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Available experimental data of about 110metallic glasses show that the ratios of room-temperature strengths to
low-temperature ideal strengths have universal upper and lower bounds. The two bounds are rationalized by
taking cooperative shearing of shear transformation zone (STZ) operations into consideration in the potential
energy landscape thermodynamics. It is striking to find that the real-to-ideal strength gap results from both
configurational and thermo-vibrational contributions to STZs. The former determines the upper bound, while
the latter further decreases strengths to the lower bound. The results may shed new insight into metallic glass
strength and flow.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The scientific interest in strength of materials could be traced back to
the famous notebooks of Leonardo da Vinci [1]. However, not until the
early years of the twentieth century did people relate strength of mate-
rials with their atomic structure. In 1926, Jacov Frenkel [2] calculated
the ideal shear strength of a perfect fcc metal to be about a tenth of its
shear modulus G. However, real crystalline materials yield strengths
two to three orders of magnitude lower. This discrepancy was attributed
to dislocations. The real strengths for crystalline materials have been
widely estimated according to the resistance of dislocation motion such
as Peierls–Nabarro force, grain size, dislocation junction, etc. [3–6]. In con-
trast, metallic glasses or glassy alloys, representing a young class of ad-
vanced materials, are free of dislocations [7–10]. It is highly expected
that strengths of such amorphous materials could approach the theoreti-
cal limit. These materials receive therefore much attention from both
scientific and engineering points of view [11–20].

In this aspect, a key finding is the intrinsic correlation of strength for
inhomogeneous deformation with glass transition temperature [14,
16,17], which indicates the similarity between stress-driven yielding
and temperature-caused glass transition in metallic glasses [16,21,22].
Actually, both physical processes are underpinned by collective motions
of atomic clusters, termed shear transformation zones (STZs) [23–25].
By developing the cooperative shearing model (CSM) of STZs, Johnson
and Samwer [13] proposed a universal power-law of 2/3 of temperature
dependent yield strength. In particular, Cheng and Ma [18] applied this
+86 10 82543977.
, lhdai@lnm.imech.ac.cn
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power law to homogeneous deformation by atomistic calculations, and
successfully predicted the ideal strengths for metallic glasses. Their pre-
diction has recently been confirmed by employing an in situ TEM ten-
sion technique [20]. These intriguing progresses greatly motivate us to
understand metallic glass strengths from real value to ideal/theoretical
limit. In fact, their relationship has not been established theoretically
up to now,which is amajor scientific challenge. In this letter, we analyze
the experimental data of both real and ideal strengths formore than 100
metallic glasses from 24 different alloy systems. The relationship be-
tween room-temperature (RT) and low-temperature ideal strengths is
quantitatively bridged combining the potential energy landscape (PEL)
theory, the CSM of STZs with fracture mechanics.

2. Experimental observations

Fig. 1 presents the macroscopic shear strength τyT at RT versus the
athermal theoretical shear strength τ0 for ~110 metallic glasses. Here,
we roughly adopt τyT as half of the yield strength σyT in monotonic
loading (Tresca's yield criterion), ignoring the small normal stress
dependence [13,17,26]. It must be pointed out that the “thermal” actu-
ally means a temperature as low as possible rather than the absolute
zero temperature. Following the previous works [16,18,27], τ0 maybe
recall the origin ofG/10, skirting its very small temperature dependence
[13,28,29]. It is believed that these approximations cannot significantly
change the essential physics. The experimental data for σyT and G at RT
can be found in the literature [13,21,30–33]. It can be observed from
Fig. 1 that the real strengths are indeed quite close to their theoretical
strengths, being of the same order of magnitude. The former is only a
fraction smaller than the latter. Very interestingly however, all experi-
mental data can be bounded by two straight lines. More specifically,
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Fig. 1. Real shear strength τyT at RT versus “athermal” ideal shear strength τ0 for about 110 metallic glasses from 24 different alloy systems, showing the upper and lower bounds.
The upper bound, i.e., the red solid line is best fitted by Eq. (5). The lower bound, i.e., the blue solid line is best fitted by Eq. (7). The green dashed line is the athermal ideal strength
limit.

Fig. 2. Schematic illustration of archetypal potential energy landscapes of athermal
ideal and RT real metallic glass.
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the ratio of the RT strength to the athermal theoretical strength obeys
the following universal relationship:

Γupper≥
τyT
τ0

≥Γ lower: ð1Þ

The fitting to the experimental data in Fig. 1 shows that the two
bounds, Γupper and Γlower, are very close to values of 0.316 and 0.122,
respectively. It is clear that there exists a gap between the real strengths
and their ideal limit, i.e. τyT/τ0=1, marked by the green dashed line in
Fig. 1. Some questions should arise from our observations. What is the
physical meaning of the upper and lower bounds of the real strengths?
Due to absence of dislocations in metallic glasses, what should be re-
sponsible for the gap of the real-ideal strengths? Undoubtedly, defini-
tive answers originate from the unique response of atomic structures
of metallic glasses to applied stress. Considering the complexity of dis-
ordered structures, we resort to the PEL theory [34–37] to reveal the
underlying physics of our observed phenomena.

