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Abstract Nonlinear dynamic response of nanomechanical
resonator is of very important characteristics in its applica-
tion. Two categories of the tension-dominant and curvature-
dominant nonlinearities are analyzed. The dynamic nonlin-
earity of four beam structures of nanomechanical resonator
is quantitatively studied via a dimensional analysis approach.
The dimensional analysis shows that for the nanomechani-
cal resonator of tension-dominant nonlinearity, its dynamic
nonlinearity decreases monotonically with increasing axial
loading and increases monotonically with the increasing as-
pect ratio of length to thickness; the dynamic nonlinearity
can only result in the hardening effects. However, for the
nanomechanical resonator of the curvature-dominant non-
linearity, its dynamic nonlinearity is only dependent on ax-
ial loading. Compared with the tension-dominant nonlinear-
ity, the curvature-dominant nonlinearity increases monotoni-
cally with increasing axial loading; its dynamic nonlinearity
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can result in both hardening and softening effects. The anal-
ysis on the dynamic nonlinearity can be very helpful to the
tuning application of the nanomechanical resonator.

Keywords Resonator · Dynamic response · Dynamic non-
linearity · Dimensional analysis

1 Introduction

The fabrication of micro/nano-electromechanical systems
(MEMS/NEMS) is made possible due to the advancing tech-
nologies and state-of-art in the fields of micro/nanometre-
scale processing and machining [1–18]. As its charac-
teristic frequency scales upwards with decreasing size [9],
micro/nanometre-scale mechanical resonator/oscillator with
high and ultrahigh characteristic frequency is suitable for
those applications requiring both high responsivity and
high frequency operation [10], such as charge detec-
tion [2], ultra-sensitive mass sensing [7,12–17], signal pro-
cessing/mixing [8] and possible quantum effect study on a
macroscopic system [11]. Charles Babbage in 1834 designed
the first mechanical analytic engine [5], which is viewed as
the forerunner of modern computer [19]. The advent of elec-
tronic transistor and magnetic storage technologies in 1960s,
which were much superior to the mechanism of mechan-
ical moving element in both manipulation speed and data
density, resulted in the abandonment of Babbage’s idea of
mechanical computer [19]. Recent breakthrough in the fab-
rication of NEMS resonator with the fundamental charac-
teristic frequency of 1 GHz and higher [9,11] intrigues fur-
ther research interest in this area because such breakthrough
could eventually lead to the realization of high performance
mechanical computer which can compete with current elec-
tronic computer. Mechanical resonator with GHz character-
istic frequency which moves on time scale of a nanosecond
or less makes such competition possible [19]. Recent suc-
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cessful fabrication of controllable nanomechanical memory
element [5] and switch [6] demonstrates such rivalry poten-
tial. Even before the advent of GHz nanomechanical res-
onator, with the trends of the nanomechanical resonator with
higher and higher fundamental characteristic frequency of
MHz order being fabricated, Roukes called for the careful re-
examination on the established dogma of digital electronic
age and re-consideration for the abandoned design of me-
chanical computer envisaged by Charles Babbage [19].

With respect to the (promising) applications and ad-
vantages of nanomechanical resonator, it still faces many
serious technical challenges and difficulties, such as the
fluctuation due to thermomechanical noise [10,20,21]; low
Q factor with decreasing size [10,17,18,21,22], increasing
magnetic field [21], increasing ambient pressure [4,21] and
dynamic nonlinear response [3–8,10,11,21,23,24]. Recent
findings on the initial conditions-dependent antiresonance
response of weakly nonlinear nanomechanical resonator [24]
and strongly nonlinear response of doubly clamped nanome-
chanical resonator [10] demonstrate some application limita-
tions of nanomechanical resonators because of nonlinearity.
However, nonlinearity is not always harmful. The nonlinear
dynamic response of nanomechanical resonator results in a
bistable region, which has been successfully used as a mech-
anism to realize mechanical binary state [5,6]. The nonlin-
earity can also be utilized to improve the charge sensitiv-
ity [25] and as a frequency stablizer in a feedback loop [26].

Both the flexural vibration [5,6,8,10,16,23,26] and tor-
sional vibration [13,14] of nanomechanical resonator are de-
scribed by Duffing equation, which possesses cubic non-
linearity [27]. The cubic nonlinearity of nanomechanical
resonator beam structure arises from two sources: (1) ten-
sion due to nonlinear mid-plane stretching [10] and (2)
curvature nonlinearity [10,28]. For doubly clamped [10],
doubly hinged and hinged-clamped beam structures [27],
the tension due to the nonlinear mid-plane stretching is
dominantly responsible for the cubic nonlinearity in Duff-
ing equation. For a cantilever beam, curvature nonlin-
earity is dominant [10,28]. For doubly clamped, doubly
hinged and hinged-clamped beam structures, their tension-
dominant nonlinearity can only be valid when the struc-
ture is not slack. Slack here means that the structural
length is (much) longer than the distance between the con-
tacts/structure ends [4]. For a nanotube or a nanowire-based
nanomechanical resonator which has large aspect ratio of
length to thickness/radius [4,10], the slack doubly clamped
nanomechanical resonator should be modeled as catenary
rather than beam [4]. For a catenary structure, it is curvature-
dominant nonlinearity [4]. To the authors’ best knowledge,
the nonlinearity effects of Duffing-type nanomechanical res-
onators has not been comprehensively studied. Anderson
et al. did both theoretical and experimental studies on the
curvature-dominant nonlinear dynamic response of a can-
tilever beam [28]. However, the axial/longitudinal loading is
not included as a parameter in their studies [28], which can

