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Abstract The paper studies the axisymmetric compres-
sive buckling behavior of multi-walled carbon nanotubes
(MWNTs) under different boundary conditions based on
continuum mechanics model. A buckling condition is de-
rived for determining the critical buckling load and associ-
ated buckling mode of MWNTs, and numerical results are
worked out for MWNTs with different aspect ratios under
fixed and simply supported boundary conditions. It is shown
that the critical buckling load of MWNTs is insensitive to
boundary conditions, except for nanotubes with smaller radii
and very small aspect ratio. The associated buckling modes
for different layers of MWNTs are in-phase, and the buckling
displacement ratios for different layers are independent of
the boundary conditions and the length of MWNTs. More-
over, for simply supported boundary conditions, the critical
buckling load is compared with the corresponding one for
axial compressive buckling, which indicates that the criti-
cal buckling load for axial compressive buckling can be well
approximated by the corresponding one for axisymmetric
compressive buckling. In particular, for axial compressive
buckling of double-walled carbon nanotubes, an analytical
expression is given for approximating the critical buckling
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load. The present investigation may be of some help in fur-
ther understanding the mechanical properties of MWNTs.
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1 Introduction

Since the discovery of carbon nanotubes (CNTs), the
mechanical behaviors of single-walled carbon nanotube
(SWNT) or MWNTs have been widely investigated by
employing experiments, continuum mechanics model, and
molecular dynamic simulations [1–5]. For example, Yakob-
son et al. [6] compared the results of atomistic modeling
for axial compressive buckling of SWNTs with a contin-
uum shell model and found that the continuum shell model
could well predict all the changes of buckling patterns dis-
played by the molecular dynamics simulations. Ru [7, 8]
presented an elastic double-shell model for studying axial
compressive buckling of a DWNT and a DWNT in an elastic
medium. In Ru’s analysis, the effect of van der Waals forces
was included and an approximate linear relation was adopted
to model the van der Waals interaction between intertube.
Han and Lu [9] presented an elastic double-shell model for
the torsional buckling of an embedded DWNT, and showed
that inserting an inner nanotube into an embedded single-
walled one would reduce the critical buckling load of the
initially embedded SWNT under otherwise identical condi-
tions. Liu et al. [10] investigated the effect of bending in-
stabilities on the measurements of mechanical properties of
MWNTs based on the theory of finite elasticity. It was shown
that the rippling mode was permissible by the nonlinear the-
ory, and that the dependence of the bending moment on the
bending curvature could be approximated by a bilinear con-
stitutive relation. In their results, it was indicated that, in
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some mechanical properties of CNTs from measurements,
one needs to be particularly cautious in using classical results
obtained from the linear elasticity. Wang et al. [11, 12] stud-
ied elastic buckling of individual MWNTs under external ra-
dial pressure and axially compressed buckling of pressured
MWNTs using a multiple-shell model. Their results showed
that the predicted critical pressure and the predicted incre-
ment of critical axial stress due to an internal radial pressure
using continuum mechanics model were in reasonably good
agreement with the experiment results [13] and the results for
filled CNTs by molecular dynamics simulations [14], respec-
tively. Wang et al. [15] studied the effect of van der Waals
forces on the pull-in stability of CNTs using the cantilever
beam with large deformation model. Wang et al. [16] stud-
ied the size dependence of thin-shell model for CNTs and
showed that the size dependence is insignificant for SWNTs
of diameters larger than 1.5 nm. In their analysis, it was in-
dicated that, for SWNTs with diameter larger than about 1.5
nm, an isotropic thin-shell model with constant thickness and
elastic moduli could be used. Akita et al. [17] studied the
buckling of MWNTs under axial compression and showed
that the molecular dynamics simulations for buckling behav-
ior of triple- and double-walled CNTs were consistent with
the continuum analysis. Xie et al. [18] investigated the effect
of small size-scale on radial buckling pressure of a simply
supported MWNT based on the theory of nonlocal contin-
uum mechanics. Sun et al. [19, 20] studied dynamic buck-
ling behavior of MWNTs under axial impact load and impact
torque based on continuum mechanics model, and derived
a buckling condition for determining the buckling load and
associated buckling mode by introducing the initial imper-
fections for MWNTs and applying the method of preferred
mode.

