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Abstract A contact model between a homogeneous half-space with a linearly graded layer and a rigid punch
is proposed and studied in the present paper. The governing equation, which describes the relation of the
displacements and the normal tractions at the contact interface, is obtained by means of Fourier transform and
a transfer matrix method. Appropriate collocation methods are used in order to solve the equation numerically.
Singular behaviors at the edge of a flat punch are revealed. Compared to the case with a graded surface varying
according to an exponential law, stress concentration is relatively weaker in the case with the graded surface
varying according to a linear law. Furthermore, stress distributions in cases of a flat or cylindrical punch are
given for different varying graded laws, thickness of graded layer, ratios of stiffness, and frictional coefficients.
All the results are helpful for the design of strong and wear resistance coating surfaces.

1 Introduction

It is well known that frictional contact on homogeneously brittle substrates may give rise to special cracking
patterns. Such cracks result from highly concentrated tensile stresses and are responsible for initiating failures
related to sliding contact, as well as contact fatigue [1,2]. The applications of graded coating on metallic
substrates provide a good solution to this problem. Used as coatings and interfacial zones, they tend to reduce
stresses resulting from material property mismatch, increase the bonding strength, improve the surface prop-
erties, and provide protection against adverse thermal and chemical environment [3–7]. Graded materials have
been chosen for many advanced engineering applications due to the unique mechanical and physical properties,
such as bearings, gears, machine tools, cams, and abradable seals in gas turbines [8,9]. An important problem
is how to design the graded layer in order to reduce the likelihood of cracking and to own excellent material
toughness and wear resistance [10–17].

In the past few years, many studies indicate that controlling the gradient variation law in mechanical prop-
erties could offer unprecedented opportunities for surfaces to achieve improved wear resistance [10,11,18,19].
Giannakopoulos and Suresh [20,21] studied an axisymmetric problem of a graded half-space subjected to a
concentrated load or a flat, spherical or conical indenter. The modulus of the half-space is assumed to vary
according to a simple power law E(z) = E0zk, (0 ≤ k < 1) or an exponential one E(z) = E0eαz in depth.
Significant changes of stresses around the stamp can be observed by adjusting the gradient variation of the
elastic modulus. In 1999, Suresh et al. [18] carried out a numerical simulation and experimental investiga-
tion on a graded medium loaded by a sliding spherical indenter, in which the modulus of the medium is
assumed to vary with the depth according to a power law, E(z) = Es + E0zk , where Es is the surface value,

P. Chen · S. Chen (B)
LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
E-mail: chenshaohua72@hotmail.com
Tel.: +86-10-82543960
Fax: +86-10-82543977



564 P. Chen, S. Chen

0 < k < 1, and E0 is selected so that the units are consistent. It is found that the controlled gradients in the
elastic modulus alone can result in a pronounced enhancement in the resistance of a surface to frictional sliding
contact. Chen et al. [22] discussed the adhesive contact problem of a rigid sphere in contact with a graded
elastic half-space, in which Young’s modulus of the half-space is varying with depth according to a power law
E(z) = E0(z/c0)

k, (0 < k < 1). The corresponding two-dimensional problem was also investigated by Chen
et al. [23] and Chen and Chen [24] later.

Among related papers, one of the early attempts is concerned with the contact problem of a rigid punch
with a non-homogeneous half-plane. With the evolution of graded materials being extended to a coating layer
with finite thickness, notable contributions have been made by Erdogan and his co-workers [3,8,9,25–27].
Guler and Erdogan [9] proposed a model that the shear modulus of the coating varies with depth according to
an exponential law μ(y) = μ2eδy, (0 ≤ y ≤ h, δ = log(μ1/μ2)/h), where μ(y), μ2 are the shear modulus of
the coating and substrate, respectively, δ is a constant characterizing the material inhomogeneity, and h denotes
the thickness of the coating. The plane strain contact problem for two deformable solids with FGM coatings
was considered by Guler and Erdogan [8] in 2006. Ke and Wang [1,28] and Yang and Ke [29] proposed
multi-layered models to analyze the preceding two problems and found significantly improved properties of
FGM coatings in contact with rigid punches.

