ ¼K ðpqbÞ ¼ knnðpqaÞ � nðpqaÞ ð4:13Þ

where nðpqaÞ is the unit vector of truss (pqa),, which is without loss of generality assumed to be one of the three directions in
(4.2). Substituting (4.13) into (4.12), the eigendeformations prescribed on the trusses are given by

~uðpqaÞ ¼ � ~uðpqbÞ ¼ ½I�ðGð0Þ�Gð2l0nðpqaÞÞÞ � knnðpqaÞ � nðpqaÞ��1 � E � l0nðpqaÞ ð4:14Þ

Since it is not easy to analytically calculate the Green’s functions in (4.14), a numerical scheme is then used. With the
help of package DECUHR, we have

I�ðGð0Þ�Gð2l0nðpqaÞÞÞ � knnðpqaÞ � nðpqaÞ
� �

¼

0:494 0:0

0:0 1:0

� 	
if nðpqaÞ ¼ ð1,0Þ

0:873 -0:219

�0:219 0:62

� 	
if nðpqaÞ ¼ 1

2 ,
ffiffi
3
p

2

� �
0:873 0:219

0:219 0:62

� 	
if nðpqaÞ ¼ �1

2 ,
ffiffi
3
p

2

� �

8>>>>>>>>><
>>>>>>>>>:

ð4:15Þ

Combing (4.14), (4.15), (3.40) and (3.41), approximate analytical solutions of the effective moduli of the lattice
containing a double-truss defect is derived as follows

CðbÞijst ¼
knl20

S

X
c

nðcÞi nðcÞj nðcÞs nðcÞt �4:05nðaÞi nðaÞj nðaÞs nðaÞt

 !
ða¼ 1,2,3Þ ð4:16Þ
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When an infinite triangular lattice contains a random distribution of randomly oriented double-truss defects and the
interaction among the double-truss defects can be ignored, the overall moduli for a lattice with double-truss defects are
given from (4.16) by

Cijst ¼
knl20

S

X
c

nðcÞi nðcÞj nðcÞs nðcÞt �
4:05knl20N

S

X3

a ¼ 1

fðaÞnðaÞi nðaÞj nðaÞs nðaÞt ð4:17Þ

where f(a) is the number density of the double-truss defects oriented in n(a) (a¼1,2,3). As f(a) are the same in the three
directions (i.e., f(a)

¼f/6) and N-N, we obtain

C1111 ¼ C2222 ¼
3
ffiffiffi
3
p

knð1�2:025fÞ
4

, C1122 ¼ C2211 ¼ C1212 ¼

ffiffiffi
3
p

knð1�2:025fÞ
4

ð4:18Þ

For plane stress, the normalized Young’s modulus, the shear modulus and the effective Poisson’s ratio are, respectively,

En

E0
¼ 1�2:025f ð4:19Þ

mn

m0

¼ 1�2:025f ð4:20Þ

nn

n0
¼ 1 ð4:21Þ

4.3. Case 3: Triple-truss defects

If three trusses in the infinite perfect stretch-dominated triangular lattice are fractured, which connect node
p and its nearest-neighboring nodes qa, qb and qc and form 1201 angles with each other, as shown in Fig. 3(c), (3.37)
can be rewritten as

~uðpqaÞ�2ðGð0Þ�GðlðpqaÞÞÞ � K ðpqaÞ � ~uðpqaÞ�ðGðlðqaqbÞÞ�GðlðqapÞ
ÞþGð0Þ�GðlðpqbÞÞÞ � K ðpqbÞ � ~uðpqbÞ

�ðGðlðqaqc ÞÞ�GðlðqapÞ
ÞþGð0Þ�Gðlðpqc ÞÞÞ � K ðpqc Þ � ~uðpqc Þ ¼ E � lðpqaÞ

~uðpqbÞ�2ðGð0Þ�GðlðpqbÞÞÞ � K ðpqbÞ � ~uðpqbÞ�ðGðlðqbqaÞÞ�GðlðqbpÞ
ÞþGð0Þ�GðlðpqaÞÞÞ � K ðpqaÞ � ~uðpqaÞ