Many researches have shown that continuum mechan-
ics model can capture the main factor affecting mechanical
behaviors of CNTs and can be an effective method to study
the mechanical behaviors of CNTs even for CNTs with very
small radius [21–24]. Especially, due to the difficulty of ex-
periment at nanoscale and the limitation of molecular dy-
namics simulation for very large atomic system, continuum
mechanics model has been widely used to investigate me-
chanical behaviors of MWNTs or DWNTs in various envi-
ronments [25–27].

However, to the authors’ knowledge, the effect of
boundary conditions on the buckling behavior of MWNTs
has been an open topic. Actually, MWNTs are always sub-
jected to different boundary conditions in their potential ap-
plications as basic elements of nanoscale devices, and the
effect of boundary conditions can not be neglected in cer-
tain circumstances. Motivated by these considerations, the
paper reports a method for studying axisymmetric compres-
sive buckling behavior of MWNTs under different boundary
conditions based on continuum mechanics model. As ex-
amples, numerical results are worked out for DWNTs and
five-layer MWNTs under fixed and simply supported bound-

ary conditions. As a result, the effect of boundary conditions
on the critical buckling load of MWNTs is revealed, and the
associated buckling modes are also illustrated. Moreover,
the critical buckling load under simply supported boundary
condition is compared with the corresponding one for axial
compressive buckling. The effect of radii is also examined.

2 Buckling analysis

2.1 Basic equations

Figure 1 shows the model of an MWNT of length L. Sub-
scripts 1, 2, · · · , N denote the corresponding quantities re-
lated to the innermost tube, its adjacent tube, · · · , and the out-
ermost tube, respectively. For MWNTs, the van der Waals
interaction pressures (per unit area) between the k-th tube
and the (k + 1)-th tube are equal and opposite. Thus, the (in-
ward) pressure exerted on the k-th tube due to the (k + 1)-th
tube, pk(k+1), and the similar (inward) pressure exerted on the
(k + 1)-th tube due to the k-th tube, p(k+1)k, can be related
by [11, 12]

pk(k+1) = −Rk+1

Rk
p(k+1)k, k = 1, 2, · · · ,N − 1, (1)

where Rk denotes the radius of the k-th tube.

Fig. 1 Model of an MWNT of length L

In this paper, as that used by Ru [7, 8] and Wang et
al. [11, 12], a linearized analysis is adopted to model the ef-
fect of van der Waals forces between intertube, i.e., the pres-
sure pk(k+1) due to buckling can be described by

p12 = c(w2 − w1),

p23 = c(w3 − w2),

· · · ,
p(N−1)N = c(wN − wN−1),

(2)
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where c is a constant determined by the slope of the van
der Waals law at the initial unbuckled interlayer spacing
and is estimated as 3.2×10−5 J·cm−2/0.16s2 [28], in which
s = 0.142 nm.

The axisymmetric compressive buckling equation for
an elastic shell is

D
d4w
dx4
− N0

x
d2w
dx2
+

Eh
R2

w − p = 0, (3)

where w is an additional radial displacement of the middle
surface due to buckling, x denotes axial direction, D is bend-
ing stiffness, E is Young’s modulus, h is thickness, R is ra-
dius, N0

x is the uniform axial membrane force per unit length
prior to buckling, and p is the net (inward) normal pressure.

Applying Eqs. (1)–(3) to each tube of an N-layer
MWNT, N coupled equations is obtained as

D1
d4w1

dx4
− N0

x1

d2w1

dx2
+

Eh1

R2
1

w1 − c(w2 − w1) = 0,

Dk
d4wk

dx4
− N0

xk

d2wk

dx2
+

Ehk

R2
k

wk

−c(wk+1 − wk) +
Rk−1

Rk
c(wk − wk−1) = 0,

k = 2, 3, · · · ,N − 1,

DN
d4wN

dx4
− N0

xN

d2wN

dx2
+

EhN

R2
N

wN

+c
RN−1

RN
(wN − wN−1) = 0,

(4)

where Dk denotes the effective bending stiffness, and hk de-
notes the effective thickness of the k-th tube.