3. Theory and discussion

PEL is a multidimensional surface describing the potential energy
function of a glassy system that depends on the spatial location for
its constituent particles. Intuitively, the state of such a system can
be well represented by a point on or above the hypersurface. By anal-
ogy to Earth's topographic maps, Stillinger and Weber [34,35] provid-
ed a formally exact portioning of the configurational space as a sum of
distinct basins, associating with each local minimum of the potential
energy surface, namely, an inherent structures (IS). The PEL picture
provides a natural separation of the system's state into sampling
distinct ISs and vibration within an IS. The PEL approach thus permits
identification of the IS in an ideal metallic glass at very low tempera-
ture and a real sample at RT. As illustrated on the left in Fig. 2, the
ideal sample should correspond to the IS with the lowest potential
energy (deepest “megabasin”) that is devoid of substantial regions
with local crystalline order [38]. At a low enough temperature the
ideal system becomes stuck in the single IS with almost frozen vibra-
tion, unable to surmount the highest energy barrier. As temperature
increases to RT, the depth of ISs in the real sample decreases and
the vibration intensifies, as shown on the right in Fig. 2. Meanwhile,
the real system displays a proliferation of well-separated megabasins,
corresponding to the increase of the configurational entropy. Conse-
quently, the difference of the IS between the ideal system and the
real one has the configurational and vibrational aspects. It is such dif-
ference that results in the gap of their strengths, because the strength
of systems per se reflects the mechanical instability of their ISs that is
normally obscured by the thermal vibration [13,39–41]. Hence, the
ratio of the real-ideal strengths can be expressed as a sum of the
configurational contribution rconf and the thermo-vibrational one
rther, that is

τyT
τ0

¼ rconf þ rther; ð2Þ

where rconf ¼ τy0=τ0
h i

conf
measures the ratio between the ideal

strengths and the real strengths at the athermal limit, and rther ¼
τyT=τy0
h i

ther
denotes the thermal softening effect on the real strengths

due to temperature increase from very low temperature to RT. Next, the
main task is to quantitatively determine the configuration and vibration
terms in Eq. (2).

Recent studies have identified solute-centered polyhedra as the
fundamental building blocks of metallic glasses, constituting short-
range-order; these polyhedra subsequently pack together to fill three-
dimensional space obeying a certain rule, giving rise to medium-range-
order [42–45]. Driven by external stress, the short-to-medium-range
order could be lost via STZ operations. Therefore, it is reasonable to treat
the virgin metallic glass as a composite consisting of potential STZ sites
within the elastic confinement of a surrounding matrix [23,46]. Here we
consider a semi-infinitemetallic glass plate containing an edge-crack sub-
ject to a remote shear stress. The edge-crack has finite size that is so small
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and can not affect the macroscopic strength. The concentrated stress at
the crack tip would preferentially activate the STZ transitions along the
crack path, but which relies heavily on the spatial configuration of these
potential STZ sites and their activity. Subsequently, it is very interesting
to see how these STZ sites respond to the external stress for the ideal
and real samples schematized in Fig. 2 and what finally dominates their
strengths.

In terms of the PEL, the individual STZ operation confined within
the elastic medium can be viewed as a sub-IS hopping event that
corresponds to the fast β relaxation process [13,39,47]. It has been
recognized that both β relaxations and STZs are related to atomic
structural heterogeneity in metallic glasses; their activation energies
or probabilities are nearly the same [48–50]. The STZ operations
would occur preferentially at the heterogeneous sites where the β
relaxations are also strong. The cascade and avalanche of a series of
STZs would induce an intra-IS hopping event, associated with the
slower α relaxation process [13,39,40]. The plastic irreversible α hop-
ping event at large scale will directly contribute to macroscopically
perceptive plasticity. The PEL of the ideal glass shown on the left in
Fig. 2 implies a quite homogeneous atomic structure, in which struc-
tural heterogeneities are very low in population and very small in
size. It is then expected that the β relaxations within the ideal IS are
extremely obscure, especially at low enough temperature. As a result,
under the remote stress, the potential STZ sites are unlikely to mature
to true STZs. In other words, these STZs only behave with individual-
ity and nonlinear elasticity due to the confinement of surrounding
elastic matrix. See the inset (a) of Fig. 3. In order to simultaneously
activate elastic operation of such STZs and drive the crack propaga-
tion, the stress field at the crack tip must maintain a very high level,
near to theoretical strength. In this way, the ideal system can escape
from the deepest megabasin (the left in Fig. 2), corresponding to
material failure. Before that, the entire sample deforms elastically
and homogeneously without the intervention of shear bands. Howev-
er, for the RT real sample shown on the right in Fig. 2, the case is just
opposite. Due to obvious structural defects and relatively pronounced
β relaxations, the potential STZ sites can grow and mature, preferen-
tially along the crack path. These matured STZs have a much larger
probability to interact with each other, and avalanche due to topolog-
ically instability. The percolation of these unstable STZs finally leads
to the local collapse of the confining matrix and breakdown of elastic-
ity [the inset (b) to Fig. 3]. When the local percolation of STZs reaches
a critical limit, macroscopic plastic yielding occurs via shear-banding
[13,46]. This process can be understood in the PEL picture as the
Fig. 3. Strength as a function of the distance from a representative atom at a crack-like
defect tip. Inset: (a) the STZs exhibit individuality and nonlinear elasticity on the scale
bSTZ~10−10 m of the lattice distortion of potential STZ site; (b) one STZ can interact
with another over the scale DSTZ~10−9 m of the spacing of potential STZ sites, where
the local flow event occurs.
transition of the system state from one IS to another with more
depth, but crossing a relatively low potential energy barrier.

