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We extend Sih’s strain energy density criterion (Sih, 1974) for crack kinks and material failure by weight-
ing differently the volumetric and distortional parts in the extended strain energy density factor. The
work is inspired by the factor that failure by microscopic shearing governed by distortion and micro-
scopic separation controlled by hydrostatic tension represent distinct deformation processes, and should
be treated differently as we count their influences to material failure. With the weight parameter intro-
duced to the extended strain energy density factor criterion, we explain satisfactorily several critical
experiments which reported crack kink in samples subjected to mixed-mode loading. The extended strain
energy density idea is also used to derive a generalized pressure-dependent yielding criterion, which sup-
plies a theoretical basis for those novel strength criteria for materials like bulk metallic glasses. Corre-
sponding methods to determine the two material parameters, the critical strain energy density factor
and the weight parameter quantifying the relative contribution by distortion over volumetric deforma-
tion, are discussed.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

When materials are initially cracked and are subjected to loads
exceeding a certain level, the cracks will extend. Engineers are con-
cerned about what methods could accurately predict crack propa-
gation. With their endeavors in more than half century, now
several physically rooted parameters are developed, among which
including the energy release rate G (Griffith, 1921; Irwin, 1957),
stress intensity factor K (Irwin, 1957), J-integral (Rice, 1968),
crack-tip opening displacement dc (Wells, 1961; Cottrell, 1961),
together with a recently developed criterion by taking an analogy
of fracture with plasticity theory (Salvadori, 2008). There exist
many applications by using aforementioned criteria. It is generally
accepted that those criteria are better suited for materials with
small scale yielding at the crack tip. For crack propagation in se-
verely plastically deformed crack tips, those criteria face substan-
tial challenges (e.g. Suo et al., 1992). In engineering practice, a
crack is usually subjected to mixed-mode loading, and the crack
could kink. It is of the interest of engineers to predict not only
when the crack kinks but also the kink direction in both linear
elastic and elastic–plastic materials.

In parallel to theoretical developments, numerical techniques
like finite element method are broadly used to analyze crack prop-
agation and crack kinks. One popular strategy is to insert cohesive
zones (Barenblatt, 1959; Dugdale, 1960; Needleman, 1990; Xu and
ll rights reserved.
Needleman, 1994) along potential paths for crack extension, or by
inserting virtual cohesive bonds between elements (Gao and Klein,
1998). Another promising methods is to use the extended-finite
element method (Moes et al., 1999) which does not need to
assume possible crack paths and minimizes the troublesome reme-
shing. In those numerical experiments, crack propagation and
kinks could be governed by stress criterion, separation criterion,
energy criterion, or a combination of them, and those local quanti-
ties could be directly connected to global criteria such as G and Jc.

Theoretically, while several methods could be applied to predict
cracking paths (see the summary by Salvadori (2010)), there are
two broadly used criteria to describe crack kinks: the maximum
circumferential stress criterion suggested by Erdogan and Sih
(1963) and the strain energy density (SED) factor criterion devel-
oped by Sih (1974). The maximum circumferential stress criterion
postulates that

a crack under mixed-mode loading advances in a direction in which
the greatest value of circumferential (hoop) stress reaches a critical
magnitude;

and the SED factor criterion predicts that

the location of fracture coincides with the site of relative minimum
strain energy density factor.

Successful applications of the maximum circumferential stress
criterion are mainly for brittle materials. For mixed-mode crack
problems and in materials with intermediate to large plastic
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deformation, fracture may not be governed by only one of the six
independent stress components (Gdoutos, 1990). In addition, the
critical stress quantity can not be used to describe the fracture resis-
tance, which is specimen geometry and size dependent. These
shortages of the maximum circumferential stress criterion moti-
vated the development of the SED factor criterion. A series of suc-
cessful applications by using the SED factor criterion for both
brittle and ductile materials could be seen in Sih (1974, 1991).

While the SED criterion works well in many applications, it does
not always give satisfactory predictions. Experiments by Finnie and
Weiss (1974) to investigate crack propagation in beryllium sheet
showed inconsistence between experimental result and the predic-
tion by using the SED factor criterion. The kink angle in a 45� in-
clined crack is about �50� by experiments but that from SED
prediction is �34�. In addition, since SED criterion used one param-
eter – the critical strain energy density factor – to quantify failure, it
predicts a constant mode II to mode I fracture toughness ratio for all
materials with the same Poisson’s ratio, e.g., KIIc/KIc = 0.9 for m = 0.33,
which might be physically questionable. Also, the ratio that KIIc/
KIc = 0.9 when m = 0.33 could be underestimated since it is com-
monly known that KIIc is greater than KIc in many face-centered-cu-
bic (f.c.c.) metals.