�ðGðlðqbqc ÞÞ�GðlðqbpÞ
ÞþGð0Þ�Gðlðpqc ÞÞÞ � K ðpqc Þ � ~uðpqc Þ ¼ E � lðpqbÞ

~uðpqc Þ�2ðGð0Þ�Gðlðpqc ÞÞÞ � K ðpqc Þ � ~uðpqc Þ�ðGðlðqcqaÞÞ�GðlðqcpÞ
ÞþGð0Þ�GðlðpqaÞÞÞ � K ðpqaÞ � ~uðpqaÞ

�ðGðlðqcqbÞÞ�GðlðqcpÞ
ÞþGð0Þ�GðlðpqbÞÞÞ � K ðpqbÞ � ~uðpqbÞ ¼ E � lðpqc Þ ð4:22Þ

where lðpqiÞ, K ðpqiÞ and ~uðpqiÞ(i¼a,b,c) are the length vector, the stiffness matrix and the eigendeformation of truss (pqi)
respectively. Without loss of generality, we assume the unit vector of truss (pqa), nðpqaÞ, can have the following two
directions: ð1,0Þ or ð1=2,

ffiffiffi
3
p

=2Þ. By using package DECUHR, if nðpqaÞ ¼ ð1,0Þ, the numerical solution of (4.22) is given by

~uðpqaÞ

~uðpqbÞ

~uðpqc Þ

8><
>:

9>=
>;¼

0:333 0:0 �0:057 0:1 �0:057 �0:1

0:0 1:0 0:113 �0:195 �0:113 �0:195

�0:253 0:0 0:833 0:288 �0:069 �0:119

�0:013 0:0 0:288 0:5 �0:106 �0:184

�0:253 0:0 �0:069 0:119 0:833 �0:288

0:013 0:0 0:106 �0:184 �0:288 0:5

2
666666664

3
777777775

�1

E � l0nð1Þ

E � l0nð3Þ

�E � l0nð2Þ

8><
>:

9>=
>; ð4:23Þ

and if nðpqaÞ ¼ ð1=2,
ffiffiffi
3
p

=2Þ, the numerical solution of (4.22) is given by

~uðpqaÞ

~uðpqbÞ

~uðpqc Þ

8><
>:

9>=
>;¼

0:833 �0:288 �0:253 0:0 �0:069 0:119

�0:288 0:5 0:013 0:0 0:106 �0:184

�0:057 �0:1 0:333 0:0 �0:057 0:1

�0:113 �0:195 0:0 1:0 0:113 �0:195

�0:069 �0:119 �0:253 0:0 0:833 0:288

�0:106 �0:184 �0:013 0:0 0:288 0:5

2
666666664

3
777777775

�1

E � l0nð2Þ

�E � l0nð1Þ

�E � l0nð3Þ

8><
>:

9>=
>; ð4:24Þ

Substituting (4.23) or (4.24) into (3.40) and combining with (3.41), we found that whichever direction nðpqaÞ takes,
approximate analytical solutions of the effective moduli of the lattice containing a triple-truss defect is of the form:

CðbÞijst ¼
knl20

S

X
c

nðcÞi nðcÞj nðcÞs nðcÞt �3:65
knl20

S

X3

a ¼ 1

nðaÞi nðaÞj nðaÞs nðaÞt
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þ0:938
knl20

S
ðnð1Þi nð1Þj nð2Þs nð2Þt þnð2Þi nð2Þj nð1Þs nð1Þt þnð1Þi nð1Þj nð3Þs nð3Þt

þnð3Þi nð3Þj nð1Þs nð1Þt þnð2Þi nð2Þj nð3Þs nð3Þt þnð3Þi nð3Þj nð2Þs nð2Þt Þ ð4:25Þ

When the condition of dilute distribution is assumed and the interaction among the three-truss defects is neglected, the
overall moduli of an infinite triangular lattice with triple-truss defects is approximated from (4.25) by

Cijst ¼
knl20

S

X
c

nðcÞi nðcÞj nðcÞs nðcÞt �3:65
knl20Nf

3S

X3

a ¼ 1

nðaÞi nðaÞj nðaÞs nðaÞt þ0:938
knl20Nf

3S
ðnð1Þi nð1Þj nð2Þs nð2Þt þnð2Þi nð2Þj nð1Þs nð1Þt þnð1Þi nð1Þj nð3Þs nð3Þt

þnð3Þi nð3Þj nð1Þs nð1Þt þnð2Þi nð2Þj nð3Þs nð3Þt þnð3Þi nð3Þj nð2Þs nð2Þt Þ ð4:26Þ

