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ABSTRACT: Submersed superhydrophobic surfaces exhibit
great potential for reducing flow resistance in microchannels
and drag of submersed bodies. However, the low stability of
liquid−air interfaces on those surfaces limits the scope of their
application, especially under high liquid pressure. In this paper,
we first investigate the wetting states on submersed hydro-
phobic surfaces with one-level structure under hydrostatic
pressure. Different equilibrium states based on free-energy
minimization are formulated, and their stabilities are analyzed
as well. Then, by comparison with the existing numerical and
experimental studies, we confirm that a new metastable state,
which happens after depinning of the three-phase contact line
(TCL), exists. Finally, we show that a strategy of using hierarchical structures can strengthen the TCL pinning of the liquid−air
interface in the metastable state. Therefore, the hierarchical structure on submersed surfaces is important to further improve the
stability of superhydrophobicity under high liquid pressure.

1. INTRODUCTION
Wetting on rough surfaces has been paid much attention since
the pioneer works of Wenzel1 and Cassie and Baxter.2 Liquid
can penetrate the valleys of the surface roughness or suspends
over the peaks with air trapped underneath. These two regimes
are called the Wenzel and Cassie−Baxter (CB) states,
respectively. It is known that superhydrophobic surfaces
exhibiting contact angles (CAs) greater than 150° with little
CA hysteresis (i.e., the difference between the advancing and
receding CAs) can be obtained by an optimized combination of
surface roughness and hydrophobicity in the CB state.3

However, various factors, including pressurization,4 vibration,5

and droplet impact,6,7 can induce the wetting transition from a
CB to Wenzel state, and make the surface lose its super-
hydrophobicity.
Recent research interest arises in studying the behavior of

submersed superhydrophobic surfaces due to the emergent
requirement for drag reduction in microfluidic devices or
submersed bodies.8,9 When the superhydrophobic surface is
fully submersed in water, a closed-air film will be formed, which
differs from the state of a droplet placed on an open surface
structure. In the former case, the air pressure is dependent on
the pressurization by the liquid; while in the latter, the air
pressure is usually assumed to be constant and equal to the
ambient one. For the submersed superhydrophobic surfaces,
the existence of trapped air is essential for a large slip length,
and this large slip length can be obtained by increasing the area
fraction of the liquid−air interface.8 However, the diffusion of

the trapped air into the liquid or high liquid pressure will
induce the collapse of the liquid−air interface, and finally
induce the failure of the superhydrophobic state. Therefore, to
keep the superhydrophobic state of submersed surfaces, the
stability of the liquid−air interface under hydrostatic pressure is
essential.
Several experiments have been carried out to study the

wetting transition of the submersed superhydrophobic surfaces
by using optical techniques.10−13 Lei et al.10 studied the
behavior of a superhydrophobic surface made of a PDMS
(polydimethylsiloxane) grating by using the transmission
diffraction technique, and it was found that the transitions
can be identified by observing an irreversible change of the
diffraction pattern. Rathgen et al.11 proposed an optical
diffraction technique by using the reflection manner to study
the microscopic shape, contact angle, and Laplace law behavior
of the liquid−gas interfaces at a submersed superhydrophobic
surface. Poetes et al.12 used the method of light reflection to
study the decay of the plastron on the submersed rough
surfaces. Forsberg et al.13 applied a similar method as Poetes et
al.12 to study the wetting transitions on superhydrophobic
surfaces under hydrostatic pressure, and they first demonstrated
that a closed film of trapped air helps stabilize the submersed
CB state, especially in the low pillar densities. Moreover, based
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on the numerical method developed by Lobaton and
Salamon,14 Forsberg et al.13 calculated the constant mean
curvature of the meniscus between pillars by considering the
increasing air pressure as the meniscus curvature increases. It is
noted that Forsberg et al.13 supposed that the meniscus collapse
would happen when the whole three-phase contact line (TCL)
depins from the pillar tops. However, there exists a significant
deviation between the predicted collapse pressure and that
obtained by their experiments, and the deviation is especially
high as the increase of the pillar densities.
On the other hand, inspired by the unique water-repellent

capabilities of some plant leaves and insect legs, researchers
have studied the special hierarchical structures of these plant
leaves and insect legs and have shown that the nano−
microhierarchical structure is crucial for their stability.15−17

The nanostructure helps sustain a high liquid pressure and the
microstructure reduces the contact area. The synergy between
the micro- and nanoroughness stabilizes the superhydrphobic
state by enlarging the energy barrier between the CB and
Wenzel states.17 Moreover, it is shown that the hierarchical
structures can increase the wetting stability of the submersed
superhydrophobic surfaces. For example, Lee et al.18 inves-
tigated the influence of hierarchical structures of super-
hydrophobic surfaces on liquid slip by experiments. In their
experiment, Lee et al.18 achieved such hierarchical structure
with the smooth tops and nanostructured sidewalls (as
illustrated in Figure 1), which enhanced the stability of the

liquid−air interfaces at a high air fraction (∼100%) and
extremely increased the slip length as well. Though the

experiments have shown that the stability of submersed
superhydrohphobic surfaces can be improved by hierarchical
structures with nanostructured sidewalls (c.f., Figure 1), there is
a lack of quantitative explanation and understanding.
In this paper, we establish a theoretical formulation to

investigate the wetting stability on the submersed super-
hydrophobic surfaces under hydrostatic pressure. Special
attention is paid to the transition process from a CB to
Wenzel state. Our formulation is based on the structured
surface with cylindrical pores on a square lattice. The
equilibrium states of wetting on such surfaces are predicted,
and their stabilities are analyzed comprehensively. Then, the
above formulation is generalized to explain the behavior of a
pillared surface, which has been observed in experiments. A
comparison of our theoretical results with those from the
available experiments is given. Finally, based on the above
formulation and analysis, we quantitatively show the
importance of hierarchical structures with structured sidewalls
in wetting stability of submersed superhydrophobic surfaces
under hydrostatic pressure.