The problem in the present paper is inspired by the work done by Giannakopoulos and Pallot [30], in which
a plane strain contact problem for a rigid stamp acting on a graded half-space is considered, and the Young’s
modulus of the semi-infinite graded medium is assumed to be E(z) = E0zk, (0 ≤ k < 1). They found that the
distribution of contact pressure becomes more uniform when the elastic modulus of the semi-infinite graded
medium gradually approaches a linear variation law in cases with both flat and cylindrical stamps. Is it true for
the case of a finite coating? How are the stress intensity factors and distributions of contact stresses affected
by the variation law of modulus, thickness of the graded layer, frictional coefficient, etc.? In order to answer
the above questions, we established a contact model of a rigid punch in contact with a layered half-space in
the present paper, in which the shear modulus of the graded layer varies according to a linear law. The linearly
graded model captures the essential nature of the elastic modulus variation and is physically acceptable. We
first obtained the relation of the surface displacement and the external concentrated force with the help of a
model of a layer half-space acting by a concentrated force. Then, using integral methods, we could find the
governing equation describing the relation of the interfacial displacements and the interfacial tractions in the
contact model. Appropriate collocation methods will be used to solve the singular integral equations for cases
with flat and cylindrical punches. Finally, a theoretical analysis will give answers to the above mentioned
questions.

2 Model of a half-space with a graded layer subjected to concentrated forces

The model shown in Fig. 1a is considered first, in which both a normal concentrated line force P and a tan-
gential concentrated line force Q act on the surface of a graded layer, which is coated on a homogeneous
half-space. We assume that Poisson’s ratios of both the layer and half-space are equal to a constant ν. The
shear modulus of the layer varies linearly according to the following law:

μ(y) = μ2 + μ∗y, μ∗ = (μ1 − μ2)/h, (0 ≤ y ≤ h), (1)

where μ2 is the shear modulus of the half-space and ensures the continuity at the interface, y = 0. h denotes
the thickness of the layer, μ∗ is a constant increment of the shear modulus, and μ1 is the shear modulus of the
graded layer surface.

Due to the plane strain condition, Hooke’s law in the region 0 ≤ y ≤ h can be written as

ε1xx = 1 − ν

2μ(y)

(
σ1xx − ν

1 − ν
σ1yy

)
,

ε1yy = 1 − ν

2μ(y)

(
σ1yy − ν

1 − ν
σ1xx

)
, (2)

γ1xy = 1

μ(y)
σ1xy,

where the subscript “1” denotes the layer material.
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Fig. 1 Schematics of the contact model for a half-space coated with a linear graded layer a loaded by both a concentrated normal
load and a tangential one; b loaded by a rigid punch with an arbitrary shape

The equation of strain compatibility is

∂ε2
1xx

∂y2 + ∂ε2
1yy

∂x2 = ∂γ 2
1xy

∂x∂y
. (3)

Introducing an Airy stress function F1(x, y) as follows:

σ1xx = ∂2 F1

∂y2 , σ1xy = − ∂2 F1

∂x∂y
, σ1yy = ∂2 F1

∂x2 , (4)

and substituting Eqs. (2) and (4) into (3) yields

∂4 F1

∂x4 + 2
∂4 F1

∂x2∂y2 + ∂4 F1

∂y4 − 2μ′

μ

∂3 F1

∂y3 − 2μ′

μ

∂3 F1

∂x2∂y
+ 2μ′2

μ2

∂2 F1

∂y2 − 2μ′2

μ2

ν

1 − ν

∂2 F1

∂x2 = 0, (5)

where the superscript “′” indicates the differentiation with respect to y.
Applying Fourier integral transformation to (5) with respect to x leads to

d4 F̃1

dy4 − 2s2 d2 F̃1

dy2 + s4 F̃ − 2μ∗

μ0 + μ∗y

d3 F̃1

∂y3 − 2μ∗s2

μ0 + μ∗y

d F̃1

dy

+ 2μ∗2

(μ0 + μ∗y)2

d2 F̃1

dy2 − 2μ∗2

(μ0 + μ∗y)2

ν

1 − ν
s2 F̃1 = 0, (6)

where “∼” indicates the Fourier transformation. Assuming

ξ = 2s(μ2 + μ∗y)/μ∗, F̃1 = ξφ(ξ)/2, (7)
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then, Eq. (6) is reduced to be a Whittaker one,

d4φ

dy4 + 2

ξ

d3φ

dy3 −
(

1

2
+ 4

ξ2

)
d2φ

dy2 +
(

4

ξ3 − 1

2ξ

)
dφ

dy
+

(
1

16
+ 1 − γ 2

ξ2

)
φ = 0, (8)

where γ = √
(1 − 2ν)/(2 − 2ν). The solution to Eq. (8) could be found as [31]