significantly influence the nonlinearity of the nanomechan-
ical resonator as shown in this paper. Tunability is a much
sought-after capability in nanomechanical resonator applica-
tions [29] and it can be realized by changing the axial loading
inside the nanomechanical resonator [4,16,18]. Therefore, it
is necessary and important to incorporate the axial loading
into the dynamic nonlinear response study of nanomechani-
cal resonator. Postma et al. studied the critical amplitude for
the tension-dominant nonlinearity onset of a doubly clamped
nanomechanical resonator [10]. In Ref. [10], both the as-
pect ratio and the axial loading are considered as two impor-
tant factors impacting the beam nonlinear dynamic response.
However, only one type structure of the tension-dominant
nonlinearity is analyzed in Ref. [10]; the detailed and com-
prehensive analyses on these two factors are not presented.
Lifshitz and Cross [30] presented a very detailed analysis on
the micro/nanomechanical resonators. However, our nondi-
mensionalization scheme on the beam governing equation is
different from Lifshitz and Cross’s, which leads to a different
Duffing equation.

Recent molecular dynamics simulation and initial ex-
periments appear to indicate that the continuum mechanics
model breaks down only for the structures with the cross
section of the order of tens of lattice constants [17]. A
continuum mechanics approach is thus taken in this paper.
The analysis work of this paper consists of two parts. One
part is to offer an overview of the dynamic nonlinear re-
sponse of Duffing equation with different parameters. Duff-
ing equation is for the system of single degree of freedom
(DOF) and nanomechanical resonator is a continuous sys-
tem of beam structure. The other part is to use modal analy-
sis and Galerkin method to transform the differential-integral
and differential governing equations into single DOF Duff-
ing equation. Based on that, dimensional analysis is used
to study the dynamic nonlinear response of nanomechani-
cal resonator. Peano and Thorwart’s study on the dynamic
nonlinear response of nanomechanical resonator is to treat
the “nonlinearity coefficient” as a variable parameter [23].
The dimensional analysis presented here relates the “nonlin-
earity coefficient” with the physical parameters and offers a
guide on how to decrease or increase the dynamic nonlinear
response of a nanomechanical resonator for different appli-
cation purposes.

2 Duffing equation

Duffing equation of single DOF system is as follows [27]

d2u
dt2
+ 2εμ

du
dt
+ ω2

ou + εαu3 = εk cos(Ωt). (1)

Here u is the system displacement, ωo is the system reso-
nant frequency without damping, μ is positive damping co-
efficient, α can be either positive (hardening effects) or neg-
ative (softening effects), ε is a small parameter, εk is the
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amplitude of external excitation and Ω is its driving fre-
quency. Here the excitation is assumed independent of the
state of system (u, du/dt and d2u/dt2), which is called ideal
sources of energy [27]. If the excitation is dependent on the
state of the system, it is called nonideal sources of energy.
Some of nanomechanical resonators are driven electrostati-
cally [13,14,16] and the electrostatic force fe ∝ (d − u)−2 (d
is the gap distance between the resonator and substrate) [31].
Therefore, electrostatic driving force is a nonideal source
of energy. With the discretization of Galerkin method and
proper truncation of the Taylor series, the electrostatically
driven system can still be expressed similar to the above-
mentioned governing equation with cubic nonlinearity [31].
Physically, classifying these two cases is important because
it indicates whether the excited system response influences
the excitation source(s). For the system of ideal sources of
energy, the excited system response influence on the exci-
tation source is none or negligible [27]. Here the system
primary response, i.e. Ω ≈ ωo is studied and the parameter
σ named detuning is introduced. Detuning parameter σ is to
quantitatively describe the nearness ofΩ to ωo. Accordingly,
we have

Ω = ωo + εσ, (2)

where σ = O(1). Here the multiscale perturbation method is
applied to derive the dynamic nonlinear response of Duffing
equation. We assume

u(t; ε) = uo(To, T1) + εu1(To, T1)

+ · · · (higher order terms),

To = t, T1 = εt,

(3)

and

d
dt
=

dTo

dt
∂

∂To
+

dT1

dt
∂

∂T1
+ · · ·

= Do + εD1 + · · · (higher order terms),

d2

dt2
= D2

o + 2εDoD1 + · · · (higher order terms).

(4)

In conjunction with Eqs. (3) and (4), Eq. (1) is now re-
written as the following form with the truncation of higher
order terms

(D2
o + 2εDoD1)(uo + εu1) + 2εμ(Do + εD1)(uo + εu1)

+ω2
o(uo + εu1) + εα(uo + εu1)3 = εk cos(Ωt). (5)

Equating the coefficients of ε0 and ε1 in Eq. (5), we obtain

ε0 : D2
ouo + ω

2
ouo = 0, (6)

ε1 : D2
ou1 + ω

2
ou1 = −2DoD1uo − 2μDouo

−αu3
o + k cos(Ωt). (7)

From Eq. (6), uo is solved as follows

uo = A(T1) cos[woTo + B(T1)]. (8)

Physically, A(T1) is the (unknown) system response ampli-

tude and B(T1) is the (unknown) phase shift angle. Substi-
tuting uo solution of Eq. (8) into Eq. (7), we have

D2
ou1 + ω

2
ou1 = 2A′ωo sin(ωoTo + B)