Let N-N, one has the following set of equations

C1111 ¼ C2222 ¼
3
ffiffiffi
3
p

knð1�2:712fÞ
4

,

C1122 ¼ C2211 ¼

ffiffiffi
3
p

knð1þ1:04fÞ
4

, C1212 ¼

ffiffiffi
3
p

knð1�4:588fÞ
4

ð4:27Þ

For plane stress, the normalized Young’s modulus, the shear modulus and the effective Poisson’s ratio are, respectively,

En

E0
¼

9ð1�2:712fÞð1�ðnnÞ2Þ
8

� 1�3:65fþOðf2
Þ ð4:28Þ

mn

m0

¼ 1�4:588f ð4:29Þ

nn

n0
¼

1þ1:04f
1�2:712f

� 1þ3:752fþOðf2
Þ ð4:30Þ
4.4. Case 4: Cell defects

If all six trusses connecting a typical node p and its nearest neighbors qa (a¼1,y, 6) are fractured and removed from
the infinite perfect stretch-dominated triangular lattice, as shown in Fig. 3(d), (3.37) can be rewritten as

~uðpqaÞ�
X6

a0 ¼ 1

ðGðlðqaqa0 ÞÞ�GðlðqapÞ
ÞþGð0Þ�Gðlðpqa0 ÞÞÞ � K ða

0 Þ
� ~uðpqa0 Þ ¼ E � lðpqaÞ, ða¼ 1,. . ., 6Þ ð4:31Þ

It is important to emphasize that the above resulting system of linear equations is ill-conditioned. The reason is that
since node p is not connect by trusses with any of its nearest neighbors in the cell defect, the disturbance displacement
u0(p) of node p can then be arbitrary value. In this case, we add an additional constraint conditions to the disturbance
displacement field, i.e.,

u0ðpÞ ¼
X6

a0 ¼ 1

ðGðlðpqa0 ÞÞ�Gð0ÞÞ � K ða
0 Þ
� ~uðpqa0 Þ ¼ 0 ð4:32Þ

Substituting (4.32) into (4.31), the eigendeformation of the six truss removed can be rewritten as

~uðpqaÞ�
X6

a0 ¼ 1

ðGðlðqaqa0 ÞÞ�GðlðqapÞ
ÞÞ � K ða

0 Þ
� ~uðpqa0 Þ ¼ E � lðpqaÞ ða¼ 1,. . ., 6Þ ð4:33Þ

Without loss of generality, we assume the unit vector of truss (pq1), nðpq1Þ, to be ð1,0Þ. After using package DECUHR for
numerical integral of Green’s functions in (4.33), the numerical solution of the eigendeformation field is derived as follows

~uðpq1Þ

~uðpq2Þ

~uðpq3Þ

~uðpq4Þ

~uðpq5Þ

~uðpq6Þ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
¼

A B

B A

� 	�1

E � l0nð1Þ

E � l0nð2Þ

E � l0nð3Þ

�E � l0nð1Þ

�E � l0nð2Þ

�E � l0nð3Þ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

ð4:34Þ
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where

A¼

0:667 0:0 0:055 0:094 0:026 �0:045

0:0 1:0 �0:032 �0:055 �0:032 0:055

0:0 0:0 0:917 �0:144 �0:055 0:094

0:126 0:0 �0:144 0:75 �0:032 0:055

0:08 0:0 �0:055 �0:094 0:917 0:144

�0:013 0:0 0:032 0:055 0:144 0:75

2
666666664

3
777777775

,

B¼

0:173 0:0 0:026 0:045 0:055 �0:094

0:0 0:0 0:032 0:055 0:032 �0:055

0:08 0:0 0:043 0:075 0:014 �0:025

0:013 0:0 0:075 0:13 �0:038 0:066

0:0 0:0 0:014 0:025 0:043 �0:075

�0:126 0:0 0:038 0:066 �0:075 0:13

2
666666664

3
777777775

Combing (4.34), (3.40) and (3.41), the overall elastic stiffness tensor of the lattice is given by

CðpÞijst ¼
knl20

S

X
c

nðcÞi nðcÞj nðcÞs nðcÞt �4:1528
knl20

S

X3

a ¼ 1

nðaÞi nðaÞj nðaÞs nðaÞt

þ0:4344
knl20

S
ðnð1Þi nð1Þj nð2Þs nð2Þt þnð2Þi nð2Þj nð1Þs nð1Þt þnð1Þi nð1Þj nð3Þs nð3Þt

þnð3Þi nð3Þj nð1Þs nð1Þt þnð2Þi nð2Þj nð3Þs nð3Þt þnð3Þi nð3Þj nð2Þs nð2Þt Þ ð4:35Þ