φ = A11Wγ,1.5(ξ) + A12W−γ,1.5(ξ) + A13Wγ,1.5(−ξ) + A14W−γ,1.5(−ξ), (9)

where A1i (i = 1, 2, 3, 4) are unknown coefficients and W±γ,1.5(±ξ) are Whittaker functions. Substituting
Eq. (9) into Eq. (7) yields

F̃1 = (
A11Wγ,1.5(ξ) + A12W−γ,1.5(ξ) + A13Wγ,1.5(−ξ) + A14W−γ,1.5(−ξ)

)
ξ/2

= A11φ̃1(ξ) + A12φ̃2(ξ) + A13φ̃3(ξ) + A14φ̃4(ξ). (10)

The Fourier transformed displacements and stress components can be written as a matrix form as

{S1} = [T1(y)]{A1} = [T11(y) T12(y) T13(y) T14(y)] {A1}, (11)

where {S1} = [
ũ1x ũ1y σ̃1xy σ̃1yy

]T
, {A1} = [A11 A12 A13 A14]T and [T1l(y)] = [T1l1(y) T1l2(y) T1l3(y)

T1l4(y)]T with

T1l1(y) = − i(1 − ν)

2μ(y)s

d2φ̃1l

dy2 − iνs

2μ(y)
φ̃1l ,

T1l2(y) = 1 − ν

2μ(y)s2

d3φ̃1l

dy3 − μ∗(1 − ν)

2μ2(y)s2

d2φ̃1l

dy2 − 2 − ν

2μ(y)

dφ̃1l

dy
− μ∗ν

2μ2(y)
φ̃1l ,

T1l3(y) = −is
dφ̃1l

dy
,

T1l4(y) = −s2φ̃1l , l = 1, 2, 3, 4.

The superscript “T” denotes transposition of a matrix.
For the lower homogenous half-space, which is denoted as material “2”, the Airy stress function F2 should

satisfy a bi-harmonic equation as

∇4 F2 = 0. (12)

Similar to the above, we have

{S2} = [T2(y)]{A2}, (13)

where {A2} = [A21, A22]T and

[T2(y)] =
[

s/2iμ2 −|s|/2μ2 −is −s2

[ys + 2(1 − ν)|s|/s] /2iμ2 (1 − 2ν − y|s|)/2μ2 −is(y|s| + 1) −s2 y

]T

e|s|y . (14)

The boundary condition at the interface y = 0 can be written as

{S1} − {S2} = {0}, (15)

and on the coating surface y = h, we have{
σ1xy(x, h) = −δ(x)Q,
σ1yy(x, h) = −δ(x)P,

(16)

where δ(x) is the delta function.
Equation (16) can also be expressed in a matrix form as

[B1][T1(h)]{A1} = {−Q, −P}T (17)
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where

[B1] =
[

0 0 1 0
0 0 0 1

]
.

Equations (15) and (17) constitute a recurrence relation which, upon substitution in (11) and (13), may yield
the expression of {A1} in terms of {Q, P}T ,{ {A1} = −[V1][K ]−1{Q, P}T ,

[V1] = [T1(0)]−1[T2(0)], [K ] = [B1][T1(h)][V1]. (18)

Substituting Eq. (18) into (11) and taking the inverse Fourier transformation leads to

[
ux1, uy1, σxy1, σyy1

]T = 1

2π

∞∫
−∞

[M]{Q, P}T eisx ds (19)

where

[M] = −[T1(y)][V1][K ]−1

is a transfer matrix for the layer. The displacements at y = h can be written as

{
uxh
uyh

}
= 1

2π

∞∫
−∞

m(s, h){Q, P}T eisx ds (20)

where

m(s, h) = [B2][M(s, h)], [B2] =
[

1 0 0 0
0 1 0 0

]
.

Considering the asymptotic behavior of Whittaker functions for large arguments [31], one can readily prove
that

lim
s→+∞ sm(s, h) =

[
α1 −iα2
iα2 α1

]
(21)

where

α1 = ν − 1

μ1
, α2 = 2ν − 1

2μ1
.