2. FORMULATION

From the energy point of view, the wetting transition can be
regarded as a process of overcoming the energy barrier between
the CB and Wenzel states.19 Energy minimization theory has
been widely used to interpret the wetting transition of droplets
on the superhydrophobic surfaces.19−22 Note that the capillary
length is defined by a = (γ/ρg)1/2, where γ is the liquid surface
tension, ρ the liquid density, and g the gravity acceleration.
When the droplet size is much smaller than a, the effect of
gravity is usually negligible. The energy minimization is
generally based on calculating the total surface energy for an
isothermal and closed system, e.g., a droplet settling on an open
microstructure surface.20,21 For a rough surface with cavities,
the compressibility of the trapped air in cavities will influence
the wetting states of the droplet and should be taken into
account.22,23 When a superhydrophobic surface is submersed in
water, the hydrostatic pressure, usually comparable to or even
higher than the capillary pressure, will play an important role in
the wetting transitions.13 Besides, a closed-air film will be
formed and the protruding meniscus will increase the air
pressure. Patankar22 calculated the free energy differences in
different wetting states of a droplet on a cavity-patterned
substrate, with respect to the CB state as a reference one.

Figure 1. Schematic of a two-level hierarchical superhydrophobic
surface with smooth tops and nanostructured sidewalls.18

Figure 2. Schematic of microstructured surfaces with cylindrical pores of radius R and depth H on a periodic square lattice of constant L. (a) 3D
view; (b) top view; (c) side view with water on top (i.e., the classical CB state).
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In the following, we will give a formulation to predict the
wetting states of submersed surperhydrophobic surfaces under
hydrostatic pressure, based on minimizing the total free energy
of the system. In our analysis, the structure size under
consideration is much smaller than the capillary length a so that
a meniscus with constant curvature can be assumed. Moreover,
the depth of cavities is large enough such that the meniscus will
not touch the substrate, and will not induce the wetting
transition during the process under consideration. In order to
capture the main physical picture, for brevity, we first set up a
formulation in terms of a relatively simple structure, i.e.,
cylindrical pores on a periodic square lattice as shown in Figure
2. Then, this formulation based on pore structures will be
extended to investigate pillared and hierarchical structures in
the later sections.
The surface structure is submersed in an incompressible

liquid (e.g., water), and a hydrophobic solid material is
considered. The whole system is assumed to be an isothermal
ensemble. The ambient air is at constant temperature T0 and
pressure p0, and air diffusion into and out of the liquid is
neglected. Then, the free energy G, which governs the
equilibrium and stability of the system, is expressed as22,24

= + +G G G Gb g s (1)

where Gb is the bulk energy, Gg is the potential energy due to
body forces (e.g., gravity), and Gs is the total surface energy.
We choose the classical CB state (c.f., Figure 2b) as the

reference state, in which the liquid−air interface is planar and
the air trapped in each pore is at atmospheric pressure p0 and
volume V0 (=πR

2H). R and H are the pore radius and depth,
respectively. The nearest distance between the pores is L. The
liquid protrudes into the pores and pressurizes the trapped air
inside, which gives rise to the bulk energy (Gb) of the air22
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where the ideal gas law pV = nkT is assumed, n is the number of
moles of gas, k is the gas constant, and V, p, and T represent
volume, pressure, and temperature, respectively. The subscripts
0 and 1 denote the reference and final states of the air,
respectively. I is the number of the pores submersed under the

liquid. The volume of the liquid protruding into each pore on
average is expressed as

π
θ
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3
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where a spherical configuration of the liquid−air interface is
assumed, h is the liquid protrusion depth, and θ is the sagging
angle of the liquid−air interface (which is defined in Figure 3a).
The meniscus can be concave (θ > 0) or convex (θ < 0),
depending on the hydrostatic pressure applied. Then, the final
volume of the air in each pore is

π= · −V R H V1
2

in (4)

The change in the potential energy of the liquid (e.g., due to
the reduction of the gravity potential) can be expressed as

≈ − · ·G p p V I( )g 0 l in (5)

where pl is the liquid pressure. The total surface energy is
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where f is the solid fraction of the substrate and θe is the
equilibrium contact angle defined by the Young equation, i.e.,
cos θe = (γsg − γsl)/γlg. The subscripts s, g, and l denote the
solid, air, and liquid, respectively. Note that nkT = p0V0 and V1
= V0 − Vin. Combining eqs 1−2 and 5−6, we get the
nondimensionalized total free energy G̃ (=G(1−f)/(IπR2γlg))
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Equation 7 describes the change of the free energy due to the
protrusion of the liquid into the pores under hydrostatic
pressure, with respect to the reference state (c.f., Figure 2b). G̃
is a function of the parameters θ, h, and p1 at a given liquid
pressure pl, and determines the pinning and depinning of TCL
at the pore tops. A minimization of G̃ will lead to the
equilibrium states of the system under the different liquid
pressures.