+2AB′ωo cos(ωoTo + B)

+2Aμωo sin(ωoTo + B)

−α
3A3

4
[3 cos(ωoTo + B) + cos 3(ωoTo + B)]

+k[cos(σT1 − B) cos(ωoTo + B)

− sin(σT1 − B) sin(ωoTo + B)]. (9)

Here A′ = dA/dT1 and B′ = dB/dT1. In Eq. (9), the follow-
ing properties of triangular functions are used

cos(Ωt) = cos(ωoTo + σT1)

= cos[(ωoTo + B) + (σT1 − B)]

= cos(σT1 − B) cos(ωoTo + B)

− sin(σT1 − B) sin(ωoTo + B), (10)

u3
o = A3 cos3(ωoTo + B)

=
3 cos(ωoTo + B) + cos 3(ωoTo + B)

4
A3. (11)

The secular terms of the particular solution of Eq. (9)
will be eliminated if the coefficients of sin(ωoTo + B) and
cos(ωoTo + B) terms are set to zero. Therefore, we have the
following two equations

sin(ωoTo + B) : 2A′ωo + 2Aμωo − k sin γ = 0, (12)

cos(ωoTo + B) : 2A(σ − γ′)ωo − 3αA3

4
+ k cos γ = 0. (13)

Here γ = σT1 − B and γ′ = dγ/dT1. Steady state motion
occurs when A′ = γ′ = 0 [27]. Therefore, Eqs. (12) and
(13) correspondingly change to the following equations for
steady state motion

μ =
k

2ωoA
sin γ, (14)

σ − 3αA2

8ωo
= − k

2ωoA
cos γ. (15)

Once again, by using the property of triangular function, we
derive the following equation from Eqs. (14) and (15)

μ2 +

(
σ − 3αA2

8ωo

)2
=

k2

4ω2
oA2

. (16)

Equation (16) is called frequency-response equation, which
is the same as that derived via a complex variable ap-
proach [27]. Equation (16) can be re-written as the following
one

σ =
3αA2

8ωo
±
√

k2

4ω2
oA2
− μ2. (17)
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In Nayfeh and Mook’s book [27], α is treated as the pa-
rameter indicating the nonlinearity of dynamic response of
Duffing equation. The system response is linear (α = 0) or
nonlinear (α � 0). While, as shown later in the analysis for
the nanomechanical resonator, the characteristic frequency
ωo varies with the axial loading. It is more proper here to
use parameter α/ωo instead of α as the parameter indicating
the system effective nonlinearity. Similarly, we use k/ωo in-
stead of k to indicate the effective excitation amplitude on the
system response. The parabola of σ = 3αA2/(8ωo) is often
called backbone curve [27]. Indicated by Eq. (16) or (17),
when the external driving frequency varies as Ω = ωo + εσ,
α/ωo (equivalent to the nonlinearity coefficient in Peano and
Thorwart’s study [23]), k/ωo (effective external driving am-
plitude) and μ (damping coefficient) are the three factors de-
termining the system steady-state response. In nanomechan-
ical resonator application, k/ωo is a control parameter and μ
is fixed with given material properties, structure dimensions,
related ambient conditions [21] and axial loading [18]. Here
the analysis focuses only on the nonlinearity coefficient of
α/ωo as a function of structure dimensions and axial load-
ing.

Figure 1 shows the system frequency response for
k/ωo = 0.05 and μ = 0.1 when α/ωo varies as −40, −20
(softening effects), 0 (linear response) and 20, 40 (harden-
ing effects). The dashed lines stand for backbone curves. In
Fig. 1, the magnitude of parameter α/ωo or backbone curve
determines how the whole system response curve bends,
which reflects the nonlinearity. Figure 2 shows the system
frequency response for α/ωo = 40 and μ = 0.1 when k/ωo

varies as 0.01, 0.02, 0.03, 0.04 and 0.05. All these five re-
sponse curves share one backbone curve and k/ωo behaves
as an amplification factor to amplify the nonlinear response
along the backbone curve. Figure 3 shows the system fre-
quency response with α/ωo = 40 and k/ωo = 0.05 when
μ = 0.2, 0.1 and 0.05. Similar to those in Fig. 2, Fig. 3
shows that all three curves share one backbone curve and μ−1

behaves as an amplification factor. Figure 4 shows the jump
and hysteresis phenomenon of a hardening Duffing oscillator
with α/ωo = 40, k/ωo = 0.05 and μ = 0.1. As σ increases to
point J1, the system response becomes unstable and will ex-
perience a subsequent jump to point J2 if further increasing
σ. After the response jumps to lower branch, if decreasing
σ, the response will keep stable until point J3 and will jump
to point J4. As mentioned before in Sect. 1, the jump and
hysteresis between the bistable region as shown in Fig. 4
are utilized as a mechanism to realize a mechanical binary
state [5,6].