In the case of the dilute limit, the interactions between different cell defects are negligible. The effective elastic stiffness
tensor of an infinite triangular lattice containing randomly dispersed cell defects is approximated from (4.35) by

Cijst ¼
knl20

S

X
c

nðcÞi nðcÞj nðcÞs nðcÞt �4:1528
knl20Nf

6S

X3

a ¼ 1

nðaÞi nðaÞj nðaÞs nðaÞt

þ0:4344
knl20Nf

6S
ðnð1Þi nð1Þj nð2Þs nð2Þt þnð2Þi nð2Þj nð1Þs nð1Þt þnð1Þi nð1Þj nð3Þs nð3Þt

þnð3Þi nð3Þj nð1Þs nð1Þt þnð2Þi nð2Þj nð3Þs nð3Þt þnð3Þi nð3Þj nð2Þs nð2Þt Þ ð4:36Þ

where f is the volume fraction of all removed trusses. Let N-N, one has the following set of equations

C1111 ¼ C2222 ¼
3
ffiffiffi
3
p

knð1�1:8592fÞ
4

,

C1122 ¼ C2211 ¼

ffiffiffi
3
p

knð1�0:9904fÞ
4

, C1212 ¼

ffiffiffi
3
p

knð1�2:2936fÞ
4

ð4:37Þ

For plane stress, one obtains the normalized Young’s modulus, the shear modulus and the effective Poisson’s ratio

En

E0
¼

9ð1�1:859fÞð1�ðnnÞ2Þ
8

� 1�2:076fþOðf2
Þ ð4:38Þ

mn

m0

¼ 1�2:294f ð4:39Þ

nn

n0
¼

1�0:99f
1�1:859f

� 1þ0:869fþOðf2
Þ ð4:40Þ
5. Results and discussions

The effective elastic moduli predicted in the previous section are compared with the Hashin-Shtrikman upper bounds
and uniform strain upper bounds in this section. Furthermore, Section 4 together with this Section then reveals the effect
of the interactions between adjacent fractured trusses on the properties of the lattice.
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5.1. Hashin–Shtrikman (HS) upper bounds

Torquato et al. (1998) treated a perfect triangular lattice as a two-dimensional porous solid in the limit that the solid
volume fraction is very small, and derived the Hashin–Shtrikman (HS) upper bounds given by

E0

Es
r

2
ffiffiffi
3
p

t

3l
,

m0

Es
r

ffiffiffi
3
p

t

4l
ð5:1Þ

Following the same assumptions, the HS upper bounds can be deduced for a triangular lattice containing randomly
dispersed truss defects. When trusses with the number density f are fractured, the upper bounds for the Young’s and
shear moduli of the lattice are given by

En

E0
r1�f or

En

Es
r ð1�fÞ

2
ffiffiffi
3
p

t

3l
ð5:2Þ

mn

m0

r1�f or
mn

Es
r ð1�fÞ

ffiffiffi
3
p

t

4l
ð5:3Þ

5.2. Uniform strain upper bounds

On the other hand, the upper bounds for the effective elastic moduli of granular materials are derived using the
principle of minimum potential energy and the uniform strain assumption (for example, Henderson et al., 2001; Kruyt and
Rothenburg, 2002). Analogous methods can be used to estimate the elastic moduli of triangular lattices containing
randomly dispersed truss defects. Assuming every node within the triangular lattice displaces in accordance with the
macro strain tensor E

uðpÞ ¼ E � xðpÞ ð5:4Þ

and using the homogenization process shown in Fig. 2, we can derive another set of solutions