Figure 3. Schematic illustrating the morphologies of the liquid−air interface: (a−b) during pinning; (c) after depinning; (d) the Wenzel state. The
dashed lines in (a) and (b) show the critical positions of the advancing and receding angles θadv and θrec, respectively, where the depinning happens.
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3. MORPHOLOGIES OF LIQUID−AIR INTERFACE
In this section, we consider the equilibrium morphologies of
the liquid−air interface. Setting ∂G̃/∂p1 = 0 and ∂G̃/∂θ = 0
yields

=V p V p0 0 1 1 (8)

and

θ γ− =p p
R

2 sin
l 1 lg (9)

Equation 8 is the ideal gas law at a constant temperature.
Equation 9 is the Young−Laplace equation relating the capillary
pressure difference to the meniscus curvature radius. If θ is in
the range of [θrec − π, θadv − π/2] (where θrec and θadv are the
receding and advancing contact angles, respectively), the TCL
will remain pinned at the corners.11 That is, h = 0, as illustrated
in Figure 3a,b. Combining eq 3 at h = 0 and eqs 8−9 yields

θ θ

γ θ
−

− − +
=

θ

p p
R
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1 (2 3 cos cos )

2 sin
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3
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Equation 10 gives an illustration of the equilibrium states as
shown in Figure 3a,b with TCL still pinned at the top. When
the liquid pressure is relatively lower than the initial air
pressure, the liquid−air interface will protrude upward into the
liquid and form a bubble, or even spread out on the upside of
the substrate when the receding contact angle is reached,11 as
shown in Figure 3b. Otherwise, when the liquid pressure is
higher than the initial air pressure, the liquid−air interface will
protrude downward into the pore, or even depin from the
corner and slip into the pore with a constant advancing CA
until a new equilibrium state is reached, as shown in Figure 3c.
In this work, we mainly consider the case that the initial air

pressure p0 is lower than the hydrostatic pressure. Setting ∂G̃/
∂h = 0, we have

θ
γ− = −p p

R
2 cos

l 1
e

lg (11)

If the pore is open at the other end, the air pressure will remain
constant, that is, p1 = p0, and then eq 11 is usually referred to as
the depinning transition criteria for the wetting on open
structure surfaces.13,14,25 For the pillared substrates, R should
be replaced by the effective capillary radius Reff

c defined by14

=R
A

C
2

eff
c

(12)

where A is the horizontal projected interface area and C is the
arc length of the three-phase contact line. Comparison of eqs 9
and 11 yields θ = θe − π/2. Then, by combining eqs 3, 8, and
11, we obtain
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The equilibrium state illustrated by eq 13 is shown in Figure 3c.
Equations 10 and 13 provide a full description of the

equilibrium morphologies of the liquid−air interface depending
on the liquid and initial air pressures. Substituting eqs 8 and 10
or eqs 8 and 13 into eq 7 yields the minimum of G̃ as a function

of the liquid pressure pl. We denote this minimum of G̃ as G̃min.
In the next section, we will discuss the wetting stabilities of the
equilibrium states.

4. STABILITIES OF EQUILIBRIUM STATES
The equilibrium state described by eq 10 is the CB state the
actual shape of the liquid−air interface before depinning
considered. Equation 13 describes a new equilibrium state,
which happens after the TCL depinning from the tops. The
new equilibrium is reached as a result of the increasing air
pressure by the liquid pressurization. It can easily be estimated
from eq 7 that both states of eqs 10 and 13 are local stable
ones. The global stabilities of these equilibrium states can
simply be analyzed by an energy comparison with the Wenzel
state. The collapse of the liquid−air interface will lead to the
Wenzel state (c.f., Figure 3d), and G̃min in the Wenzel state is
expressed as
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For a given solid material and surface structure, eq 14 is
influenced by the hydrostatic pressure pl.
Note that the real surface is hysteretic and that the motion of

TCL during the wetting transition from the CB to Wenzel state
does not change signs. θe in G̃min should be replaced by θadv.

26

Consider a surface structure, e.g., R = 3.0 μm, H = 9.5 μm, and
θadv = 120°. It is noted that the solid fraction f varies with the
lattice constant L; f only influences the scale of G̃, and the
equilibrium pressures are independent of f (c.f., eqs 7, 10, and
13). Therefore, for the sake of brevity, f = 0.5 is chosen. The
liquid is water with surface tension γlg = 0.0728 N/m, and the
atmosphere pressure p0 is set to 101.3 kPa. Then, according to
eq 7, G̃min (in different equilibrium states illustrated by eqs 10,
13, and 14, respectively) as a function of pl/p0 is shown in
Figure 4. From Figure 4, we can see that there are two critical
pressures P1 and P2. P1 represents the pressure at which the
free energies of the CB and Wenzel states are equal. P2 is the
pressure at which the sagging angle of the meniscus θ reaches
the value of θadv, as shown by the dashed line in Figure 3a. After