Another motivation to extend the SED criterion is to connect the
fracture criterion with microscopic deformation mechanisms. The
evolution of mode I fracture toughness Kc with sample thickness
may examplify the distinction between failure governed by distor-
tion and that by dilatation, see Fig. 1. In thin plate when microscopic
shearing dominates (thickness 6 Bm) failure, the insufficient devel-
opment of strain hardening limits the size of the plastic zone. As the
sample thickness B increases, further hardening of materials gives
rise to increasing of plastic zone and hence enhanced fracture
toughness Kc. The fracture toughness reaches its maximum when
the sample is so thick that the transition of failure from shearing
mode to dilatation mode at the microscopic level occurs. Fracture
toughness keeps dropping till crack extension is completely formed
by separation, where Kc = KIc. In view of the difference between
shear failure and separation failure at the microscopic level, we ex-
pect that the distortional part and the volumetric part of the SED
should be weighted differently to assess material failure.

The focus of the paper is to extend the SED factor criterion by tak-
ing account the difference in microscopic deformation mechanisms
for material failure. The program of this paper is as follows. We pres-
ent the extended strain energy density criterion for material failure
in Section 2. In Section 3, we show applications of the extended SED
model to a central crack under several typical conditions including
K c

B

B

P

K Ic

Bc0 Bm

Transition: distortion 
governed shear failure to
dilatation controlled separation

Fig. 1. Illustration of the fracture toughness variation with sample thickness B,
which demonstrates the transition from distortion controlled shearing failure to
dilation governed separation renders the drop of Kc to KIc as the sample thickness
changes from Bm to Bc.
mode I, mode II, and mixed-mode loading. The predictability of the
extended SED model is given in Section 4 for mixed-mode inclined
cracks. In Section 5, we show that the extended SED model may be
also applied to describe pressure-dependent material yielding. We
close in Section 6 with some concluding remarks.

2. The extended strain energy density factor criterion

For a material subjected to general stress state (rx,ry,rz,sxy,
syz,szx) in a Cartesian coordinate (x,y,z), the total strain energy
per unit volume dW/dV is given as

dW
dV
¼1þm

2E
r2

x þr2
y þr2

z �
m

1þm
ðrxþryþrzÞ2þ2 s2

xyþs2
yzþs2

zx

� �� �
ð1Þ

where E and m are the Young’s modulus and Poisson’s ratio of an iso-
tropic material. It is easy to verify that dW/dV can be decomposed
into a distortional part dWd/dV with

dWd

dV
¼1þm

6E
ðrx�ryÞ2þðry�rzÞ2þðrz�rxÞ2þ6 s2

xyþs2
yzþs2

zx

� �h i
ð2Þ

and a volumetric part dWv/dV with

dWv

dV
¼ 1� 2m

6E
ðrx þ ry þ rzÞ2 ð3Þ

If we write the above equations in the principal stress coordinate
axes (r1,r2,r3) and recall that the octahedral shear stress is given
as

soct ¼
1
3
½ðr1 � r2Þ2 þ ðr2 � r3Þ2 þ ðr3 � r1Þ2�1=2 ð4Þ

the distortional and volumetric strain energy density could now be
simplified as

dWd

dV
¼ 3ð1þ mÞ

2E
s2

oct ¼
3

4l
s2

oct ð5Þ

and

dWv

dV
¼ 3ð1� 2mÞ

2E
p2 ¼ p2

2j
ð6Þ

respectively. Here p is the hydrostatic tension (positive in tension
and negative in compression) and is defined as p � (r1 + r2 + r3)/
3, and l and j are the shear modulus and the bulk modulus,
respectively.

Sih (1974, 1991) postulated that a crack would extend in a
direction where the strain energy density factor is minimized
and reaches a critical value Sc. Now we differentiate the failure
governed by distortional and volumetric strain energy density
factors. For the special case of hydrostatic tension governed failure,
we have

r0
dWv

dV
¼ r0

p2

2j
6 Sv ð7Þ

where Sv is the critical strain energy density associated with failure
governed by normal stress and r0 is the radius of a core region (see
Fig. 2). It is noted that we count the contribution of Eq. (7) to failure
only when p > 0. If the solid is subjected to pure distortion,

r0
dWd

dV
¼ r0

3
4l

s2
oct 6 Sd ð8Þ

where Sd is the critical strain energy density factor associated with
failure controlled by distortion. Combining Eqs. (7) and (8), we
obtain a unified fracture criterion which couples the influences by
distortion and hydrostatic tension



Fig. 2. Illustration of a crack under far-field mixed-mode loading k1 and k2. The stress components rr, rh and srh ahead of the crack tip expressed in the cylindrical polar
coordinates (r,h) in the core region with radius r0 are also shown.
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dWd

dV
r0

Sd
þ dWv

dV
r0

Sv
6 1 ð9Þ

The above equation can be given in a more straightforward way as

3
4l

s2
oct þ

p2

2j
Sd

Sv

� �
6

Sd

r0
ð10Þ

For a crack under far-field mixed-mode loading k1 and k2 shown in
Fig. 2, its stress components rr, rh and srh ahead of the crack tip are
given by Williams (1957):