It is seen from Eq. (4) that, for axisymmetric com-
pressive buckling of MWNTs, it is only necessary to know
the values of the effective bending stiffness Dk and the in-
plane stiffness Ehk, where k = 1, 2, · · · ,N. Here, we take
D1 = D2 = · · · = DN = D = 0.85 eV, Eh1 = Eh2 = · · · =
EhN = Eh = 360 J/m2 [6, 12, 23].

2.2 Buckling condition

The general solution for Eq. (4) is expressed as

wk = Ukeλx, k = 1, 2, · · · ,N, (5)

where Uk is real constant.
With Nx denoting the applied axial compressive load,

substituting Eq. (5) into Eq. (4), yields N homogeneous lin-
ear equations for U1, U2, · · · , UN

a11U1 + a12U2 = 0,

ak(k−1)Uk−1 + akkUk + ak(k+1)Uk+1 = 0,

k = 2, 3, · · · ,N − 1,

aN(N−1)UN−1 + aNNUN = 0,

(6)

where

a11 = Dλ4 + Nxλ
2 +

(
c +

Eh

R2
1

)
,

a12 = −c,

ak(k−1) = −c
Rk−1

Rk
,

akk = Dλ4 + Nxλ
2 +

(
c

Rk−1

Rk
+ c +

Eh

R2
k

)
,

ak(k+1) = −c,

aN(N−1) = −c
RN−1

RN
,

aNN = Dλ4 + Nxλ
2 +

(
c

RN−1

RN
+

Eh

R2
N

)
.

The requirement that Eq. (6) have non-zero solution on
Uk (k = 1, 2, · · · ,N) gives

det Q = 0, (7)

where Q denotes the coefficient matrix on U1, U2, · · · , UN .

Equation (7) contains 4N eigenvalue (λ1, λ2, · · · , λ4N)
with respect to the applied axial load Nx for an N-layer
MWNT. For a given eigenvalue λ j ( j = 1, 2, · · · , 4N), the
corresponding buckling displacement wk is determined by
Eq. (5). Thus, the buckling displacement for an N-layer
MWNT can be expressed as

w1 =

4N∑
j=1

Aje
λ j x, wk =

4N∑
j=1

U j
kAje

λ j x, k = 2, 3, · · · ,N, (8)

where Aj and U j
k ( j = 1, 2, · · · , 4N) are constants.

As a special case (N = 2), an analytical expression for
the buckling displacements is solved as follows.

Note that

X1 = −1
2

(Eh

R2
1

+ c +
Eh

R2
2

+
cR1

R2

)

+
1
2

√(Eh

R2
1

+ c − Eh

R2
2

− cR1

R2

)2
+ 4

c2R1

R2
,

X2 = −1
2

(Eh

R2
1

+ c +
Eh

R2
2

+
cR1

R2

)

−1
2

√(Eh

R2
1

+ c − Eh

R2
2

− cR1

R2

)2
+ 4

c2R1

R2
,

p =
1
c

(
X1 +

Eh

R2
1

+ c
)
,

q =
1
c

(
X2 +

Eh

R2
1

+ c
)
,

α1 =

√
Nx −

√
N2

x + 4DX1

2D
,
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α2 =

√
Nx +

√
N2

x + 4DX1

2D
,

β1 =

√
Nx −

√
N2

x + 4DX2

2D
,

β2 =

√
Nx +

√
N2

x + 4DX2

2D
,

γ1 =

√
−Nx + 2

√−DX1

2
√

D
,

γ2 =

√
Nx + 2

√−DX1

2
√

D
,

κ1 =

√
−Nx + 2

√−DX2

2
√

D
,

κ2 =

√
Nx + 2

√−DX2

2
√

D
.