Figure 4. Plots of G̃min as a function of pl/p0 for different equilibrium
states on surfaces with patterned pores (c.f., the insert). P1, the
pressure at which the Wenzel state becomes lower energy than the CB
state; P2, the pressure at which the depinning happens.
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P2, the TCL starts to depin from the top. P1 and P2 divide the
wetting behaviors of submersed surfaces under pressure into
three different kinds. First, at low hydrostatic pressure, the CB
state (from A to P1, illustrated by eq 10 and Figure 3a) with
lower free energy than that of the Wenzel state, is stable and
always preferential in general cases. Second, as the hydrostatic
pressure increases, the Wenzel state has a lower energy than
that of the CB state after P1. Third, when the pressure increases
further beyond P2, the TCL depinning will happen (c.f., the
dashed line in Figure 3a). Though the free energy of the
Wenzel state from P1 to C is relatively lower, the CB state from
P1 to P2 is still more preferential, due to the stabilization given
by the TCL pinning, and a large disturbance is needed to
induce the transition from the CB to Wenzel states. This is the
reason it is generally accepted that the wetting transition
appears on an open-structured surface when the depinning
happens.11,14,25

By comparison with the CB state (from P1 to P2), the
depinned metastable state (from P2 to B as illustrated by eq 13
and Figure 3c) can withstand relatively smaller disturbances.
This is because this state has higher free energy than the
Wenzel sate (from C to D). On the other hand, the liquid
pressure, which the structured surface can support, will be
significantly increased by achieving the metastable state from
P2 to B. According to eq 13, pl increases from 1.28·p0 to
1.34·p0, when h changes from 0 to 0.05H for a cylindrical pore
with R = 3 μm and θadv = 120° (c.f., Figure 4). This means that
the pressure difference (i.e., pl − p0) is increased by 20%. This
increase will be more pronounced for the superhydrophobic
surfaces with a large area of menisci.13 However, until now, no
theories or direct experiments have paid much attention to this
depinned metastable state. In section 5, by comparing our
theory with available experiments in the literature, for the first
time we will show that an equilibrium state after depinning (i.e.,
the depined metastable state) on submersed superhydrophobic
surfaces is possible. In section 6, we will discuss how to improve
the stability of the metastable state.
From the above theoretical analysis, it is seen that G̃min is

influenced by the solid fraction f and the hydrostatic pressure
pl/p0 (c.f., Figure 4). In order to analyze the influence of f and
pl/p0 on G̃min, the contour plots of G̃min as functions of f and pl/
p0 on a surface with patterned cylindrical pores of constant
radius and depth (e.g., Rp = 3.0 μm and H = 9.5 μm) are shown
in Figure 5. Due to the assumption of constant pore size, the
critical pressures P1 and P2 are independent of f. The solid

fraction f of the structured surface with pore patterns on a
square lattice (c.f., Figure 4) is in the range of f ∈ (0.21, 1.0).
From Figure 5, we can see that G̃min increases with decrease of
pl/p0 and increase of f. The whole phase diagram is divided into
three regions: Region I is the pressure range from A to P1, in
which the CB state is generally stable; Region II is the pressure
range from P1 to P2 (or C), in which the CB state (from P1 to
P2) has higher free energy than the Wenzel sate from P1 to C;
and Region III is from P2 to B (or from C to D), in which the
depinned metastable state (from P2 to B) has much higher free
energy than the Wenzel state from (C to D, c.f., Figure 4).
Given a specific submersed surface structure and a given
hydrostatic pressure, we can determine the wetting stability
from this phase diagram.
Noted that the pillared surfaces are generally used for the

drag reduction applications, because a large and continued
liquid−air interface can be obtained on such surfaces for
minimizing drag.18 In the following, we will extend the
formulation developed above to analyze the wetting behaviors
of submersed pillared surfaces, and compare our theoretical
results with the existing experimental ones in the literature.

5. WETTING STABILITY OF PILLARED SURFACES

Recently, wetting states and transitions on pillared surfaces
have received much attention. For example, Forsberg et al.13

carried out experiments to study the wetting transition on
submersed superhydrophobic surfaces and demonstrated that a
closed film of trapped air helps stabilize the Cassie−Baxter
state, especially in the low pillar densities. They used pillar-
structured surfaces made of PE (polyethylene) with θadv =
103.5°, and fluoropolymer-coated PE with θadv = 122.1°. In
their experiment, those surfaces were fully immersed in water,
whose pressure was raised or lowered until the wetting
transitions happened, and they recorded the collapse pressures
on the pillared surfaces with different solid fractions.
To better illustrate the wetting stability on the submersed

substrates, it is necessary to carry out a comparison between the
present theory and the experiment results (e.g., those obtained
by Forsberg et al.13). Before that, we need to extend the
formulation developed in the above sections so as to analyze
the behavior on submersed pillared surfaces. Noted that
Forsberg et al.13 investigated the influence of the pillar shape
and arrangement as well, e.g., circular and square pillars in a
square or hexagonal array. Their results show that the variation
of pillar shapes and arrangements do not show much difference
(any difference is within the uncertainty of the measurement13)
with similar pillar size and solid fraction. Therefore, without
loss of generality, we investigate a surface structure of circular
pillars on a periodic square lattice (shown in Figure 6a). Other
structures can be investigated following the similar procedure.