rr ¼
ffiffiffi
2
r

r
½k1ð3�coshÞcosðh=2Þþk2ð3cosh�1Þsinðh=2Þ�þ � � � ð11aÞ

rh¼
ffiffiffi
2
r

r
½k1ð1þcoshÞcosðh=2Þ�k2ð3sinhÞcosðh=2Þ�þ �� � ð11bÞ

srh¼
ffiffiffi
2
r

r
½k1 sinhcosðh=2Þþk2ð3cosh�1Þcosðh=2Þ�þ � � � ð11cÞ

Now Eqs. (7) and (8) can be rewritten as

r0
dWv

dV
¼ b11k2

1 þ b12k1k2 þ b22k2
2 ð12Þ

and

r0
dWd

dV
¼ c11k2

1 þ c12k1k2 þ c22k2
2 ð13Þ

respectively. Sih (1991) had derived the coefficients bij and cij

(i, j = 1,2,3), which are given as

b11 ¼ ð1� 2mÞð1þ mÞð1þ cos hÞ=12l ð14aÞ
b12 ¼ �ð1� 2mÞð1þ mÞð1þ sin hÞ=12l ð14bÞ
b22 ¼ ð1� 2mÞð1þ mÞð1� cos hÞ=12l ð14cÞ

and

c11 ¼ ð1þ cos hÞ½1� cos hþ 2ð1� 2mÞ2=3�=16l ð15aÞ
c12 ¼ 2 sin h½cos h� ð1� 2mÞ2=3�=16l ð15bÞ
c22 ¼ ½4� 3 sin2 hþ 2ð1� 2mÞ2ð1� cos hÞ=3�=16l ð15cÞ

where l is the shear modulus. Let Sd/Sv = b, we define an extended
strain energy density factor S as

S ¼ r0
dWd

dV
þ br0

dWv

dV

¼ ðbb11 þ c11Þk2
1 þ ðbb12 þ c12Þk1k2 þ ðbb22 þ c22Þk2

2 ð16Þ
When b ¼ 1; S would reduce to the SED factor expression given by
Sih (1974). With Eq. (16), we extend the SED failure criterion by Sih
(1974) and make the following hypotheses on crack initiation in a
two-dimensional crack problem:

(1) The initial crack growth occurs in the direction (h0) along
which the strain energy density factor S is minimized, i.e.
@S=@h ¼ 0jh¼h0
¼ 0; and @2S=@h2jh¼h0

P 0 ð17Þ
where h0 satisfies �p < h0 < p.
(2) Crack extends if the strain energy density factor S defined in

Eq. (16) reaches the critical value Sc at h = h0.

We shall explore the features of the extended SED criterion un-
der the influence of b and show its predictability to available crack
kink experiments in the next sections.

3. Application of the extended SED model

3.1. Central crack in tension

We consider the special case of a central crack in tension with
crack plane normal to the loading axis, i.e., / = p/2 in Fig. 3a. In this
case, k1 ¼ r

ffiffiffi
a
p

and k2 = 0, and the extended SED is written as

S ¼ ð1þ cos hÞk2
1

48l
½4bð1� 2mÞð1þ mÞ þ 2ð1� 2mÞ2

þ 3ð1� cos hÞ� ð18Þ

The direction of crack extension is determined by solving

sin h0½3 cos h0 � 2bð1� 2mÞð1þ mÞ � ð1� 2mÞ2� ¼ 0 ð19Þ

for h0. It is convenient to obtain the two solutions, which are given
as

h0 ¼ 0

or

h0 ¼ acos
2bð1� 2mÞð1þ mÞ þ ð1� 2mÞ2

3

" #
ð20Þ

By applying the second condition in Eq. (17), we get the solution
which predicts that the crack extends along h0 = 0, and is indepen-
dent on b. The second solution corresponds to the direction of the



Fig. 3. Illustration of cracks subjected to different loading modes: (a) an inclined crack under tension, and (b) a central flat crack under mixed-mode loading.
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maximum strain energy density. We hypothesize that there exist
both minimum and maximum SEDs, which requires b to satisfy

0 < b <
3� ð1� 2mÞ2

2ð1� 2mÞð1þ mÞ ð21Þ

Eq. (21) also implies that the right-hand side would be greater than
zero, which leads to m > ð1�

ffiffiffi
3
p
Þ=2 � �0:366. When b ? 0, the

crack under mode I loading will extend in the crack plane. As b ap-
proaches the upper bound, the SED factor maximizes at h = 0. Its
minimum occurs in the direction perpendicular to the crack if we
take a physically meaningful solution for h. The limits for b also
set the lower bound for the Poisson’s ratio: the validity of Eq. (21)
requires the Poisson’s ratio to be in the range of (�0.366,0.5).
Fig. 4 shows the dependence of the maximum b on Poisson’s ratio.
For what follows, we shall discuss fracture behavior when b satisfies
Eq. (21).