Denoting

� = 1

s

[
sign(s)α1 −iα2
iα2 sign(s)α1

]
,

Eq. (20) can be rewritten as

{
uxh
uyh

}
= 1

2π

∞∫
−∞

�{Q, P}T eisx ds + 1

2π

∞∫
−∞

[m(s, h) − �]{Q, P}T eisx ds. (22)

Considering the following properties of the elements in matrix m(s):

mi j (−s) = (−1)i+ j mi j (s), i, j = 1, 2, (23)

and using the relations

∞∫
0

cos(sx)

s
ds = ln |x |,

∞∫
0

sin(sx)

s
ds = π

2
sign(x) (24)
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yields

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

uxh(x) = α2 P
2 sign(x) − α1 Q

π
ln |x | + P

π

∫ ∞
0 [im12(s) − α2/s] sin(sx) ds

+ Q
π

∞∫
0

[m11(s) − α1/s] cos(sx) ds,

uyh(x) = −α1 P
π

ln |x | − α2 Q
2 sign(x) + P

π

∫ ∞
0 [m22(s) − α1/s] cos(sx) ds

+ Q
π

∞∫
0

[im21(s) + α2/s] sin(sx) ds.

(25)

The above equations denote the relation of the surface displacements uxh , uyh and the linear concentrated
forces P, Q in the model as shown in Fig. 1a.

3 Stamp model of a rigid punch with an arbitrary profile

Using the above relation in Eq. (25), we will investigate a stamp model as shown in Fig. 1b, where a rigid
punch contacts an elastic half-space with a graded surface layer.

The problem will become a typically mixed-boundary-value one, in which the displacement components
can be given by the punch profile within the contact region. Supposing the normal and tangential pressures at
the contact interface are p(x) and q(x), respectively, the displacements at the contact interface can be found
by the superposition theorem as

uxh(x) = −α1

π

a∫
−b

ln |x − t |q(t) dt + 1

π

a∫
−b

q(t)I1(x, t) dt

+α2

2

⎡
⎣

x∫
−b

p(t) dt −
a∫

x

p(t) dt

⎤
⎦ + 1

π

a∫
−b

p(t)I2(x, t) dt, (26.1)

uyh = −α2

2

⎡
⎣

x∫
−b

q(t) dt −
a∫

x

q(t) dt

⎤
⎦ + 1

π

a∫
−b

q(t)I3(x, t) dt

−α1

π

a∫
−b

ln |x − t |p(t) dt + 1

π

a∫
−b

p(t)I4(x, t) dt (26.2)

where

I1(x, t) =
∞∫

0

[
m11(s) − α1

s

]
cos[s(x − t)] ds,

I2(x, t) = i

∞∫
0

[
m12(s) + i

α2

s

]
sin[s(x − t)] ds,

I3(x, t) = i

∞∫
0

[
m21(s) − i

α2

s

]
sin[s(x − t)] ds,

I4(x, t) =
∞∫

0

[
m22(s)− α1

s

]
cos[s(x − t)] ds.
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The partial derivative of Eq. (26) with respect to x yields

α2 p(x) + 1

π

a∫
−b

[
Q1(x, t) + α1

t − x

]
q(t) dt + 1

π

a∫
−b

p(t)Q2(x, t) dt = g1(x), (27)

−α2q(x) + 1

π

a∫
−b

[
Q4(x, t) + α1

t − x

]
p(t) dt + 1

π

a∫
−b

q(t)Q3(x, t) dt = g2(x) (28)

where g1(x) = ∂uxh(x)/∂x , g2(x) = ∂uyh(x)/∂x and Q j (x, t) = ∂ I j (x, t)/∂x, ( j = 1, 2, 3, 4). b and a
are the left and right contact lengths, respectively. Equations (27) and (28) are coupled integral ones with
Cauchy singularity, in which the unknown contact pressures p(x) and q(x) need to be determined whereas
uyh(x), (−b < x < a) can be deduced from the punch profile.