C1111 ¼ C2222 ¼
3
ffiffiffi
3
p

knð1�fÞ
4

, C1122 ¼ C2211 ¼ C1212 ¼

ffiffiffi
3
p

knð1�fÞ
4

ð5:5Þ

For plane stress, the effective Young’s modulus En

as and the shear modulus mn
as are

En

as

E0
¼ 1�f or

En

as

Es
¼ ð1�fÞ

2
ffiffiffi
3
p

t

3l
ð5:6Þ

mn
as

m0

¼ 1�f or
mn

as

Es
¼ ð1�fÞ

ffiffiffi
3
p

t

4l
ð5:7Þ

Comparison of (5.2), (5.3) and (5.6), (5.7) shows that the HS upper bounds coincide with those predicted on the base of
the uniform strain assumption. It should be pointed out that Durand (2005) derived the upper-bound for the bulk modulus
of 2D cellular materials by imposing a uniform radially oriented displacement on the boundary of a circular portion of a
cellular network and using the principle of minimum potential energy. He found the bulk modulus recovers exactly the
expression of the HS upper bounds in the low-density limit. It can be easily seen that the boundary displacement defined
by Durand is a special case of the uniform strain assumption.

The variation of the normalized Young’s modulus En=E0 and shear modulus Gn=G0 in (5.6) and (5.7) with the number
density of fractured trusses f for plane–stress state of deformation are shown in Figs. 5 and 6 respectively. Also shown in
these figures are the results of the present model for the four types of defect modes. It can be seen that the present results
are much lower than the HS upper bound solutions. This observation implies that more rigorous bounds of the Hashin–
Shtrikman type could be obtained by taking advantage of the solution to the auxiliary problem of an isolated defect in an
infinite triangular lattice.

5.3. Interactions among adjacent fractured trusses

Figs. 5 and 6 also show that the effective elastic moduli of a triangular lattice with defects strongly depend on the
interactions between adjacent fractured trusses. As the same number density of trusses is fractured, compared with the
single-truss defect mode, the double-truss defect mode has much higher stiffness while the triple-truss defect mode has
much lower stiffness. A reasonable explanation of the above results is that there exist amplification and shielding effects
between adjacent fractured trusses sharing a common node. If adjacent fractured trusses are collinear, each fractured truss
is subjected to the shielding effect from the remaining fractured truss, and the interactions will cause less reduction in the
effective Young’s and shear modulus. Conversely, if adjacent fractured trusses are non-collinear, each fractured truss is
subjected to the amplification effect from the remaining fractured truss, and the interactions will cause more reduction in
the effective Young’s and shear modulus. For the cell defect mode, it seems that the stress amplifying effect plays a more



0.5

0.6

0.7

0.8

0.9

1.0

  HS upper bound
  Single-truss defect
  Double-truss defect
  Triple-truss defect
  Cell defect

E
ffe

ct
iv

e 
Y

ou
ng

's
 M

od
ul

us
 E

* /E
0

Numerical density of fractured trusses

0.00 0.02 0.04 0.06 0.08 0.10

Fig. 5. Variation of normalized Young’s modulus with numerical density of fractured trusses.

0.5

0.6

0.7

0.8

0.9

1.0

  HS upper bound
  Single-truss defect
  Double-truss defect
  Triple-truss defect
  Cell defect

E
ffe

ct
iv

e 
S

he
ar

 M
od

ul
us

 μ
* /μ

Numerical density of fractured trusses

0.00 0.02 0.04 0.06 0.08 0.10

Fig. 6. Variation of normalized shear modulus with numerical density of fractured trusses.

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5
  Single-truss defect
  Double-truss defect
  Triple-truss defect
  Cell defect

E
ffe

ct
iv

e 
P

oi
ss

on
's

 ra
tio

 ν
* /ν

0

Numerical density of removed trusses

0.00 0.02 0.04 0.06 0.08 0.10

Fig. 7. Variation of normalized Poisson ratio with numerical density of fractured trusses.

X. Liu, N. Liang / J. Mech. Phys. Solids 60 (2012) 1722–1739 1737



X. Liu, N. Liang / J. Mech. Phys. Solids 60 (2012) 1722–17391738
significant role than the stress shielding effect in the effective Young’s and shear modulus. In this case, a triangular lattice
with cell defects exhibits more slow reduction of the effective Young’s and shear modulus than a triangular lattice with
single-truss defects.