3.2. Central crack in shearing

When the crack is subjected to far field pure shearing, as shown
in Fig. 3b (with r = 0), we have k1 = 0 and k2 ¼ s

ffiffiffi
a
p

. The extended
SED factor is given as

S ¼ k2
2

48l
f2ð1� 2mÞð1� cos hÞ½ð1� 2mÞ þ 2bð1þ mÞ� þ 3þ 9

� cos2 hg ð22Þ
Fig. 4. The dependence of the maximum b on Poisson’s ratio.
The direction of crack extension satisfies @S=@hjh¼h0
¼ 0, and is

determined by solving

sin h0½2bð1� 2mÞð1þ mÞ þ ð1� 2mÞ2 � 9 cos h0� ¼ 0 ð23Þ

for h0. The two solutions to Eq. (23) for h0 are obtained as

h0 ¼ 0

and

h0 ¼ acos
2bð1� 2mÞð1þ mÞ þ ð1� 2mÞ2

9

" #
ð24Þ

It is convenient to see that the crack under pure shear will extend
along the direction given in Eq. (24). The solution h0 = 0 is excluded
by applying the minimum S condition. We also notice from this
expression there exists a requirement for b

0 < b 6
9� ð1� 2mÞ2

2ð1� 2mÞð1þ mÞ ð25Þ

which is satisfied since our discussion for b is confined by Eq. (21).
The fracture angle for the central crack under shear versus b for
several Poisson’s ratios are plotted in Fig. 5. For small b, which cor-
Fig. 5. The fracture angle versus b for fracture in a central crack under pure shear.
Corresponding curves for several Poisson’s ratios show the influence by Poisson’s
ratio as well.



Fig. 6. Dependence of KIIC/KIC on b for materials with different Poisson’s ratio.
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responds to the case of larger critical volumetric SED factor Sv in
contrast to the critical distortional SED factor Sd, the crack will kink
from the original crack plane dramatically; as b reaches its
maximum at a given Poisson’s ratio, the crack shall propagate along
the original crack plane.
3.3. Central crack in mixed-mode loading

In this subsection, we explore fracture behavior in cracks under
mixed-mode loading, i.e., a combination of shearing and tensile
Fig. 7. Mixed-mode fracture envelope for cracks under loading shown in Fig. 1 under t
loading applied to the crack shown in Fig. 3b. The far field loading
are given as k1 ¼ r

ffiffiffi
a
p

and k2 ¼ s
ffiffiffi
a
p

. By using Eq. (16), we could
obtain Sc for the case of k2 = 0, which can be expressed in terms
of KIc,

Sc ¼
ð1� 2mÞ½2bð1þ mÞ þ ð1� 2mÞ�K2

Ic

12l
; for KIc ¼ rc

ffiffiffi
a
p

ð26Þ

Similarly, by setting k1 = 0 and k2 = KIIc such that S ¼ Sc , we could
establish the relationship between KIc and KIIc, which is found to
follow

KIIc

KIc

� �2

¼ 4ð1�2mÞ½2bþ1þ2ðb�1Þm�
2ð1�2mÞð1�cosh0Þ½ð1�2mÞþ2bð1þmÞ�þ3þ9cos2 h0

ð27Þ

where h0 is given by Eq. (24). The dependence of KIIC/KIC upon b for
materials with different Poisson’s ratio is demonstrated in Fig. 6. It
is seen that KIIC/KIC increases as b increases. For each Poisson’s ratio,
KIIC/KIC reaches its maximum of

ffiffiffi
6
p

=2 ¼ 1:22 as b reaches its maxi-
mum given in Eq. (21). For the case of mixed-mode fracture, we
could construct the k1 � k2 locus for fracture of the central crack
by setting S ¼ Sc in Eq. (16), where h0 is determined for each com-
bination of k1 and k2 by applying the conditions given in Eq. (17).
Corresponding fracture envelope for the crack in Fig. 2 are given
in Fig. 7. Here the cases for m = �0.2,0,0.33, and 0.45 are shown in
Fig. 7a to d, respectively. Both Poisson’s ratio and b have significant
impact to the mixed-mode fracture envelope, and the influence be-
comes stronger as m increases. The non-convex fracture envelope in
Fig. 7d for b = 0.2 could be due to high critical volumetric SED and
low compressibility (a Poisson’s ratio of 0.45) in the material.
he influence of Poisson’s ratio. (a) m = �0.2, (b) m = 0, (c) m = 0.333, and (d) m = 0.45.



Fig. 8. Strain energy release rate versus mode angle for different Poisson’s ratio and b. (a) m = �0.2, (b) m = 0, (c) m = 0.33, and (d) m = 0.45. Here G is normalized by the energy
release rate at w = 0.
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Correspondingly, we could also calculate the strain energy re-
lease rate G for the plane strain cracking problem (Irwin, 1957)

G ¼
ð1� m2Þ K2

I þ K2
II

� �
E

ð28Þ

For kinked cracks, the stress intensity factors KI and KII at the kink
tip could be calculated from the applied stress intensity factors to
the primary crack (Williams, 1957; Bilby and Cardew, 1975; Lawn
and Wilshaw, 1975; Bilby et al., 1977; Cotterell and Rice, 1980; Ichi-
kawa and Tanaka, 1982; Suresh and Shih, 1986; Leblond, 1989;
Amestoy and Leblond, 1992; Leblond and Frelat, 2000; Suo et al.,
2010). Here we adopt the formulae given by Amestoy and Leblond
(1992) for stationary crack with infinitesimal branching. In their
derivation, KI and KII are related to k1 and k2 as