5.1. Stabilities of Equilibrium States. The pillared
surface can be approximately equivalent to a pore-patterned
one with corresponding effective geometric and capillary radii.
The effective geometric radius means that the liquid volume
protruding into each effective pore is approximately equal to
that protruding between the four nearby pillars. For pillars on a
square lattice (as shown in Figure 6b), the effective geometric
radius can be approximately expressed as

π= −
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟R

f
R

2
1eff

g
p

(15)
Figure 5. Contours of G̃min as functions of f and pl/p0 on surfaces with
patterned pores (c.f., Figure 2a).
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where Rp is the pillar radius. A specific form of eq 12 gives the
effective capillary radius for pillars on a square lattice

=
−

R
f

f
R

1
eff

c
p

(16)

Note that the values of Reff
g and Reff

c may differ greatly from each
other, depending on the surface structure and solid fraction.
With eqs 15−16, the normalized total free energy G̃ for pillared
surfaces as functions of θ, h, p1, and pl can be easily obtained,
following the same procedure to get eq 7. The derivation of G̃
with respect to different parameters leads to the equilibrium
states. The analysis shows that the states of eqs 10 and 13 also
exist on pillared surfaces. G̃min on pillared surfaces is given by G̃
in the equilibrium states (e.g., the CB, metastable and Wenzel
states). Especially, eq 13 for the pillared substrates can be
expressed as
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Note that the height of those pillars is H. Equation 17 gives the
collapse pressure on submersed pillared surfaces, and its
accuracy depends on the approximation made by eqs 15−16 .
In accordance with the experiments of Forsberg et al.,13 we

consider a pillared surface with Rp = 3.0 μm and submersed in
water. To understand the energy states on the pillared surface
clearly, we present a free energy comparison of different
equilibrium states (e.g., the CB, metastatble and Wenzel states)
in Figure 7, with respect to two different θadv (i.e.,
103.5°and122.1°). The solid-fraction range is from 0.1 to 0.5
in the experiment of Forsberg et al.13 Here, an intermediate
value of f = 0.3 is chosen as an example to illustrate the wetting
stabilities on pillared surfaces. The critical pressures P1 and P2
(c.f., Figure 4) are also included. For θadv = 103.5°, the plots in
Figure 7 are similar to Figure 4, which are divided into three
parts. In the first part, the CB state (from A to P1) is generally
stable at low pressure; in the second part, the CB state
(between P1 and P2) has higher free energy than the Wenzel
state (from P1 to C); and in the last part, the metastable state

(from P2 to B) exists but has much higher free energy than the
Wenzel state (from C to D).
It is noted that Forsberg et al.13 used the fluoropolymer

coating with higher hydrophobicity (θadv = 122.1°) in their
experiment. This is because it is known that materials with high
hydrophobicity can improve the stability of structured surfaces.
In order to compare with the results with θadv = 103.5°, we plot
the free energies in different equilibrium states with θadv =
122.1° in Figure 7 as well. The points with primes (e.g., A′, P1′,
P2′, B′, C′, D′) denote those with θadv = 122.1°(c.f., Figure 7). It
is shown that the high hydrophobicity can enhance the critical
pressures (e.g., from P1 to P1′; from P2 to P2′). This
enhancement means that structured surfaces with the higher
hydrophobicity can withstand larger liquid pressure.
Similar to Figure 5, the contour plots of G̃min as functions of f

and pl/p0 on the pillared surfaces (c.f., Figure 6a) are shown in
Figure 8. The radius and height of those pillars are kept
constant, e.g., Rp = 3.0 μm and H = 9.5 μm. The range of f is
chosen as f ∈ [0.1, 0.5], in which the validation of our theory
has been confirmed by comparison with numerical and
experimental results in the following section. The dependence
of the effective geometric and capillary radii on f influences the
critical pressures P1 and P2. In fact, Figure 8a,b shows phase
diagrams of G̃min with f and pl/p0. Given a specific submersed
surface structure ( f) and a given hydrostatic pressure (pl/p0),
we can determine the wetting state from those diagrams.
Likewise, the whole phase diagrams in Figure 8 are also divided

Figure 6. (a) Structured surface patterned with pillars. (b) Schematic illustrating the effective geometric radius Reff
g for a structured surface with a

pillar radius Rp on a periodic square lattice of constant L (top view).

Figure 7. Plots of G̃min as a function of pl/p0 for different equilibrium
states on pillared surfaces (c.f., the inset, Rp = 3.0 μm and H = 9.5 μm)
with respect to θadv = 103.5° and θadv′ = 122.1°.
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into three regions: Region I, Region II, and Region III (c.f.,
Figure 5 and Section 4 for detailed descriptions). From Figures
7 and 8, we can easily know that on pillared surfaces, in region
I, the CB state is very robust and the transition to the Wenzel
state can barely happen; in region II, the transition from the CB
to Wenzel states can only happen under relatively large
disturbances, because the TCL pinning assists its stability; and
in region III, relatively low disturbances can induce the
transition from the depinned metastable to Wenzel states.
Given a specific submersed surface structure ( f) and a given
hydrostatic pressure (pl/p0), we can determine the wetting state
from those diagrams. For example, a structure of f = 0.3 under
pl = 1.1 p0 is in a metastable state after depining (i.e., in region
III in Figure 8a) when θadv = 103.5°; whereas a structure of f =
0.3 under pl = 1.1 p0 is in a CB state before depinning (i.e., in
region II in Figure 8b) when θadv = 122.1°. This further proves
that an increase of the hydrophobicity (e.g., θadv from 103.5° to
122.1°) not only helps the surface to support high pressure, but
also improves the wetting stability. To confirm the above
analysis, a comparison with the experimental results in the
literature is constructed.
5.2. Comparison with Experimental Results. As