Another important aspect of our analytical results is the variation in the Poission ratio for the four types of defect
modes, as shown in Fig. 7. It is interesting to see that the effective Poisson’s ratio for the lattice with double-truss defects
remains unchanged with increasing defect density, which is the same as the case of the lattice with single-truss defects. On
the other hand, the presence of triple-truss defects produces a significant increase in the effective Poisson ratio.
Considering a hexagonal lattice can be constructed from a triangular lattice by removing three trusses at 1201 to each
other from a triangular cell, and the overall Poisson ratio of a hexagonal lattice is 1 (for example, Wang and McDowell,
2003; Fleck and Qiu, 2007), it seems reasonable that the overall Poisson ratio of a triangular lattice increases gradually
with increasing the number of three-truss defects, since the appearance of three-truss defects causes that a triangular
lattice gradually becomes a hexagonal lattice. For the cell defect mode, the competition of collinear and non-collinear
effects of adjacent fractured trusses results in the slight increase in the effective Poisson’s ratio with increasing the number
density of the removed trusses.

6. Conclusions

This paper presents a micro-discrete homogenization method to predict the overall macroscopic response of triangular
lattice materials with microstructural defects. In Section 2, a general homogenization process for the modeling of lattice
materials is proposed based on homogeneous strain boundary conditions (2.6), the local constitutive law (2.3) and the static
average operator (2.5). Using the proposed homogenization process, an explicit closed-form solution of the effective moduli
(2.12) is directly derived for intact periodic triangular lattices. Accounting for the fact that non-periodic defects lead to the
difficulties of deriving the elastic displacement fields, an eigendeformation method is developed to establish the equivalency
between an imagining displacement field (eigendisplacement) and a defect distribution in Section 3. The mechanical
response of a triangular lattice with defects, under uniform far-field loading, is proved to be equivalent to that of a perfect
periodic lattice with an eigendisplacement field. In order to solve the equivalent eigendeformation field via Green’s function
technique, closed-form expression for the Green’s function for triangular lattice is given by (3.35), which correlates the
displacement at one lattice site to a unit force acting on another lattice site. With the help of a combination of the
homogenization process, the eigendeformation method and the lattice Green’s function, a compact analytical formula (3.41)
is deduced to calculate the effective elastic moduli for triangular lattice containing different types of defects.

In Section 4, the present homogenization method is applied in particular to investigate the influence of fractured cell
walls (truss defects) and missing cells (cell defects) on the overall elastic moduli of stretch-dominated triangular lattices in
the case of the dilute limit. It is shown that the predicted effective Young’s and shear moduli of triangular lattices with the
single-truss defect mode are in good agreement with FE calculations reported by Wang and McDowell (2003) in the dilute
limit, see Fig. 4. Comparisons with the Hashin–Shtrikman upper bounds are given in Section 5. It is proved that the
Hashin–Shtrikman upper bounds are identical to those resulting from the assumption of uniform strain but much larger
than the results of the present model for the four types of defect modes, see Figs. 5 and 6.

Section 4 together with Section 5 also reveals the interactions between adjacent fractured trusses have strongly effects
on the effective elastic moduli of the lattice. On the one hand, as the same number density of trusses is fractured, the
double-truss defect mode has the highest stiffness while the triple-truss defect mode has the lowest stiffness. The stiffness
of the single-truss defect mode and the cell defect mode lie between the former two cases, see Figs. 5 and 6. On the other
hand, with increasing the numerical density of fractured trusses, the effective Poisson’s ratio remains unchanged for the
single-truss defect mode and the double-truss defect mode while the effective Poisson’s ratio increases gradually for the
triple-truss defect mode and the cell defect mode, see Fig. 7. We therefore could conclude that not only the effective
Young’s and shear moduli but also the effective Poisson’s ratio of triangular lattice materials depend on the number
density of fractured cell walls and their spatial arrangements.

The proposed homogenization method provides a new vehicle for analytical estimation of lattice materials containing
microstructural defects. Extension of the proposed micromechanical method to damaged lattice materials with other types
of cell shapes, such as 2D square and hexagonal honeycombs and 3D octet-truss materials is possible, and will be
investigated in detail in a forthcoming paper by the authors. Additionally, Day et al. (1992) applied computer simulation
techniques to obtain the elastic moduli of an infinite triangular spring network containing circular holes. They found that
the Poisson’s ratio goes to a fixed value of 1/3 for random arrangements. The same Poisson ratio was also predicted using
effective medium theories (Jun and Jasiuk, 1993). The above conclusions are different from the dilute solutions of the
present model. The reason for this difference is that each circular hole composes of many cell defects, which interact
strongly with each other. In this case, the condition of dilute distribution of cell defects is not satisfied, and the obtained
effective moduli need to be further improved by taking into account the effect of micro-defect interactions.
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