The Duffing equation form of Eq. (1) and the re-
lated perturbation solution procedures above implicitly as-
sume a small damping. The quality factor Q (Q ∝ (εμ)−1) of
nanomechanical resonator shows very strong size-dependent
property that Q factor reduces with the decrease of the res-
onator size [10,17,18,21,22]. Equation (17) obtained by the
perturbation method will become inaccurate when Q factor

Fig. 1 The nonlinearity effects study of the steady state dynamic
response of Duffing equation. k/ωo = 0.05 and μ = 0.1 are fixed.
The dashed lines stand for backbone curves

Fig. 2 The excitation amplitude study of the steady state dynamic
response of Duffing equation. α/ωo = 40 and μ = 0.1 are fixed,
k/ωo varies as 0.01, 0.02, 0.03, 0.04 and 0.05

Fig. 3 The quality factor/damping study of the steady state dy-
namic response of Duffing equation. α/ωo = 40 and k/ωo = 0.05
are fixed, μ varies as 0.2, 0.1 and 0.05
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Fig. 4 Jump and hysteresis phenomenon in steady state response
of Duffing equation

is very small. In Figs. 1 to 4, the damping coefficient μ and
the nonlinearity parameter α/ωo are in fact treated as two in-
dependent parameters. As demonstrated later, α/ωo of the
tension-dominant structure depends on both the axial load-
ing and the aspect ratio of length to thickness; α/ωo of the
curvature-dominant structure depends on the axial loading.
The recent experiment by Verbridge et al. [18] shows that
the Q factor also depends on the axial loading and very high
Q factor is obtained with high tensile axial stress at room
temperature. So when analyzing the nanomechanical res-
onator, μ in general should be determined/measured case by
case for different axial loading scenarios.

3 Continuous system of nanomechanical resonator with
beam structure

3.1 Tension-dominant nonlinearity

For doubly clamped [10], doubly hinged and hinged-
clamped non-slack beam structures [27] of tension-dominant
nonlinearity, their equation of motion is as follows [32]

m
∂2w
∂t2
+C

∂w
∂t
+ EI

∂4w
∂x4
− ∂

∂x

[
N(x)

∂w
∂x

]
= f (t). (18)

Here m is the mass per unit length of beam; C is the damping
coefficient; E is the Young’s modulus; I = bh3/12 (b:width
and h: thickness) for a rectangular beam, is the moment of
inertia. For a nanometer scale beam, the effects such as sur-
face layer, surface tension [33], the strain gradient [34] can
stand out, which effectively changes E and I. Furthermore,
the effect of surface layer can also have impact on the the
damping coefficient of C [35], which indicates the energy
dissipation of the system. w = w(x, t) is the beam deflection
and f (t) is an external excitation. N(x) is the actual axial
loading exerted inside the beam, which consists of the fol-
lowing two parts [32]

N(x) = No +
EAs

2L

∫ L

0

(
∂w
∂x

)2
dx. (19)

No is the axial loading independent of x. The built-in
strain [16], fabrication process [18,36], residual stress [37]
and surface stress [38] etc. can all contribute to No. As

is the cross section area and L is the length of beam.
EAs

2L

∫ L

0

(
∂w
∂x

)2
dx is the tension due to (nonlinear) mid-

plane stretching [39]. The beam is modeled as the Euler–
Bernoulli beam which requires the relatively large aspect
ratio of length to thickness/radius and the shear effects are
thus neglected. Otherwise, Timoshenko beam theory needs
to be used [40]. Besides the Euler–Bernoulli beam as-
sumption, three other important assumptions of beam flex-
ural motion are (implicitly) used during the derivation of
Eq. (18). The first one is the assumption of no out-of-plane
displacement. The coupling of the in-plane and out-of-plane
displacements/motions is quite possible in some nanome-
chanical resonators [16], which may result in “ballooning”
motion. For this ballooning motion study, reader should
refer to the theoretical and experimental studies done by
Narasimha [41], Bayly and Murphy [42]. The second one is
to assume the uncoupling of the flexural displacement with
axial one. In certain scenarios, the axial inertia effects are
the dominant nonlinearity [28] and the coupling effects of
flexural and axial displacements are very significant to the
system dynamic response [43,44]. The uncoupling of flex-
ural and axial displacement can only be valid when these
two conditions are satisfied (1): shear and rotary inertia ef-
fects are negligible and (2): u = O(w2) (u is axial displace-
ment and w is flexural one) [27]. Although we assume the
Euler–Bernoulli beam model, shear effects are neglected in
a sense of static study or beam vibrating with the dominant
first mode shape. As nanomechanical resonator can vibrate
dominantly with other higher mode shape, shear together
with rotary inertia (i. e. coupling effects) can be very sig-
nificant. Condition (1) can be satisfied only when wave-
length of flexural vibration is large compared with the radius
of gyration of cross section [27]. Condition (2) is equiva-
lent to say that the radius of gyration is very small, there-
fore, the axial/longitudinal inertia and damping effects are
neglected [27]. These two conditions form the basis for most
of the studies of nonlinear beam vibrations [27]. Nanotube
and nanowire-based nanomechanical resonator has the large
aspect ratio of length to thickness/radius [4,10] and the non-
linearity study in this paper is only for the nanomechanical
resonator excited around the fundamental characteristic fre-
quency (eigenfrequency of the first mode shape). Therefore,
the uncoupling conditions are satisfied. The third one is that
the linear curvature approximation relation of κ = wxx is
used during the derivation. The exact nonlinear curvature
definition is κ = wxx/(1 + w2

x)
3/2

. Curvature κ is directly re-
lated to the strain of bending beam, and thus system poten-
tial energy [36–38]. For the structures of tension-dominant
nonlinearity and large aspect ratio, such linear curvature ap-
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proximation is sufficiently accurate [45] and this curvature-
induced nonlinearity in the structures of tension-dominant
nonlinearity is also shown negligible in our results. Besides
the kinematic assumptions above, there are two physical as-
sumptions are also included in the derivation of Eq. (18).
The first is to assume that there is no defect in the resonator
or its effect can be ignored. This is reflected in that the bend-
ing stiffness EI in Eq. (18) is assumed constant. Defect
like crack inside the resonator during the vibration may ex-
perience the “breathing” motion, i.e., the crack opens and
closes [46,47]. The “breathing” crack will cause the change
of bending stiffness and thus the dynamic response of the
system is affected. The second is that the electrostatic and
van der Waals forces between the resonator and the substrate
are not included. These two forces are deflection-dependent
and nonlinear [31,48], so they can contribute significantly
to the system nonlinear dynamic response, which can also
cause the pull-in instability [10]. Physically it is no need to
consider these two forces’ influence when the electrostatic
voltage is small and the gap distance between the resonator
and the substrate is large.