mentioned above, several experiments have been carried out
on wetting transitions on submersed structured surfaces. The
experimental results from Forsberg et al.13 are shown in Figure
8a−b. It is clearly seen that almost all results fall in Region III,

which means that the TCL has slipped into the cavity at a
certain distance (c.f., Figure 3c). There are several exceptional
experiment results on the pillared surfaces with θadv = 122.1°, in
which the collapse appeared before the depinning, falling in
Region II. This is most probably because certain disturbances
appeared during their experiments, which exceeded the energy
barrier between the Wenzel and CB states. Note that in Region
II the Wenzel state has a lower free energy than the CB sate.
Thus, though the CB state is preferential due to the TCL
pinning, the transition may happen under certain disturbances.
From the above free-energy analysis, it is shown that the

experimental results of Forsberg et al.13 were obtained from the
metastable states (c.f., Region III). In order to confirm that
further, the collapse pressure (obtained by eq 17) as a function
of the solid fraction f (together with the experimental results
from Forsberg et al.13) is plotted in Figure 9. When h/H = 0, pl

obtained by eq 17 is the depinning transition pressure, which is
in a good agreement with the numerical results of Forsberg et
al.13 within the tested range of solid fraction (i.e., 0.1−0.45), as
shown in Figure 9a,b. At a low solid fraction, the depinning
pressure is close to the experimental one. As the solid fraction
increases from 0.1 to 0.45, the predicted depinning pressure
does not change much, but the experimental one changes a lot,
even 1× higher. A comparison between plots of eq 17 (Figure
9a,b and the experimental results) implies that the depinned
liquid−air interface has slipped into the cavity at a certain

Figure 8. Contours of G̃min as functions of f and pl/p0 on pillared
surfaces (c.f., Figure 6). The experimental results are from Forsberg et
al.:13 (a) θadv = 103.5°, (b) θadv = 122.1°.

Figure 9. Contour plots of the collapse pressure pl (calculated by eq
17) as a function of the solid fraction f on the pillared substrates (Rp =
3.0 μm and H = 9.5 μm): (a) θadv = 103.5°, (b) θadv = 122.1°.
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distance h (as illustrated in Figure 3c). For example, for the
case of θadv = 103.5° at f = 0.3, a relative protrusion depth (h/H
∼4%) is obtained, and thus, an air pressure increase ∼4 kPa
results. This contributes about 40% to the pressure difference
(i.e., pl − p0) just before the collapse of the liquid−air interface.
There is another experiment to investigate wetting

transitions on submersed superhydrophobic surfaces by using
the technique of transmission diffraction patterns.10 Their
starting point is that the change of the diffraction spot intensity
shows how deep the meniscus has protruded into the cavity,
and the disappearance of the diffraction means that a transition
from a CB to Wenzel state has happened. The structured
surface used is a PDMS grating of 10-μm-diameter and 50-μm-
height pillars on a pseudotriangle lattice, and the solid fraction f
is about 0.19. Given the contact angle on a flat PDMS of
∼105°, the depinning pressure (i.e., P2) on their grating is
about 1.028 p0, according to eqs 16−17. By gradually increasing
the liquid pressure from p0 to a maximum value (e.g., 1.05 p0 or
1.06 p0), and then decreasing back to p0, Lei et al.

10 observed
reversible diffraction pattern when the maximum pressure is
lower than 1.06 p0. The diffraction spot intensity In (zero-
order) as a function of liquid pressure obtained by Lei et al.10 is
normalized by its starting value In0 (when pl = p0), and we
replot it in Figure 10. According to eq 17, the corresponsive

relative protrusion depths h/H are calculated and plotted in
Figure 10 to illustrate the correlation between the diffraction
spot intensity and the protrusion depth. It can be clearly seen
that, when pl is smaller than the depinning pressure, the TCL is
still pinned at the corner, i.e., h/H = 0, and the diffraction spot
intensity varies slightly as the increase of pl. A rapid decay of the
diffraction intensity appears when pl is higher than P2. This is
because the pressure higher than P2 induces the depinning of
the TCL, and the protrusion depth into the cavities increases as
the increase of pl.
The good agreement between our theory and the experi-

ments of Lei et al.10 reconfirms the existence of the metastable
state after depinning. The depinning of TCL may not induce
the failure of superhydrophobicity under water. It is possible
that a metastable state exists after the TCL depinning, due to
the increasing air pressure as the liquid protrusion into the
cavities. Noted that our theory is based on pillars on a square
lattice, which is different from the pseudotriangle lattice of Lei

et al.10 The good agreement between our theory and
experiment of Lei et al.10 confirms the conclusion obtained
by Forsberg et al.13 that the characteristic size of pillars and the
solid fraction play more important roles than the pillar
arrangement. The depinned metastable state raises the collapse
hydrostatic pressure supported by a superhydrophobic surface.
However, due to much higher free energy of the metastable
state than the Wenzel state, the metastable state is not immune
to external disturbances. Therefore, to utilize the advantage of
the metastable state, it is necessary to strengthen its stability.