In this study, we assume that the friction between the punch and the substrate belongs to the Coulomb type
with a constant friction coefficient η, i.e.,

σyy(x, h) = −p(x), (29.1)

σxy(x, h) = −ηp(x), (−b < x < a), (29.2)

then, p(x), as an unknown function, can be obtained from the following equation:

− α2ηp(x) + 1

π

a∫
−b

[
Q4(x, t) + ηQ3(x, t) + α1

t − x

]
p(t) dt = g2(x), (30)

with the following requirement:

a∫
−b

p(t) dt = P. (31)

By introducing the following normalized quantities:

t = a + b

2
θ + a − b

2
, x = a + b

2
ς + a − b

2
, −b < (t, x) < a, −1 < (θ, ς) < 1, (32)

Eqs. (30) and (31) then can be expressed as

−α2ηp(ς) + α1

π

1∫
−1

p(θ)

θ − ς
dθ + a + b

2π

1∫
−1

[Q4(ς, θ) + ηQ3(ς, θ)] p(θ) dt = g2(ς), (33)

1∫
−1

p(θ) dθ = 2P/(a + b). (34)

The numerical method proposed by Krenk [32] can be used to solve the above integral equations (33) and (34).
Details are given as follows.

Assume

p(ς) = f (ς)w(ς), −1 < ς < 1, (35)

where w(ς) is the weight function of p(ς) and may be determined as

w(ς) = (1 − ς)β1(1 + ς)β2 , (36)

β1 = 1

π
arctan

(
α1

α2η

)
+ N0, β2 = − 1

π
arctan

(
α1

α2η

)
+ M0, (37)
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where N0 and M0 are arbitrary integers (positive, zero, or negative) and are determined from the physics of
the problem. The index of the integral equations is defined as

κ = −(β1 + β2) = −(N0 + M0). (38)

In order to get integrable singularities, κ should be restricted to −1, 0, or 1 [1]. Equations (33) and (34) can
be reduced to

M∑
l=1

W M
l f (θl)

[
α1

θl − ςr
+ a + b

2
[Q4(ςr , θl) + ηQ3(ςr , θl)]

]
= g2(ςr ), (39)

M∑
l=1

W M
l f (θl) = 2P

π(a + b)
, (40)

where M is the total number of the discrete points of f (θl) in (−1, 1); θl , ςr , and W M
l are, respectively,

determined by

P(β1,β2)
M (θl) = 0, l = 1, 2, . . . , M,

P(−β1,−β2)
M−κ (ςr ) = 0, r = 1, 2, . . . , M − κ,

W M
l = −2κ �(β1)�(1 − β1)

π

P(−β1,−β2)
M−κ (θl)

P(β1,β2)
′

M (θl)
,

where �( ) is the Gamma function and P(β1,β2)
M ( ) is the Jacobi polynomial of degree M .

4 Examples

4.1 Rigid flat punch case

Consider the contact problem as shown in Fig. 1b, if the punch is a flat one, i.e.,

∂uyh

∂x
= 0. (41)

Then, we have

g(ς) = 0, b = a. (42)

The physics of the problem requires that both β1 and β2 should be negative. Considering Eq. (38), we should
select N0 = −1 and M0 = 0 [9]. Then, numerical results can be obtained by solving Eqs. (39) and (40).

After f (θl) is determined, the contact stresses can be found as

σyy(x, h)

σ0
= − p(x)

σ0
, (43)

σ0 = P

2a
(44)

where

p(x) = f (x/a)(1 − x/a)β1(1 + x/a)β2 . (45)

Solving the problem yields the stress intensity factors at points x = ±a,

K1(a) = lim
x→a

p(x)

2β2(a − x)β1
= f (1)a1+β2 , (46.1)

K1(−a) = lim
x→a

p(x)

2β1(a + x)β2
= f (−1)a1+β1 . (46.2)
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4.2 Rigid cylindrical punch case

Consider the plane strain problem with a cylindrical punch, where the punch profile is given by

uyh =
(

R −
√

R2 − x2
)

− δ0,
∂uyh

∂x
= x√

R2 − x2
, −b < x < a, (47)

where R is the radius of the punch; δ0 is the maximum indentation depth appearing at x = 0. Without
considering the interfacial adhesion, the pressure at the contact edges should vanish, i.e.,

p(−b) = p(a) = 0. (48)

Because of smooth contacts at both ends x = −b and x = a, the physics of the problem requires that both β1
and β2 be positive. This, by considering Eq. (38), may be fulfilled by selecting N0 = 0 and M0 = 1 [26].

It is noticed that for a cylindrical punch problem the solution of Eqs. (39) and (40) must satisfy a consistency
condition [33],

1∫
−1

S(ς) dς

(1 − ς)β1(1 + ς)β2
= 0 (49)

where

S(ς) = −α2ηp(ς) + α1

π

1∫
−1

p(θ)

θ − ς
dθ. (50)

According to Krenk [32], it is easily proved that Eq. (49) is spontaneously satisfied.