The following dimensionless quantities are introduced
for dimensional analysis

τ =

√
EI

mL4
, ξ =

x
L
, W =

w
L
. (20)

Equation (18) is now non-dimensionalized as the following
equation

W,ττ +
C
m

√
mL4

EI
W,τ +W,ξξξξ − NoL2

EI
W,ξξ

−AsL2

2I

( ∫ 1

0
W,ξ

2dξ
)
W,ξξ =

f (t)L3

EI
. (21)

Here ( ),ξ = ∂/∂ξ and ( ),τ = ∂/∂τ. We define two dimension-
less parameters here, Λ1 = NoL2/(EI), which is dimension-
less external axial loading and Λ2 = AsL2/(2I). For the beam
with rectangular cross section, As = bh and I = bh3/12. b
and h are the beam width and thickness, respectively. Thus,
Λ2 = 6(L/h)2 and L/h is the beam aspect ratio of length
to thickness. Galerkin method is applied for the computa-
tion of Eq. (21). First, W(ξ, τ) is expanded as the following
form [31,49]

W(ξ, τ) =
∞∑

i=1

ψi(ξ)φi(τ) = ψ1(ξ)φ1(τ), (22)

where ψi(ξ) is the i-th mode shape of beam and φi(τ) is the
i-th modal amplitude. The i-th orthogonal mode shape of
doubly hinged beam is given as

√
2 sin(iπξ) (

√
2 is to keep

the mode shape normal). And 16 orthonormal mode shapes
of doubly clamped beam are given by Chang and Craig [50].
The mode shape of hinged-clamped can be found out by tak-
ing the same approach of Ref. [50]. We only study the dy-
namic steady-state response of the system driven with the
frequency around the first eigenfrequency. In Eq. (22), keep-
ing only one mode shape in the expansion is valid and ac-

curate because the motions of other mode shapes excited at
beginning stage die out with increasing time due to damp-
ing [27]. When the driven frequency is around any other
(higher) eigenfrequency, the mode uncoupling of keeping
only one corresponding mode shape [10] is not valid any
more and will lead to serious mistakes [27]. Substitute
W(ξ, τ) of Eq. (22) into Eq. (21) and integrate it from 0
to 1, Eq. (21) becomes Duffing equation of Eq. (1)

ψ1,ττ + 2εμ1ψ1,τ + ω1
2ψ1 + εα1ψ

3
1 = εk1 cos(Ωt), (23)

if we let

2εμ1 =
C
m

√
mL4

EI
,

ω2
1 =

∫ 1

0
φ1φ1,ξξξξdξ − Λ1

∫ 1

0
φ1φ1,ξξdξ

∫ 1

0
φ2

1dξ

,

(24)

εα1 =

−Λ2

∫ 1

0
φ2

1,ξdξ
∫ 1

0
φ1φ1,ξξdξ

∫ 1

0
φ2

1dξ

,

εk1 cos(Ωt) =
f (τ)L3

EI

∫ 1

0
φ1dξ

∫ 1

0
φ2

1dξ

,

(25)

where ω1 is the eigenfrequency of the first mode shape and
dependent of Λ1 (dimensionless axial loading). When ω1

drops to zero at critical negative (compressive) Λ1, it indi-
cates the buckling instability [51].

Now it seems that we can use the same perturbation
method introduced above to solve the dynamic response of
the continuous system driven around its first eigenfrequency.
However, we can not do so at all with Eq. (23), which is
non-dimensionalized from Eq. (20). In Duffing equation of
Eq. (1), εα is assumed at least one order magnitude smaller
than ω2

o, thus we can equate those coefficients of ε0 and ε1

terms separately to find out the solutions. In Eq. (23), on
the contrary, εα1 is much larger than ω2

1 if those correspond-
ing mode shape functions of doubly hinged, hinged-clamped
and doubly clamped beams are substituted into Eqs. (24) and
(25) for the computation, especially when nanomechanical
resonator has very large Λ2. To make the governing equation
suitable for the perturbation method to solve, the following
dimensionless quantities instead of those in Eq. (20) are in-
troduced [28]

τ =

√
EIZ4

n

mL4
, ξ =

xZn

L
, W =

wZn

L
, (26)

where Zn is a positive dimensionless number, which is re-
lated with the n-th eigenfrequency (ωn) of the system as the
following equation [28,50]
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Z4
n =

mL4ω2
n

EI
. (27)

The corresponding dimensionless governing equation now
becomes

ψ1,ττ + 2εμznψ1,τ + ω
2
znψ1 + εαznψ

3
1 = εkzn cos(Ωt), (28)

if we let

2εμzn =
C
m

√
mL4

EIZ4
n
,

ω2
zn =

∫ Zn

0
φznφzn,ξξξξdξ − Λ1

Z2
n

∫ Zn

0
φznφzn,ξξdξ

∫ 1

0
φ2

zndξ

,

(29)

εαzn =

−Λ2

∫ Zn

0
φ2

zn,ξdξ
∫ Zn

0
φznφzn,ξξdξ

∫ Zn

0
φ2

zndξ

,

εkzn cos(Ωt) =
f (τ)L3

EIZ3
n

∫ Zn

0
φzndξ

∫ Zn

0
φ2

zndξ

.