5.3. Comparison of Wetting Stability of Two
Structured Surfaces. From Figures 4 and 7, we know that
a large area of closed-air film after depinning from the tops is in
a metastable state, and some disturbances may induce the local
collapse of the film, as illustrated in the above sections. The
local collapse of the closed-air film expands as the hydrostatic
pressure gradually increases, as observed in the experiments of
Forsberg et al.13 When the solid fraction is higher, the closed-
air film becomes more stable due to a larger arc length of the
TCL per unit area, and thus, the liquid−air interface can sustain
a higher disturbance and protrude deeper into the cavities. As
shown in Figure 9a,b, the relative protrusion depth increases
from ∼0% to ∼7%, as the solid fraction increases from ∼0.1 to
∼0.45.
It is seen that closed-air films on substrates with patterns of

individual cavities (c.f., Figure 2a) are in a much smaller area
than those on the pillared substrates (c.f., Figure 6a). It can be
expected that the air films trapped in patterns of cavities are
much more stable than those in the pillared substrates with the
same solid fraction in the low range, e.g., f < 0.5. For example,
for the two kinds of surfaces with the same lattice parameter,
height and hydrophobicity, e.g., L = 10 μm, H = 9.5, μm and
θadv = 120° (c.f., Figures 2 and 6), at a solid fraction f = 0.3, the
depinning pressures (according to eqs 13 and 17) for the
surfaces patterned with cavities and pillars are 1.225·P0 and
1.142·P0, respectively. When h is 0.05H, the collapse pressures
is 1.286·P0 (with cavities) and 1.120·P0 (with pillars),
respectively. In both cases, the surface patterned with cavities
can support relatively higher liquid pressure than that of the
pillared one. That is, a more stable superhydrophobicity can be
expected on substrates patterned with individual cavities.
However, in real applications, we also need a large fraction of

continued liquid−air interface for minimizing drag in a high
liquid pressure (and/or velocity) environment. In the following
section, we will discuss how to obtain a metastable state on
pillared surfaces with high stability.

6. WETTING STABILITY OF HIERARCHICAL
STRUCTURED SURFACES

The comparison between our analytical results and exper-
imental results in the literature in the above section confirms
that a metastable state exists after the TCL depins from the
tops (c.f., Figures 7−10). The metastable state helps the
submersed superhydrophobic surface support higher liquid
pressure. Increasing the stability of the metastable state will
strengthen the superhydrophobicity. To maintain a metastable
state, the TCL should be strongly pinned on the cavity
sidewalls to avoid the collapse transition. Therefore, techniques
assisting the pinning of TCL will help to obtain stable and large
area liquid−air interfaces on structured surfaces. Inspired by the
super antiwetting properties of lotus leaves and water strider
legs, hierarchical structures are commonly used to improve the
wetting stability of superhydrophobic surfaces. Various artificial

Figure 10. Correlation between the relative protrusion depth h/H
(present theory) and normalized diffraction spot intensity In/In0
(experimental results from ref 10) as functions of the liquid pressure
pl/p0. Experiment I: the liquid pressure increases from p0 to 1.05 p0
and then deceases to p0. Experiment II: the liquid pressure increases
from p0 to 1.06 p0 and then deceases to p0.
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hierarchical structures have been fabricated based on pillared
surfaces by the methods of deposition and corrosion, and so
forth. In the following, we will show how the hierarchical
structures can be used to improve the stability on submersed
pillared surfaces and the mechanisms.
It is known that microstructures or defects on substrates can

significantly increase the wetting hysteresis due to TCL
pinning.27 As illustrated in Figure 11, a hierarchical surface
with substructured sidewalls helps for a stable liquid−air
interface. This is because, when the TCL depins from the pillar
tops, the sublevel structures will provide new pinning positions
for the TCL. The metastable state after depinning can be
strengthened by the sublevel structures. Thus, even if TCL has
slipped at certain depth h into the cavity, the liquid−air
interface can still be in a quite stable state. From another point
of view, the sublevel roughness on the sidewalls increases the
wetting hysteresis, enabling the pinning of the TCL. Thus, a
larger apparent advancing contact angle θadv

app than the original
θadv on smooth sidewalls results,27 as shown in Figure 11b. A
three-level or even higher level structure (as shown in Figure
11c) will further strengthen the pinning effect of the contact
line. Namely, the TCL can slip into the cavity at a greater h
with a larger θadv

app due to the assistance given by the sublevel
structures. In the following, a quantitative analysis will be given
to determine the equilibrium states and their stabilities on
submersed hierarchical surfaces.
The hierarchical pillared surfaces have the same configuration

and structure size as shown in Figure 6 except that there are
sublevel structures (e.g., pillars or grooves) on the sidewalls.
Figure 11b illustrates a two-level structure, which has a similar
configuration as the surface structure of lotus leaves. On the
surface of lotus leaves, there are first-level protrusions and
sublevel pillars on these protrusions.17 A three-level structure
can be obtained by further modification of the tops of those
sublevel pillars, as shown in Figure 11c. For simplification, we
consider a two-level structure as shown in Figure 11b. The
analysis of three- or higher-level structures (see Figure 11c) is
similar. Following the procedure as described in sections 2 and
5, the total free energy for a submersed hierarchical pillared
surface can be easily obtained. Minimizing the total free energy

will lead to the equilibrium states. The metastable state after
depinning can be expressed as
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where θe
app is the apparent equilibrium contact angle on the

structured sidewalls. For a quasistatic process of wetting
transition from a CB to Wenzel state, θe

app in eq 18 should be
replaced by the apparent advancing contact angle θadv

app,26 and
θadv
app is expressed by a modified CB equation1,28,29

θ θ= + −f fcos 1adv
app

sw adv sw (19)