5 Special cases

If the coating thickness tends to be infinity, then μ∗ = 0. The present problem becomes approximately a special
case, i.e., a rigid punch in contact with an elastic homogeneous half-space with a constant shear modulus μ
and Poisson’s ratio ν [9,26]. Closed-form solutions for the special case can be easily found from the above
layer problem, which is a relatively general model.

For the special case, Eq. (30) can be reduced to

− α2ηp(x) + 1

π

a∫
−b

α1

t − x
p(t) dt = g2(x) (51)

where

g2(x) = ∂uyh(x)/∂x . (52)

For the special case with a rigid flat punch, we have

g2(x) = 0, b = a. (53)

Combining Eqs. (51) and (53) leads to the closed-form solution

p(x) = −2σ0 sin πβ1

π

(
1 − x

a

)β1
(

1 + x

a

)β2
, −a < x < a. (54)

Then, the stress intensity factors at the contact edges can be found,

K1(a) = − 2σ0

πaβ1
sin πβ1, (55)

K1(−a) = − 2σ0

πaβ2
sin πβ1. (56)
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For the special case with a plane strain rigid cylindrical punch, the punch profile is usually approximated to
be a parabolic function. Then, we have,

uyh = −δ0 + x2

2R
,

∂uyh

∂x
= x

R
, −b < x < a. (57)

Substituting Eq. (57) into Eq. (51) yields a closed-form solution for the normal traction in the contact region,

p(x) = μ1

1 − ν

sin πβ1

R
(a − x)β1(x + b)β2 , −b < x < a. (58)

Both the closed-form solutions are identical to those in [9,26].

6 Results and discussions

In what follows, numerical results for the present general case are obtained. A comprehensive discussion is
conducted to reveal the influences of parameters, such as the variation law of modulus, thickness of graded
layer, ratio of stiffness, frictional coefficient, etc., on the stress intensity factors and stress distributions for
both flat and cylindrical stamp cases.

6.1 Stress singularity and stress intensity factor

Table 1 shows some results of the stress singularities β1 and β2 at the leading (x = a) and the trailing (x = −a)
edges, respectively, and stress intensify factors obtained for a flat punch by assuming a/h = 0.5, ν = 0.3 with
different ratios of stiffness μ2/μ1 and different values of frictional coefficient η. For comparison, not only the
case of a graded layer with a linear variation law of the shear modulus μ(y) = μ2 +μ∗y, (μ∗ = (μ1 −μ2)/h),
but also that with an exponential one μ(y) = μ2eδy , (δ = log(μ1/μ2)/h) proposed by Guler and Erdogan
[9,26] is included. One should note that in contact problems β1 and β2 are independent of the material inhomo-
geneity parameters (i.e., μ∗ and δ) and depend only on the coefficient of friction η and the value of Poisson’s
ratio ν on the surface y = h. For a flat stamp case, it is found that for a fixed value of ν, as η approaches zero,
β1 → −1/2, β2 → −1/2, which corresponds to the known singularity for a frictionless stamp case. As the
frictional coefficient increases, the singularity at the trailing edge of the flat punch is stronger than that at the
leading edge, which means larger stress concentration near the trailing edge. If η takes a relatively large value,
we find that β1 → 0 and β2 → −1.

In addition, from Table 1, one can see that for stiffer substrate cases, i.e., μ2 > μ1, the stress intensity
factors are smaller than in cases with a softer substrate, i.e., μ2 < μ1. The Table also shows that different var-
iation laws of elastic modulus should have considerable influence on the contact behavior. The stress intensity
factors in cases with graded layers of a linear variation law are obviously smaller than that of an exponential
variation one.

Tables 2a, b show the variation of non-dimensional stress intensity factors k1(a)

Paβ2
for cases with frictionless

coefficient η = 0, fixed stiffness ratios μ2/μ1 = 8 and μ2/μ1 = 1/8, and different non-dimensional contact
radius a/h. For cases with stiffer substrates, i.e., μ2 > μ1, the stress intensity factors decrease with an increase
of a/h. However, for cases with softer substrates, the stress intensity factors increase rapidly when the linear
graded layer becomes thinner.