(30)

It is noticed that the integral upper limits of Eqs. (29) and
(30) are Zn. The corresponding orthonormal mode shape is
φzn(ξ) = φ1(ξ)/

√
Zn [28] and εαzn = εα1/Z3

n . Once a proper
Zn is chosen to make εαzn small and suitable for the pertur-
bation method, the exact solution procedures given above for
Duffing equation can now be used to solve Eq. (28). While,
the interest here is not to solve Eq. (28) as it exactly matches
Duffing equation of Eq. (1) and we have already done it
in the section above. Although the use of Eq. (26) as the
non-dimensionalization scheme makes the governing equa-
tion a solvable Duffing equation for perturbation method, it
is not proper to use εαzn/ωzn to evaluate the nonlinearity
for different structures. Zn is different for the beam struc-
ture with different boundary conditions. For example, for a
doubly hinged beam, Z1 = π, Z2 = 2π, Z3 = 3π, · · · , and
Zn = nπ; for a doubly clamped beam, Zn is solved from
equation cos(Zn) cosh(Zn) = 1, and Z1 = 4.73, Z2 = 7.85,
Z3 = 10.995 [50]. Therefore, the non-dimensionalization
scheme of Eq. (26) varies for the structures with the same
given material elastic properties and structure dimensions
but different boundary conditions. So if εαzn/ωzn is used
to evaluate the nonlinearity of different structures, it is not
an apple-to-apple comparison. Instead of εαzn/ωzn, we use
εα1/ω1 to evaluate the nonlinearity of different structures.
We are fully aware that εα1/ω1 is a large number due to the

non-dimensionalization scheme of Eq. (20).
εαzn

ωzn
=

1

Z3
n

εα1

ω1

when Λ1 = 0 and
εαzn

ωzn
∝ 1

Z3
n

εα1

ω1
for a moderate Λ1. This

εα1/ω1 parameter has already been used by Postma et al. in

their study on the critical amplitude for the onset of nonlin-
earity as shown in their Eq. (5) [10], which is the following

ac = ω1
L2

π2

√
ρ
√

3
EQ

=
4
3

√
√

3εμ
(
εα1

ω1

)−1

, (31)

with corresponding 2εμ = ω1/Q and εα1 =
E

18ρ

(2π
L

)4
. Here

ac is the critical amplitude; Q is the quality factor and ρ is
the density. For a softening Duffing oscillator with negative
εα1/ω1, εα1/ω1 above is substituted by −εα1/ω1.

3.2 Curvature-dominant nonlinearity

Instead of κ = wxx, the exact nonlinear curvature definition
of κ = wxx/(1 + w2

x)
3/2

is used for the derivation of cantilever
beam of curvature-dominant nonlinearity. By using the non-
linear curvature and Hamilton’s principle, the following gov-
erning equation of cantilever beam is derived, in which the
higher (than cubic) order terms have already been truncated

m
∂2w
∂t2
+C

∂w
∂t
+ EI

∂4w
∂x4
− No

∂2w
∂x2

+EI
∂

∂x

[
∂w
∂x

∂

∂x

(
∂w
∂x

∂2w
∂x2

)]
= f (t). (32)

Compared with Eq. (18), the nonlinear term due to mid-
plane stretching is gone; compared with the model of Ander-
son et al. [28], the axial loading No is incorporated. In the
structures of tension-dominant, the ends are either hinged
or clamped, which prevents the beam span from extending
horizontally. Only under this condition, the tension due to
mid-plane stretching can exist. For cantilever beam, one
end is free, therefore, there is no tension due to mid-plane
stretching in the governing equation. With the same non-
dimensionalization scheme and modal discretization given in
Eqs. (20) and (22), the same dimensionless form of govern-
ing equation as Eq. (23) is derived. The only difference is the
definition of εα1. For cantilever beam of curvature-dominant
nonlinearity, εα1 is defined as follows

εα1 =

∫ 1

0
φ1[φ3

1,ξξ + 4φ1,ξφ1,ξξφ1,ξξξ + φ
2
1,ξφ1,ξξξξ]dξ

∫ 1

0
φ2

1dξ

. (33)

An very important εα1 difference of curvature-dominant
nonlinearity with that of tension-dominant nonlinearity is
that εα1 of curvature-dominant nonlinearity is independent
of Λ2 (aspect ratio). This leads to the following conclusion:
tension-dominant nonlinearity of εα1/ω1 depends on both Λ1

and Λ2; curvature-dominant nonlinearity of εα1/ω1 depends
on Λ1 only.