KI ¼ a11k1 þ a12k2 ð29aÞ
KII ¼ a21k1 þ a22k2 ð29bÞ

where

a11 ¼ 1� 3p2

8
m2 þ p2 � 5p4

128

� �
m4 þ p2

9
� 11p4

72
þ 119p6

15360

� �
m6

þ 5:07790m8 � 2:88312m10 � 0:0925m12 þ 2:996m14

� 4:059m16 þ 1:63m18 þ 4:1m20 þ Oðm22Þ; ð30aÞ

a12 ¼ �
3p
2

mþ 10p
3
þ p3

16

� �
m3 þ �2p� 133p3

180
þ 59p5

1280

� �
m5

þ 12:313906m7 � 7:32433m9 þ 1:5793m11 þ 4:0216m13

� 6:915m15 þ 4:21m17 þ 4:56m19 þ Oðm21Þ; ð30bÞ
a21¼
p
2

m� 4p
3
þp3

48

� �
m3þ �2p

3
þ13p3

30
�59p5

3840

� �
m5�6:176023m7

þ4:44112m9�1:5340m11�2:0700m13þ4:684m15

�3:95m17�1:32m19þOðm21Þ; ð30cÞ

a22 ¼ 1� 4þ 3p2

8
m2

� �
þ 8

3
þ 29p2

18
� 5p4

128

� �
m4

þ �32
15
� 4p2

9
� 1159p4

7200
þ 119p6

15360

� �
m6

þ 10:58254m8 � 4:78511m10 � 1:8804m12 þ 7:280m14

� 7:591m16 þ 0:25m18 þ 12:5m20 þ Oðm22Þ: ð30dÞ

Here m = h0/p. Note that k1 and k2 in Eq. (29b) satisfies S ¼ Sc in
Eq. (16). Fig. 8a–d shows respectively strain energy release rate
versus mode angle w (w = atan(k2/k1)) for Poisson’s ratio m = �0.2
(Fig. 8a), m = 0 (Fig. 8b), m = 0.33 (Fig. 8c), and m = 0.45 (Fig. 8d).
While the impact of b to G is small for m = �0.2, its effect becomes
significant for m > 0. When m = 0.33 and m = 0.45, the normal trend
that G increases monotonically as w increases could completely
changed as b varies.
4. Predictability of the SED model for kinks in inclined cracks

Since most available experiments on mixed-mode loading were
performed for inclined cracks, we show in this section the predictabil-
ity of the extended SED model on crack kinking. For the inclined crack
seen in Fig. 3a, we have k1 ¼ r

ffiffiffi
a
p

sin2 / and k2 ¼ r
ffiffiffi
a
p

sin / cos /.
With Eq. (16) and using the condition that @S=@h ¼ 0, we have



Fig. 10. The fracture angle in inclined crack under tension for beryllium sheets.
Experimental data (Finnie and Weiss, 1974) and theoretical prediction from
different models are presented. Here the Poisson’s ratio m = 0 is used, and the
influence of b to fracture angle is significant.

Fig. 9. The fracture angle versus inclined angle during the propagation of an
inclined crack under tension. Theoretical predictions from different models are
shown, and the influence of b at m = 0.33 predicted by this work is also
demonstrated.

Fig. 11. The fracture envelope from experiments and modeling. Experimental data
come from Erdogan and Sih (1963) for PMMA. We have used a Poisson’ ratio
m = 0.37 and b = 1.4 for the model.

Fig. 12. The fracture angle in initially inclined crack under tension under the
influence of b for plexiglass, theoretical prediction versus experimental results are
shown.
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@S
@h

48l
r2a

¼ sin2 /f2ð1� 2mÞ½1þ 2bþ 2ðb� 1Þm� sinðh� 2/Þ

� 3 sinð2hÞ � 6 sinð2h� 2/Þg ð31Þ

For / – 0, the crack kink direction is determined by solving the fol-
lowing equation

2ð1� 2mÞ½1þ 2bþ 2ðb� 1Þm� sinðh0 � 2/Þ � 3 sinð2h0Þ
� 6 sinð2h0 � 2/Þ ¼ 0 ð32Þ

for h0. Corresponding solutions for several b at m = 0.33 are shown in
Fig. 9.

As a comparison, the fracture angles at different inclined angles
predicted by different theories are shown in Fig. 9. The kink angle
h0 predicted by the maximum circumferential stress criterion
(Erdogan and Sih, 1963) is determined by solving

sin h0 þ ð3 cos h0 � 1Þ cot / ¼ 0 ð33Þ

for h0 at a given /. In their experiments for beryllium sheet, Finnie
and Weiss (1974) observed that the initially inclined crack with /
= 45� branched with h0 � �50�. The SED theory by Sih (1974)
predicts h0 � �34�. Fig. 10 shows the predicted kink angles by differ-
ent theories and experimental data. The extended SED theory pre-
dicts that the kink angle is a function of b, and fits well to
experimental results if b � 0.2. It means that the critical strain en-
ergy for separation failure is greater than that for distortional failure,
which seems to be reasonable for the hexagonal-close-packed beryl-
lium polycrystals where its basal slip resistance is very low in con-
trast to its separation strength. Note that in this special case, the
results from our work with b ? 0 matches the prediction based on
the maximum circumferential stress criterion by Erdogan and Sih
(1963), and that with b ? 1 equals to what predicted by Sih’s
(1974) SED criterion.