Table 1 Stress singularities β1 and β2 near the flat punch edges and the stress intensity factors in models with a linear graded
layer and an exponential one for a/h = 0.5, ν = 0.3, different frictional coefficients η and different stiffness ratios μ2/μ1

μ2/μ1 η = 0.0 η = 0.1 η = 0.3 η = 0.5
β1 = −0.5 β1 = −0.4909 β1 = −0.4728 β1 = −0.4548
β2 = −0.5 β2 = −0.5091 β2 = −0.5272 β2 = −0.5452
K1(a)

Paβ2

K1(a)

Paβ2

K1(−a)

Paβ1

K1(a)

Paβ2

K1(−a)

Paβ1

K1(a)

Paβ2

K1(−a)

Paβ1

8 (Exp) 0.2086 0.1973 0.2199 0.1754 0.2422 0.1549 0.2635
8 (Linear) 0.1779 0.1714 0.1850 0.1572 0.2022 0.1451 0.2181
1 0.3183 0.3182 0.3182 0.3171 0.3171 0.3151 0.3151
1/8 (Exp) 0.6011 0.6178 0.5844 0.6510 0.5511 0.6834 0.5185
1/8 (Linear) 0.5427 0.5474 0.5377 0.5555 0.5266 0.5619 0.5145
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Table 2 Stress intensity factors for a frictionless flat punch case (a) with a linear graded layer and μ2/μ1 = 8, ν = 0.3; (b) with
a linear graded layer and μ2/μ1 = 1/8, ν = 0.3

a/h 0.005 0.01 0.1 0.5

a
K1(a)

Paβ2
0.3162 0.3111 0.2471 0.1779

b
K1(a)

Paβ2
0.3187 0.3199 0.3515 0.5427

Fig. 2 Distributions of contact pressure in the contact region for frictionless contact models of a rigid flat punch and a linear
graded-layered half-space or an exponential graded-layered one, with different values of μ2/μ1 and fixed a/h. σ0 is an average
compressive stress and is defined as σ0 = P

2a

6.2 Interfacial stress distribution

The distributions of interfacial normal traction are of practical interest, which are analyzed in Figs. 2, 3, 4, and
5 for frictionless models and Fig. 6 corresponding to a frictional one.

Figure 2 shows the distributions of the non-dimensional contact pressure for the frictionless model with a
rigid flat punch, in which both the linear variation case and the exponential variation one are investigated with
a fixed value of a/h and different ratios of μ2/μ1. σ0 is an average compressive stress, which is defined as
σ0 = P

2a . Figure 2 shows that the contact pressure, as studied in the above, is singular at both edges x = ±a.
Due to the frictionless condition, the stress distribution is symmetric with respect to y = 0. With the increase
of μ2/μ1, the contact pressure in the flat stamp case decreases and becomes more even in the contact area.

Comparing the cases with a linear variation law and an exponential one, one can see that the contact pressure
is lower and more uniform in the case with a linearly graded layer than that with an exponentially graded one.
These results qualitatively agree with [30], in which a two-dimensional model of a rigid punch contacting an
elastic graded half-plane with Young’s modulus varying according to a power law was considered. It was found
that when the power law is reduced to a linear one, the contact pressure distribution becomes more uniform
in the contact region. In addition, comparing to [10,11], both the values of K1(a)

Paβ2
(corresponding to η = 0)

and the distributions of contact pressure in the present case of μ2/μ1 > 1 show a significant improvement
of crack suppression characteristics for a linearly graded coating case in contrast to a homogeneous one, i.e.,
μ2/μ1 = 1. The results are also consistent well with the frictionless experimental and FEM results in [10,11].

The effect of graded layer thickness on the contact pressure in the model of a rigid flat punch is shown in
Fig. 3a, b for a linear graded layer case. Figure 3a gives the relation of the contact pressure and the contact
width for a stiffer substrate case, i.e., the value of μ2/μ1 larger than 1, and different non-dimensional layer
thicknesses h/a. From Fig. 3a, we find that the contact pressure distributes more uniformly when the graded
layer thickness decreases. However, for a softer substrate case, the contrary phenomenon can be found, i.e.,
the contact pressure distributes more uniformly for an increasing layer thickness as shown in Fig. 3b.