The mode shapes of a cantilever beam given by Chang
and Craig [50] are for the cantilever beam of no axial load-
ing case. Axial loading appears only in the governing equa-
tions of the structures of tension-dominant nonlinearity, such
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as doubly hinged, hinged-clamped and clamped-clamped
beams. Unlike those structures of tension-dominant nonlin-
earity, axial loading appears in both governing equation and
boundary conditions of cantilever beam (see Appendix and
also Ref. [51]). Due to that the boundary conditions of can-
tilever beam vary with axial loading, the mode shapes given
by Chang and Craig can not be used in Galerkin method for
the case of cantilever beam with an axial loading because
those mode shapes do not satisfy the boundary conditions.
The derivation of mode shapes of a cantilever beam is given
in Appendix.

4 Results and discussion

For single DOF system, the system effective stiffness infor-
mation is incorporated in parameters of ω2

o, ω2
1 in Eqs. (1)

and (23). Higher resonant frequency means higher effective
stiffness with given mass per unit length. Buckling load is
another measure. Stiffer structure requires larger magnitude
of (compressive) buckling load. When ω1 = 0, buckling
happens, therefore, the dimensionless buckling Λ1 is derived
from Eq. (24) as the following equation

Λc
1 =

∫ 1

0
φ1φ1,ξξξξdξ

∫ 1

0
φ1φ1,ξξdξ

. (34)

Λc
1 = −π2 for doubly hinged beam. Λc

1 ≈ −4π2, −(π/0.7)2,
and −π2/4 for doubly clamped, clamped-hinged and can-
tilever beams, respectively [51]. Figure 5 shows ω1 varia-
tion with Λ1. As shown in Fig. 5, the doubly clamped beam
is the stiffest and the cantilever is the most flexible among
these four structures. It is worth mentioning again that ω1 is
the eigenfrequency of the first mode, which is derived from

Fig. 5 The fundamental frequencies of four beam structures as
the functions of axial loading. For each beam structure, the axial
loading starts from its buckling load

Eq. (24) and contains linear part frequency information only.
ω1 = 0 does not mean that the system frequency of Eq. (23)
is zero because the nonlinear term also contributes to the
system stiffness. When Λ1 ≤ Λc

1, statically beam will ex-
perience a postbuckling deformation of pitchfork bifurca-
tion [52]. Static part (when all time-related terms are elimi-
nated) of Eq. (23) is capable of describing the postbuckling
behavior of the system and Eq. (23) can also be used to
study the dynamic response of buckled beam. However, in
buckling/postbuckling region, the system will have chaotic
motion of two-well potential attractor due to the pitchfork bi-
furcation [53]. When tuning nanomechanical resonator, ax-
ial loading should not be less than the critical buckling load-
ing because the initial-condition-sensitive chaotic response
make it very difficult to control the resonator response if not
impossible.

Figures 6–8 show the εα1/ω1 variation with Λ1 and
Λ2 for the tension-dominant structures of doubly hinged,
clamped-hinged and doubly clamped beams, respectively.
BecauseΛ1 = Λ

c
1, εα1/ω1 = ∞. We start Λ1 from Λ1 = 0.9Λc

1
for each beam structure. Λ2 starts from 300. The reason is
thatΛ2 = 6(L/h)2 and rule of thumb states Timoshenko beam
theory rather than Euler–Bernoulli one should be applied if
L/h < 7. For all these three structures of tension-dominant
nonlinearity, εα1/ω1 is positive, which means hardening ef-
fects. All εα1/ω1s decrease monotonically with increasing
Λ1 and increase monotonically with increasing Λ2. εα1/ω1

of doubly hinged beam is smaller than that of either doubly
clamped or clamped-hinged beam for any given given axial
loading Λ1 and Λ2. It is interesting and important to point
out that εα1/ω1 of a clamped-hinged beam is larger than
that of doubly clamped beam though the clamped-hinged
beam has lower eigenfrequency. The geometric asymme-
try of clamped-hinged beam is responsible for that. And
this geometric asymmetry can be used to enhance the sys-
tem nonlinearity with the sacrifice of higher eigenfrequency
compared with that of a doubly clamped beam.

Fig. 6 The nonlinearity coefficient εα1/ω1 of a doubly hinged beam
as a function of Λ1 and Λ2. Λ1 is dimensionless axial loading and
Λ2 = 6(L/h)2. L and h are the beam length and thickness, respec-
tively



198 Y. Zhang, et al.

Fig. 7 The nonlinearity coefficient εα1/ω1 of a clamped-hinged
beam as a function of Λ1 and Λ2

Fig. 8 The nonlinearity coefficient εα1/ω1 of a doubly clamped
beam as a function of Λ1 and Λ2

Figure 9 shows εα1/ω1 variation of a cantilever beam
with Λ1. The analysis above shows that εα1/ω1 variation is
only dependent on Λ1. εα1/ω1 of a cantilever beam mono-
tonically increase with increasing Λ1, which is opposite com-
pared with those of the structures with tension-dominant
nonlinearity. The magnitude of εα1/ω1 of a cantilever beam
is also significantly smaller. Together with Eq. (31), this ex-
plains the experimental observation that much larger driving
amplitude is needed for critical ac of cantilevered nanome-
chanical resonator than that of a doubly clamped beam [10].
It is observed that εα1/ω1 of a cantilever beam does not al-
ways keep positive. In the region of Λc

1 < Λ1 < −0.929,
Λ1 is negative, i.e. softening effect and the softening effects
are also observed in the nanomechanical memory [5]. For
a cantilever beam, Λc

1 ≈ π2/4 and in Fig. 9, Λ1 also starts
from 0.9Λc

1. When Λ1 > −0.929, εα1/ω1 in Fig. 9 is pos-
itive. This implies that when tuning Λ1 around −0.929, the
dynamic nonlinearity can be eliminated or greatly reduced.
For a cantilever beam of curvature-dominant nonlinearity,
the geometric asymmetry and interactions of mode shape and
its first, second, third and fourth derivatives as indicated in
Eqs. (24) and (25) determine the properties of εα1/ω1.