The fracture envelope for polymethylmethacrylate (PMMA) from
both experiments and theoretical prediction is shown in Fig. 11.
Here we use a Poisson’s ratio m = 0.37 for PMMA and b = 1.4 in the
model. A reasonable agreement between experimental data and
theoretical prediction is observed. Curves of fracture angle versus
inclined angle for pre-cracked PMMA sheets are shown in Fig. 12.
Theoretical predictions using b 6 1.0 match well with experimental
results reported by Williams and Ewing (1984).

From Fig. 3a, we also expect that kinks will occur in the inclined
crack if uniaxial compression is applied, and the fracture angle cor-



Fig. 13. Fracture angle versus inclined angles / for several b. (a) b = 0.01, (b) b = 0.1, (c) b = 1, and (d) b = 5.
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responds to the solution of positive h0 to Eq. (32). The plots of frac-
ture angle against inclined angle / for the inclined crack subjected
to compression are given in Fig. 13, with Fig. 13a to d correspond
to b = 0.01, 0.1, 1, and 5, respectively. In Fig. 14, corresponding frac-
ture angles versus b are shown for several initial inclined angle /,
and Fig. 14a–d correspond to / = 0�, 35�, 45�, and 75�, respectively.

5. Pressure-dependent yielding criterion using extended SED

We discuss in this section the possibility of utilizing the ex-
tended SED idea for material yielding. In fact, we show that the
von-Mises criterion (von Mises, 1913) is a special case of the ex-
tended yielding criterion since it only uses the distortional part
of the SED, i.e.

dWd

dV
¼ 3s2

oct

4l
6

3
4l

ffiffiffi
2
3

r
sy

 !2

ð34Þ

Here the relationship soct ¼
ffiffiffiffiffiffiffiffi
2=3

p
sy is derived on the basis of yield-

ing at pure shear. To account for pressure dependent yielding, we
define an cavitation (separation) strength pc such that

dWv

dV
¼ p2

2j
6

1
2j

p2
c ð35Þ

The final yielding envelope, by assuming the additive contributions
from distortional and volumetric SED to macroscopic yielding, is gi-
ven in the form of

3
2

soct

sy

� �2

þ p
pc

� �2

sgnðpÞ 6 1 ð36Þ
If we take an analogy of the above yielding envelope to a cohesive
model, soct corresponds to the shearing component applied upon
the interface with normal along [111] direction in the principal
stress coordination, and p is the normal traction on the plane. So
Eq. (36) supplies a coupled interfacial yielding criterion, withffiffiffiffiffiffiffiffi

2=3
p

sy being the macroscopic shearing strength and pc being
the maximum resistance to interfacial separation. Note that physi-
cally, sy and pc are two independent concepts. An intuitive explana-
tion on this is that the presence of dislocations in an atomic plane
would dramatically change the resistance to relative gliding be-
tween the top and the bottom blocks separated by the plane, i.e.,
sy drops, but has minor impact to pc.

We further note that the yielding envelope defined by Eq. (36)
shows a pressure-dependent shearing strength,

soct 6

ffiffiffi
2
3

r
sy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sgnðpÞ p

pc

� �2
s

ð37Þ

which resembles the broadly used Mohr–Coulomb law for pressure-
dependent shearing. Taking a simple tensile test as a model case, we
see that the pressure dependence of the above yielding criterion
gives

rt ¼
3syffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ sy

pc

� �2
r ð38Þ

where rt is the tensile yield strength. The corresponding yield
strength in compression rc is obtained to be



Fig. 14. Fracture angle versus b in inclined cracks with different / under uniaxial compression. (a) / = 0, (b) / = 30�, (c) / = 45�, and (d) / = 75�.
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rc ¼
3syffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3� sy

pc

� �2
r ð39Þ

The yielding asymmetry is governed by the material’s shearing
strength and separation strength:

Dr ¼ rc � rt ¼
ffiffiffi
3
p

sy
sy

pc

� �2

; for sy=pc � 1 ð40Þ

We note that pc cannot be derived from uniaxial tensile or compres-
sive yielding strength. For the relationships ry = 3.06sc and
sy ¼

ffiffiffi
3
p

sc which connects the dislocation slip resistance sc in f.c.c.
single crystals with the tensile strength ry and shearing strength sy

in their polycrystalline counterparts, they rely on the factor that
the same type of microslips by dislocations (Taylor, 1938; Bishop
and Hill, 1952) accounts for plastic deformation. However, pc mea-
sures the separation strength of atomic layers, and it approximates
to the ideal strength and is about E/3 	 E/10 for crystalline metals.
Commonly, sy or ry is at least one to two magnitude smaller than
that. Therefore, Eq. (36) explains why polycrystalline metals usually
show negligible pressure-dependence in yielding. In most granular
materials (see Paterson, 1958; Lockner, 1995) or amorphous metals
(e.g. Schuh and Lund, 2003; Anand and Su, 2005; Zhang and Eckert,
2005; Chen et al., 2011) where pc could be comparable to sy due to
the initial presence of flaws or excessive free volume, they show per-
ceivable pressure-sensitive yielding. If pc is small and the volumetric
part in Eq. (36) is significant, the volumetric SED governs material
failure and the material is expected to be brittle; alternatively, the
material could be ductile if the distortional part is dominant. Those
qualitative predictions by Eq. (36) are consistent with previous brit-
tle-to-ductile transition criteria developed by Kelly et al. (1967) and
by Rice and Thomson (1974).
6. Discussion and concluding remarks