Case 1: N2
x + 4DX2 > 0

w1 = A1 cosα1x + A2 sinα1x + A3 cosα2x

+A4 sinα2x + A5 cos β1x + A6 sin β1x

+A7 cos β2x + A8 sin β2x, (9)

w2 = A1 p cosα1x + A2 p sinα1x + A3 p cosα2x

+A4 p sinα2x + A5q cos β1x + A6q sin β1x

+A7q cos β2x + A8q sin β2x. (10)

Case 2: N2
x + 4DX2 = 0

w1 = A1 cosα1x + A2 sinα1x + A3 cosα2x

+A4 sinα2x + (A5 + A6x) cos

√
−X2

D
x

+(A7 + A8x) sin

√
−X2

D
x, (11)

w2 = A1 p cosα1x + A2 p sinα1x + A3 p cosα2x

+A4 p sinα2x + (A5 + A6x)q cos

√
−X2

D
x

+(A7 + A8x)q sin

√
−X2

D
x. (12)

Case 3: N2
x + 4DX2 < 0 < N2

x + 4DX1

w1 = A1 cosα1x + A2 sinα1x + A3 cosα2x

+A4 sinα2x + A5eκ1 x cos κ2x + A6eκ1 x sin κ2x

+A7e−κ1 x cos κ2x + A8e−κ1 x sin κ2x, (13)

w2 = A1 p cosα1x + A2 p sinα1x + A3 p cosα2x

+A4 p sinα2x + A5qeκ1 x cos κ2x + A6qeκ1 x sin κ2x

+A7qe−κ1 x cos κ2x + A8qe−κ1 x sin κ2x. (14)

Case 4: N2
x + 4DX1 = 0

w1 = (A1 + A2x) cos

√
−X1

D
x + (A3 + A4x) sin

√
−X1

D
x

+A5eκ1 x cos κ2x + A6eκ1 x sin κ2x

+A7e−κ1 x cos κ2x + A8e−κ1 x sin κ2x, (15)

w2 = (A1 + A2x)p cos

√
−X1

D
x + (A3 + A4x)p sin

√
−X1

D
x

+A5 peκ1 x cos κ2x + A6qeκ1 x sin κ2x

+A7qe−κ1 x cos κ2x + A8qe−κ1 x sin κ2x. (16)

Case 5: N2
x + 4DX1 < 0

w1 = A1eγ1 x cos γ2x + A2eγ1 x sin γ2x + A3e−γ1 x cos γ2x

+A4e−γ1 x sin γ2x + A5eκ1 x cos κ2x + A6eκ1 x sin κ2x

+A7e−κ1 x cos κ2x + A8e−κ1 x sin κ2x, (17)

w2 = A1 peγ1 x cos γ2x + A2 peγ1 x sin γ2x + A3 pe−γ1 x cos γ2x

+A4 pe−γ1 x sin γ2x + A5qeκ1 x cos κ2x + A6qeκ1 x sin κ2x

+A7qe−κ1 x cos κ2x + A8qe−κ1 x sin κ2x. (18)

In this paper, we only consider the following two important
boundary conditions.

(1) The fixed boundary conditions

wk =
∂wk

∂x
= 0, k = 1, 2, · · · ,N,

at x = 0 and x = L. (19)

(2) The simply supported boundary conditions

wk =
∂2wk

∂x2
= 0, k = 1, 2, · · · ,N,

at x = 0 and x = L. (20)

By making use of the boundary conditions Eq. (19) or
Eq. (20), 4N homogeneous linear equations are obtained on
A1, A2, · · · , A4N , i.e.,

M · A = 0 , (21)

where M is the coefficient matrix on A1, A2, · · · , A4N , and
A = [A1, A2, · · · , A4N]T.