In contrast to Figs. 2 and 3, Figs. 4 and 5 show the distributions of the contact pressure for the frictionless
model with a rigid cylindrical punch, and both the linear variation case and the exponential variation one are
investigated. From Fig. 4, we find that, with the decrease of μ2/μ1, the contact pressure in the cylindrical
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(a)

(b)

Fig. 3 The effects of h/a on the distributions of contact pressure in the contact region for frictionless contact models of a rigid
flat punch and a linear graded-layered half-space with fixed μ2/μ1. a For μ2/μ1 = 8; b for μ2/μ1 = 1/8

Fig. 4 Distributions of contact pressure in the contact region for frictionless contact models of a rigid cylindrical punch and a
linear graded-layered half-space or an exponential graded-layered one, with different values of μ2/μ1 and fixed a/R, R/h

stamp case decreases and becomes more even in the contact area. Comparing the cases with a linear variation
law and an exponential one, one can see that the contact pressure is lower and more uniform in the case with
an exponentially graded layer than in that with a linearly graded one. All the phenomena in the cylindrical
punch case are opposite to those in the flat punch one, which exhibits the effect of the punch profile on the
contact behavior.

The effect of the graded layer thickness on the contact pressure in the model of a rigid cylindrical punch
is shown in Fig. 5a, b for a linear graded layer case. Figure 5a gives the relation of the normalized contact
pressure and the contact width for a stiffer substrate case, i.e., the value of μ2/μ1 larger than 1, and different
non-dimensional layer thicknesses h/a. From Fig. 5a, we find that the contact pressure distributes more uni-
formly when the graded layer thickness increases with a fixed contact width. However, for a softer substrate
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(a)

(b)

Fig. 5 The effects of a/h on the distributions of the normalized contact pressure in the contact region area for frictionless contact
models of a rigid cylindrical punch and a linear graded-layered half-space with fixed μ2/μ1 and R/h. σmax is the maximum
compressive stress in the contact area. a For μ2/μ1 = 7; b for μ2/μ1 = 1/7

case, a contrary phenomenon similar to the flat punch case can be found, i.e., the contact pressure distributes
more uniformly for a decreasing layer thickness as shown in Fig. 5b. An interesting phenomenon is that either
for the stiffer substrate case or a softer substrate one the effect of the layer thickness on the stress distributions
almost vanishes when the thickness attains some relatively large value with a fixed contact width. This also
proves the reasonability that one can use a finite-scale substrate to represent a half-space in some numerical
simulations.

Consider the effect of friction. Figures 6a–d show the interfacial stress distributions for both flat and cylin-
drical stamp cases. Similar results can be found in the frictional contact problem to the frictionless one. The
friction coefficient does not show significant effects on the magnitude of the contact pressure as shown in
Fig. 6a, b, but makes the contact pressure asymmetric as shown in Fig. 6c, d for flat punch and cylindrical
punch cases, respectively. From Fig. 6a, b, the degree of asymmetry becomes larger with an increase of friction
coefficient η for a fixed ratio of stiffness μ2/μ1. All the phenomena are achieved under the assumption that
no heat generates when a punch is sliding on the substrate.

7 Conclusion

In this paper, the contact behavior between a rigid punch and a homogeneous half-space coated with a linear
graded layer is analyzed. It is found that the stress singularity depends only on the frictional coefficient and
the surface Poisson’s ratio and is independent of all the other material constants and length scales. The contact
pressure concentrates near the edges of the flat punch, and the stress intensity factor at the trailing edge is larger
than that at the leading one. When the frictional coefficient tends to zero, both singularities tend to the classical
one, i.e., −1/2. The graded variation law and the thickness of the surface layer will show significant effects
on the stress intensity factors and distributions of the contact pressure. Less stress concentration is produced
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(a) (c)

(b) (d)

Fig. 6 The effects of the frictional contact on the contact pressure. a Effects of the friction coefficient η on the contact pressure
in a flat punch case; b effects of the friction coefficient η on the contact pressure in a cylindrical punch case. c Distributions of
contact pressure in the contact region for frictional contact models of a rigid flat punch and a linear graded-layered half-space
or an exponential graded-layered one, with different values of μ2/μ1, and fixed a/h = 0.1, η = 0.5; d distributions of contact
pressure in the contact region for frictional contact models of a rigid cylindrical punch and a linear graded-layered half-space or
an exponential graded-layered one, with different values of μ2/μ1, and fixed (a + b)/h, R/h, η = 0.3

near the flat punch edges when the surface layer obeys a linear variation law than in the case with an expo-
nential graded law. There exists a limitation of the graded layer thickness, beyond which the influence of the
thickness is weakened very quickly. All the results should be useful in interpreting experimental observations
and potentially for the coating design of advanced engineering materials.
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