To conclude, we introduce here an extended SED factor criterion
for material failure, which differentiates the weight of volumetric
and distortional contributions to the extended SED factor. Such an
extension reflects the physical difference of microscopic shearing
and microscopic separation in materials undergoing fracture. It fur-
ther amends the weakness of the original SED factor criterion which
predicts a constant model II to mode I fracture toughness ratio for all
materials with the same Poisson’s ratio regardless their microstruc-
tural discrepancies. Applications of the model to available experi-
ments show its good predictability to kink problems in inclined
cracks. While the critical extended SED factor can be readily ob-
tained from their mode I fracture toughnesses for most materials,
an additional experiment, either pure mode II or mixed-mode load-
ing test, is needed to determine the weight parameter b. For exam-
ple, if we have the mode II fracture toughness at hand, b could be
determined by using Eq. (27) if the Poisson’s ratio of the material
is also known; in case we had corresponding information for kink
angle from a crack subjected to mixed-mode loading, b could then
be found by utilizing Eq. (32). With both b and Sc, material failure
could be determined by applying the theory for regular geometries
and by computational techniques for arbitrary geometries. While
the extended SED model takes the microscopic distortion and sepa-
ration into account during fracture, we note that the model at this
stage is incapable of bridge micro- to atomic-scale deformation
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mechanisms in crack tips (e.g.Rice, 1992; Tadmor and Hai, 2003) to
a macroscopic description.

At the end, we also postulate a material yielding criterion based
on the extended SED idea by accounting for the microscopic shear-
ing and microscopic separation mechanisms differently. The gener-
alized yielding criterion reduces to the von Mises yielding criterion
(von Mises, 1913) if the material has high cavitation (separation)
strength. It also resembles the Mohr–Coulomb law for pressure-
dependent shearing, as seen in most granular materials and amor-
phous metals. The yielding criterion based on SED supplies a theo-
retical basis for recently proposed pressure-dependent strength
criterion for metallic glasses (e.g. Schuh and Lund, 2003; Anand
and Su, 2005; Zhang and Eckert, 2005; Chen et al., 2011). From
Eq. (37), we see the ‘‘internal friction’’ which gives rise to pres-
sure-dependent yielding is related to the shear strength and the
cavitation (separation) strength of a material, which might be
respectively obtained from simple shearing tests and plane strain
tension tests.

Acknowledgements

Supports from CAS Hundred Talent Project, KJCX2-EW-L03, 973 Pro-
ject (2011CB711103), and NSFC grant (11021262) are acknowledged.

References

Amestoy, M., Leblond, J.B., 1992. Crack paths in plane situations II. Detailed form of
the expansion of the stress intensity factors. Int. J. Solids Struct. 29, 465–501.

Anand, L., Su, C., 2005. A theory for amorphous viscoplastic materials undergoing
finite deformations, with application to metallic glasses. J. Mech. Phys. Solids
53, 1362–1396.

Barenblatt, G.I., 1959. The formation of equilibrium cracks during brittle fracture:
general ideas and hypotheses, axially symmetric cracks. Appl. Math. Mech.
(PMM) 23, 622–636.

Bishop, J., Hill, R., 1952. A theory of the plastic distortion of a polycrystalline
aggregate under combined stresses. Phil. Mag. 42, 1298–1307.

Bilby, B.A., Cardew, G.E., 1975. The crack with a kinked tip. Int. J. Fracture 11, 708–
712.

Bilby, B.A., Cardew, G.E., Howard, I.C., 1977. Stress intensity factors at the tip of
kinked and forked cracks. In: Taplin, D.M.R. (Ed.), Fracture, vol. 3. University of
Waterloo Press, pp. 197–200.

Chen, Y., Jiang, M.Q., Wei, Y.J., Dai, L.H., 2011. Failure criterion for metallic glasses.
Phil. Mag. 91, 4536–4554.

Cottrell, A.H., 1961. Theoretical aspects of radiation damage and brittle fracture in
steel pressure vessels. In: Steels for reactor pressure circuits, Iron and Steel
Institute, Special Report No. 69, p. 281.

Cotterell, B., Rice, J.R., 1980. Slightly curved or kinked cracks. Int. J. Fracture 16, 155–
169.

Dugdale, D.S., 1960. Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8,
100–104.

Erdogan, E., Sih, G.C., 1963. On the crack extension in plates under plane loading and
transverse shear. J. Basic Eng. 85D, 519–525.

Finnie, I., Weiss, H.D., 1974. Some observations on Sih’s strain energy density
approach for fracture prediction. Int. J. Fracture 10, 136–138.

Gao, H., Klein, P., 1998. Numerical simulation of crack growth in an isotropic solid
with randomized internal cohesive bonds. J. Mech. Phys. Solids 46, 187–218.
Gdoutos, E.E., 1990. Fracture Mechanics Criteria and Applications. Kluwer Academic
Publishers.