Once again, reader should be cautious and aware that
the present analysis is only to study the dynamic nonlin-
ear response when the driving frequency is around the first

eigenfrequency. If the driving frequency is (much) higher,
for example, around the second eigenfrequency, the above
modeling and results are in general not valid. One assump-
tion used in the derivation is the uncoupling of transverse
and axial displacements. In reality, the structure vibrates
not only transversely but also axially/longitudinally. The ax-
ial/longitudinal (nonlinear) inertia effect can become domi-
nant when driving frequency is around the second eigenfre-
quency [28]. Equations (18) and (32) of the beam transverse
vibration do not incorporate such effect. Both the analy-
sis presented here and theoretical/experimental study by An-
derson et al. [28] conclude that a cantilever beam driven
around its first eigenfrequency is a hardening Duffing oscil-
lator when Λ1 = 0. The hardening effect is due to the fact
that the curvature is the dominant factor for the nonlinearity,
which is theoretically and experimentally verified and justi-
fied [28]. However, the nonlinearity due to axial/longitudinal
inertia effects becomes dominant when a cantilever is driven
around its second eigenfrequency, which exhibits softening
effects [28]. This kind of nonlinear response can help to
explain why the errors steadily grow with a dramatic im-
provement of mass sensitivity in the experiment of cantilever
based mass sensor as shown in Ref. [7] when a cantilever
is driven around the first, second, third and fourth eigenfre-
quencies. Dohn et al. modeled the cantilever mass sensor
as a linear oscillator [7]. When the system is driven around
higher eigenfrequency, the coupling effect of the axial and
transverse displacements becomes more and more impor-
tant because the wavelength of higher mode shape becomes
shorter [27]. The linear oscillator model is thus expected to
deviate more and more from the experimental data. The non-
linear axial inertia effects (together with other possible non-
linearities) should be in general considered when a cantilever
is driven around a higher eigenfrequency for mass sensing.
Equation (32) can not predict such softening effects of axial
inertia-induced nonlinearity because it does not include the
axial nonlinear inertia term in the governing equation.

Fig. 9 The nonlinearity coefficient εα1/ω1 of a cantilever beam as
a function of Λ1
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5 Summary

In conclusion, a new parameter is proposed to systematically
evaluate the nonlinearity of the beam dynamic response.
Two categories of nonlinearity: tension-dominant and
curvature-dominant nonlinearities, are analyzed as a function
of axial loading and aspect ratio. In essence, this nonlinear-
ity study is to use modal analysis and Galerkin method as a
discretization approach to transform the differential-integral
and differential governing equations of continuous system
into single DOF Duffing equation. The discussion on the
assumptions/limitations of modeling and transforming the
governing equation into Duffing equation consists of a very
important part in this paper. The applicability range of the
modeling and analysis is also addressed during the discus-
sion.

Appendix

The linear dynamic governing equation for a beam with no damping
is

EI
d4y
dx4
− p

d2y
dx2
+ m

d2y
dt2
= 0, (A1)

where y is the beam transverse displacement, m is the mass per unit
length of the beam, p is the axial load. When p > 0, it is tensile;
when p < 0, it is compressive.

The beam length is L. Assume that y has such solution form,
y = V(x)eiωt . Substitute this solution form into Eq. (A1) and intro-
duce dimensional parameter ξ = x/L. The governing equation (A1)
becomes

−mω2l4V + EIV
′′′′ − pL2V

′′
= 0. (A2)

Here ( )′ = d/dξ. Let k2 = ‖pL2/(EI)‖ and β4 = mω2L4/(EI). For
the tension case of p > 0, the governing equation is

V
′′′′ − k2V

′′ − β4V = 0. (A3)

For the compression case of p < 0, the governing equation is

V
′′′′
+ k2V

′′ − β4V = 0. (A4)

For the tension case, the solution form of V is

V = Ae f2ξ + Be− f2ξ +C sin( f1ξ) + D cos( f1ξ). (A5)

A, B,C,D are the four unknown constants. f1 and f2 are defined as
f1 =

√
β1 − k2/2 and f2 =

√
β1 + k2/2. Here β1 =

√
β4 + k4/4. The

four dimensionless boundary conditions are given as

V(0) = 0,
dV(0)

dξ
= 0,

d2V(1)
dξ2

= 0,
d3V(1)

dξ3
− k2 dV(1)

dξ
= 0.

(A6)

Substitute the V solution form into these four boundary conditions,
it forms a 4× 4 matrix. Setting the matrix determinant to zero gives
the eigenfrequencies of the systems; and then by substituting each
individual eigenfrequency into that 4×4 matrix, the mode shape can
be found. For the compression case, the solution has the following
form

V = Ae f1ξ + Be− f1ξ +C sin( f2ξ) + D cos( f2ξ), (A7)

and the boundary conditions change to

V(0) = 0,
dV(0)

dξ
= 0,

d2V(1)
dξ2

= 0,
d3V(1)

dξ3
+ k2 dV(1)

dξ
= 0.

(A8)

Repeat the same procedures of tension case to find out eigenfre-
quencies and mode shapes for the compression case.
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