Here, fsw is the solid fraction of the structured sidewalls, and
θadv
app represents the ground state of an advancing contact line
along the sidewalls.29 The analysis of wetting stability on
hierarchical structured surfaces can be achieved by following
the procedure shown in section 5.
With comparison of eqs 17 and 18, we know that the

influence of sublevel-structured sidewalls is to give a higher θadv
app

than θadv. For example, given a structured sidewall with fsw = 0.3
and θadv = 103.5°, θadv

app can be as high as ∼140°, according to eq
19. As described in sections 4 and 5, the critical pressure P1 can
be calculated by equalizing the free energies of CB and Wenzel
states, and P2 can be obtained by letting h = 0 in the formula of
the collapse pressure (eq 17 or 18) (i.e., the depinning
presure). In fact, P1 and P2 reflect the pressure-withstanding
ability of superhydrophobic surfaces, and they are plotted in
Figure 12 as a function of θadv. From Figure 12, we can see that
both P1 and P2 are significantly elevated as the increase of θadv.
For example, an increase of θadv from 103.5° to 140° induces
the elevation of P1 from 1.03 to 1.16 and P2 from 1.07 to 1.24
(as shown by the dashed lines A and B in Figure 12). The

Figure 11. Schematic illustrating the pinning enhancement of the TCL by sublevel structures on the sidewalls. The dotted lines show the liquid−air
interface in the metastable state (c.f., Figure 3c): (a) θadv on the smooth sidewalls, (b) larger θadv

app on the structured sidewalls, and (c) three-level
structure obtained by modifying the tops of sublevel pillars.
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elevation of P1 and P2 means that the stability of those surfaces
has been improved.
We also plot the collapse pressure (i.e., pl/p0 by eq 18) as a

function of h/H on a pillared surface of solid fraction f = 0.3
(with different θadv

app), as shown in Figure 13. It is clearly shown

that the collapse pressure increases significantly with the
increase of θadv

app and h/H. This is consistent with the
experiments of Lee et al.14 by using structured sidewalls to
enhance the stability of the liquid−air interface on super-
hydrophobic surfaces. Moreover, the experiments of Poetes et
al.12 have shown that a sublevel roughness helps underwater
superhydrophobic surfaces last longer under high hydrostatic
pressure. Both phenomena observed by the above two
experiments agree with our theoretical analysis. Therefore, we
conclude that a hierarchical structure is important for the
wetting stability on the submersed superhydrophobic surfaces
under hydrostatic pressure from the point of view that it helps
to strengthen the pinning of the three-phase contact line on the
cavity sidewalls.

7. CONCLUSIONS
In this paper, we have investigated the wetting stability on the
submersed superhydrophobic surfaces under hydrostatic
pressure. A theoretical model for predicting the equilibrium
states on the submersed substrates with the cylindrical cavities/

pillars is formulated. Comparison with the available exper-
imental results shows that the depinning of the three-phase
contact line may not induce the failure of the liquid−air
interface, and a metastable state after depinning exists due to
the increase of air pressure by the liquid pressurization. The
advantage of the metastable state is that it can increase the
liquid pressure that can be stood by superhydrophobic surfaces,
and the disadvantage is that the depinned metastable state has
higher free energy than the Wenzel state, and is not immune to
external disturbances. In order to strengthen the stability of the
depinned metastable state, the hierarchical structured surface is
needed. It is shown that a two-level hierarchical surface with
structured sidewalls is important for the stability of submersed
superhydrophobicity in the way that it helps enhance the
pinning of the liquid−air interface on the cavity sidewalls in the
metastable state.
Although our formulation is based on the transition process

from a CB to Wenzel state, a similar theoretical framework can
be used to analyze the opposite transition direction, i.e., from a
Wenzel to CB state. The present theory helps to better
understand the wetting states and their stabilities on submersed
superhydrophobic surfaces.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: hlduan@pku.edu.cn.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
Support by the following agencies and program is acknowl-
edged: Major State Basic Research Development Program of
China (Grant no. 2011CB013101). National Natural Science
Foundation of China under Grants 10872003, 10932001 and
11172001; Program for the Author of National Excellent
Doctoral Dissertation of China (grant no. 2007B2). Huiling
Duan would like to acknowledge the Alexander von Humboldt
(AvH) foundation to support this work through project
″Mechanics theory of materials with complex surfaces and its
applications″ in the frame of the AvH program for funding a
research group linkage.

■ REFERENCES
(1) Cassie, A. B. D.; Baxter, S. Large Contact angles of plant and
animal surfaces. Nature 1945, 155, 21−22.
(2) Wenzel, R. N. Resistance of solid surfaces to wetting by water.
Ind. Eng. Chem. 1936, 28, 988−994.
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