The non-zero solution of Eq. (21) provides the buckling
condition, i.e.,

det M = 0. (22)

From Eq. (22), the critical buckling load Ncr (the min-
imum axial load Nx) can be determined with the associated
buckling mode obtained.
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3 Numerical results and discussion

3.1 Axisymmetric compressive buckling of DWNTs and
five-layer MWNTs

Figure 2 shows dimensionless critical buckling load
Ncr/(−4DX1)1/2 versus inner radius for DWNTs under fixed
and simply supported boundary conditions, for four differ-
ent values of aspect ratio L/R2 = 1, 2, 5, 12, respectively.
Similar plots, but for five-layer MWNTs, are given in Fig. 3,
where X′1 denotes the corresponding largest negative root on
Dλ4 + Nxλ

2 obtained from Eq. (7). It is seen from Figs. 2
and 3 that, the effect of boundary conditions on the critical
buckling load of MWNTs is related to the radii and aspect ra-
tio, which is big for MWNTs with inner/innermost radius of
about several nanometers and very small aspect ratio. For ex-
ample, the critical buckling load for DWNT with inner radius
R1 = 1 nm and aspect ratio L/R2 = 1 under fixed boundary

Fig. 2 Plot of Ncr/(−4DX1)1/2 versus inner radius for DWNTs un-
der fixed and simply supported boundary conditions, at L/R2 = 1,
2, 5 and 12, respectively

Fig. 3 Plot of Ncr/(−4DX′1)1/2versus innermost radius for five-layer
MWNTs under fixed and simply supported boundary conditions, at
L/R5 = 1, 2, 5 and 12, respectively

conditions is up to about 23% larger than the one under sim-
ply supported boundary conditions under otherwise identical
conditions. While for MWNTs with large radii or big aspect
ratio, the effect of boundary conditions on the critical buck-
ling load is usually very small and can be negligible.

Figures 2 and 3 also indicate that, for large values of
aspect ratio (such as larger than 2), the value (−4DX1)1/2

and (−4DX′1)1/2 are very close to the critical buckling load
of DWNTs and that of five-layer MWNTs, respectively. As
seen in Figs. 2 and 3, with R1 ranging from 1 nm to 29 nm,
the relative error of (−4DX1)1/2 or (−4DX′1)1/2 over the crit-
ical buckling load of DWNTs or five-layer MWNTs is less
than 6% or 3.5% for all the three values of aspect ratios 2,
5 and 12. This indicates that, for axisymmetric compres-
sive buckling of MWNTs with large radii or big aspect ratio,
the critical buckling load can be well approximated by the
value (−4DX)1/2, where X denotes the biggest negative root
on Dλ4 + Nxλ

2 obtained from Eq. (7). In particular, for
axisymmetric compressive buckling of DWNTs, an explicit
expression is obtained, i.e.

Ncr ≈
⎡⎢⎢⎢⎢⎣2D
(Eh

R2
1

+ c +
Eh

R2
2

+
cR1

R2

)

−2D

√(Eh

R2
1

+ c − Eh

R2
2

− cR1

R2

)2
+ 4

c2R1

R2

⎤⎥⎥⎥⎥⎥⎥⎦
1/2

.

Figures 4 and 5 show associated buckling displacement
ratio of different layers versus inner/innermost radius for the
DWNTs and the five-layer MWNTs referred in Figs. 2 and
3. It is seen that, for both the DWNTs and the five-layer
MWNTs, the associated buckling modes for different layers
are in-phase, and the displacement ratios for different layers
are independent of the boundary conditions, and independent
of the length of CNTs. However, the associated buckling dis-
placement ratios are related to the radii of MWNTs, which
increase with increasing inner/innermost radius of MWNTs.

Fig. 4 Associated buckling displacement ratio w1/w2 versus inner
radius for the DWNTs studied in Fig. 2
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Fig. 5 Associated buckling displacement ratio of different layers
versus innermost radius for the five-layer MWNTs studied in Fig. 3

For MWNTs with large inner/innermost radius (bigger than
around 5 nm for DWNTs in Fig. 4, or bigger than around
10 nm for MWNTs in Fig. 5), the associated buckling dis-
placements for different layers are almost the same. This in-
dicates that, due to the effect of the van der Waals forces, the
axisymmetric compressive buckling behavior of an N-layer
MWNT with large innermost radius is very similar to that of
a single nanotube with effective thickness Nh.

3.2 Comparison with the axial compressive buckling

It is known that, for axial compressive buckling of a long
cylindrical shell under simply supported boundary condition,
the critical buckling load is the same as the one for axisym-
metric compressive buckling under otherwise identical con-
ditions [29]. It will be shown in the following that this is also
valid for the critical buckling load of MWNTs for axial com-
pressive buckling, i.e., the critical buckling load of MWNTs
for axial compressive buckling can be well approximated by
the corresponding one for axisymmetric compressive buck-
ling.