Griffith, A.A., 1921. The phenomena of rupture and flow in solids. Phil. Trans. Roy.
Soc. Lond., A 221, 163–198.

Ichikawa, M., Tanaka, S., 1982. A critical analysis of the relationship between the
energy release rate and the SIFs for non-coplanar crack extension under
combined mode loading. Int. J. Fracture 18, 19–28.

Irwin, G., 1957. Analysis of stresses and strains near the end of a crack traversing a
plate. J. Appl. Mech. 24, 361–364.

Kelly, A., Tyson, W.R., Cottrell, A.H., 1967. Ductile and brittle crystals. Phil. Mag. 15,
567–586.

Lawn, B., Wilshaw, T.R., 1975. Fracture of Brittle Solids. Cambridge University Press.
Leblond, J.B., 1989. Crack paths in plane situations I. General form of the expansion

of the stress intensity factors. Int. J. Solids Struct. 25, 1311–1325.
Leblond, J.B., Frelat, J., 2000. Crack kinking from an initially closed crack. Int. J. Solids

Struct. 37, 1595–1614.
Lockner, D.A., 1995. Rock failure. In: Ahrens, T.J. (Ed.), Rock Physics and Phase

Relations: A Handbook of Physical Constants. The American Geophysical Union,
pp. 127–147.

Moes, N., Dolbow, J., Belytschko, T., 1999. A finite element method for crack growth
without remeshing. Int. J. Numer. Methods Eng. 46, 131–150.

Needleman, A., 1990. An analysis of decohesion along an imperfect interface. Int. J.
Fracture 40, 21–40.

Paterson, M.S., 1958. Experimental deformation and faulting in Wombeyan marble.
Bull. Geol. Soc. Am. 69, 465–476.

Rice, J.R., 1968. A path independent integral and the approximate analysis of strain
concentration by notches and cracks. J. Appl. Mech. 35, 379–386.

Rice, J.R., 1992. Dislocation nucleation from a crack tip: an analysis based on the
Peierls concept. J. Mech. Phys. Solids 40, 239–271.

Rice, J.R., Thomson, R., 1974. Ductile versus brittle behaviour of crydstals. Phil. Mag.
29, 73–97.

Salvadori, A., 2008. A plasticity framework for (linear elastic) fracture mechanics. J.
Mech. Phys. Solids 56, 2092–2116.

Salvadori, A., 2010. Crack kinking in brittle materials. J. Mech. Phys. Solids 58, 1835–
1846.

Schuh, C.A., Lund, A.C., 2003. Atomistic basis for the plastic yield criterion of
metallic glass. Nature Mater. 2, 449–452.

Sih, G.C., 1974. Strain-energy-density factor applied to mixed mode crack problems.
Int. J. Fracture 10, 305–321.

Sih, G.C., 1991. Mechanics of Fracture Initiation and Propagation. Kluwer, Boston.
Suo, Z.G., et al., 2010. Mixed-Mode Fracture. Curved Crack Path. <http://

imechanica.org/node/8036>.
Suo, Z., Kuo, C.M., Barnett, D.M., Willis, J.R., 1992. Fracture mechanics for

piezoelectric ceramics. J. Mech. Phys. Solids 40, 739–765.
Suresh, S., Shih, C.F., 1986. Plastic near-tip fields for branched cracks. Int. J. Fracture

30, 237–259.
Tadmor, E.B., Hai, S., 2003. A Pererls criterion for the onset of deformation twnning

at crack tips. J. Mech. Phys. Solids 51, 765–793.
Taylor, G.I., 1938. Plastic strain in metals. J. Inst. Metals 62, 307–324.
von Mises, R., 1913. Mechanik der festen Körper im plastisch deformablen zustand.

Göttin. Nachr. Math. Phys. 1, 582–592.
Wells, A.A., 1961. Unstable crack propagation in metals: cleavage and fast fracture.

Proceeding of the Crack Propagation Symposium, vol. 1. College of Aeronautics
and Royal Aeronautics Society, Cranfield, England, pp. 201–230.

Williams, M.L., 1957. On the stress distribution at the base of a stationary crack. J.
Appl. Mech. 24, 109–114.

Williams, J.G., Ewing, P.D., 1984. Fracture under complex stress – the angled crack
problem. Int. J. Fracture 26, 346–351.

Xu, X.P., Needleman, A., 1994. Numerical simulations of fast crack growth in brittle
solids. J. Mech. Phys. Solids 42, 1397–1434.

Zhang, Z.F., Eckert, J., 2005. Unified tensile fracture criterion. Phys. Rev. Lett. 94,
094301.

http://imechanica.org/node/8036
http://imechanica.org/node/8036

	An extended strain energy density failure criterion by differentiating volumetric  and distortional deformation
	1 Introduction
	2 The extended strain energy density factor criterion
	3 Application of the extended SED model
	3.1 Central crack in tension
	3.2 Central crack in shearing
	3.3 Central crack in mixed-mode loading

	4 Predictability of the SED model for kinks in inclined cracks
	5 Pressure-dependent yielding criterion using extended SED
	6 Discussion and concluding remarks
	Acknowledgements
	References