Figures 6 and 7 show, respectively, the critical buckling
load versus inner/innermost radius for axisymmetric com-
pressive buckling of DWNTs and five-layer MWNTs sub-
jected to simply supported boundary condition, with a com-
parison to the corresponding critical buckling load for axial
compressive buckling calculated from the model presented
in Ref. [12]. It can be seen that, for both DWNTs and
five-layer MWNTs, the critical buckling load for axial com-
pressive buckling and the one for axisymmetric compressive
buckling are very close to each other, and have the same
trend of variation versus the inner/innermost radius. With the
increase of inner/innermost radius, they both decrease very
sharply in the initial stage.

Fig. 6 Dependence of critical buckling load on inner radius for ax-
ial compressive buckling and axisymmetric compressive buckling
of DWNTs at L/R2 = 12

Fig. 7 Dependence of critical buckling load on innermost radius for
axial compressive buckling and axisymmetric compressive buck-
ling of five-layer MWNTs at L/R5 = 12

Figure 8 shows relative variation of the critical buck-
ling load for axisymmetric compressive buckling over that
for axial compressive buckling, corresponding to Figs. 6 and
7, respectively. As illustrated in Fig. 8, for both the DWNTs
and five-layer MWNTs, the relative variation is very small
(less than 0.2%) with inner/innermost radius ranging from
1 nm to 29 nm. This indicates that the critical buckling load
of MWNTs for axial compressive buckling can be well ap-
proximated by the corresponding one for axisymmetric com-
pressive buckling.

Further, from the above analysis for axisymmetric
compressive buckling behavior of DWNTs and five-layer
MWNTs, it is observed that, for MWNTs with big radii or
large aspect ratio, the critical buckling load for axial com-
pressive buckling can also be well approximated by the value
(−4DX)1/2, which greatly simplifies the solution procedure.
In particular, for axial compressive buckling of DWNTs, the
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critical buckling load is well approximated by an analytic
formula, i.e.

Ncr ≈
⎡⎢⎢⎢⎢⎣2D
(Eh

R2
1

+ c +
Eh

R2
2

+
cR1

R2

)

−2D

√(Eh

R2
1

+ c − Eh

R2
2

− cR1

R2

)2
+ 4

c2R1

R2

⎤⎥⎥⎥⎥⎥⎥⎦
1/2

.

Fig. 8 Relative variation of critical buckling load for axisymmet-
ric compressive buckling over that for axial compressive buckling,
corresponding to Figs. 6 and 7, respectively

4 Conclusions

The paper presents a method for studying axisymmetric
compressive buckling behavior of MWNTs under different
boundary conditions based on continuum mechanics model,
which takes into account the effect of the van der Waals
forces between adjacent layers. A buckling condition is de-
rived for determining the critical buckling load and associ-
ated buckling mode of MWNTs, and an analytical expres-
sion is given for the buckling displacements of DWNTs. As
examples, numerical results are worked out for DWNTs and
five-layer MWNTs with different aspect ratios under fixed
and simply supported boundary conditions. It is shown that
the effect of boundary conditions on the critical buckling
load of MWNTs is related to the radii and the aspect ratio,
which is very small and can be negligible except for nan-
otubes with smaller radii and very small aspect ratio. The
associated buckling modes for different layers of MWNTs
are in-phase, and the relation among the buckling displace-
ments for different layers is independent of the boundary
conditions, and independent of the length of MWNTs. Addi-
tionally, for simply supported boundary conditions, the crit-
ical buckling load for axisymmetric compressive buckling is
compared with the corresponding one for axial compressive

buckling. It is indicated that, for MWNTs with big radii or
large aspect ratio, the critical buckling load for both axisym-
metric compressive buckling and axial compressive buckling
can be well approximated by the value (−4DX)1/2, which
greatly simplify the solution procedure. The result also indi-
cates that the radii play an important role in buckling behav-
ior of MWNTs.
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