According to the PEL description of STZs above, it can be suggested
that the fundamental process for plastic flow in real metallic glasses is
discrete, consisting of at least two important length scales. One is the
magnitude of the lattice-like distortion of potential STZ site that should
be at the atomic scale, denoted by bSTZ~10−10 m. This quantity is
similar to the Burgers vector in crystals, but without the directionality
here. The other is the spacing of potential STZ sites, DSTZ~10−9 m,
considering the size of STZs [16,51–53] and dense packing configuration
formetallic glass structures [42,43,54]. On the bSTZ scale, the STZs exhib-
it individuality, as shown in the insert (a) to Fig. 3. The probability to
blunt a crack front should be extremely small. Consequently, a crack
that does not undergo plasticity will remain sharp, advancing by atomic
decohesion. Until one STZ interactswith another over theDSTZ scale, the
plastic flow event occurs, as schematically depicted in the insert (b) to
Fig. 3. The STZ behaviors on the two length scales just correspond to
what happens in the ideal and real samples, respectively. Such a process
can be approximately understood in terms of strength varying with the
distance r from a representative atom at the crack tip, sketched in Fig. 3.
It is well known that, before the plastic yielding, the 1=

ffiffiffi
r

p
singularity

dominates the stress filed τrK measured by the Mode II stress intensity
factor KII [55]. Hence, it is reasonable to assume that the theoretical
shear strength, i.e. the largest possible stress to overcome the bond
strength, would be approached at r=bSTZ, and the macroscopic ideal
strength τ0 should be in proportion to the theoretical shear strength
at the cluster scale, which has been confirmed previously [56]. There-
fore, we can obtain a relationship:

τ0∝τKr¼bSTZ
∝ K IIffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πbSTZ
p : ð3Þ

Over a distance of DSTZ~10−9 m, the stress decays to the yield
strength that can be still determined by the K-field,

τy0∝τKr¼DSTZ
∝ K IIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πDSTZ

p : ð4Þ

It must be pointed out that the singularity dominated zone pro-
vides an elastic medium through which the stress declines rapidly,
matching the high theoretical strength τ0 on one side, and the low
yield stress τy0 on the other. Note that the fracture mechanics analysis
only considers the configurational aspect. Combining Eq. (3) with
Eq. (4) obeys the following intrinsic correlation:

rconf ¼
τy0
τ0

� �
conf

∝
ffiffiffiffiffiffiffiffiffiffi
bSTZ
DSTZ

s
e 1ffiffiffiffiffiffi

10
p ≈Γupper: ð5Þ

This correlation is totally identical to the upper bound line fitted
by experimental data, i.e., the red solid line in Fig. 1. It implies that
10bSTZ could the upper limit of the STZ spacing. That actual spacing
should be lower than it, leading to further decrease of real strengths.
It is also noted that the value rconf is very close to the ratio between
the athermal strength predicted from inhomogeneous deformation
and that derived from homogeneous deformation in metallic glasses
[18]. Now it can be concluded that the gap between the athermal
ideal strengths and the upper bound of the real strengths is bridged
quantitatively, which is attributed to the deformation mode change
from elastically homogeneous to plastically inhomogeneous (shear-
banding). This strength decrease due to the deformation mode change
has only a configurational origin.

As for the thermo-vibrational softening effect on the real strengths,
Johnson and Samwer [13] have already given a description based on
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the CSM of STZs. The thermo-vibrational softening term in Eq. (2) can
be precisely expressed as [13]

rther ¼ − kB
WTg

⋅ G0T

G0Tg

ln ω0=C _γð ÞT
" #2=3

; ð6Þ

where kB is the Boltzmann constant, WTg
is the local megabasin barrier

of real samples at the glass transition temperature Tg, G0T=G0Tg
is the

ratio of zero-stress shear moduli at T(RT, ~300 K) and Tg, respectively,
ω0 is the attempt frequency, C is a dimensionless constant of order
unity, and _γ is the applied shear strain rate. Eq. (6) essentially describes
thedependence of the temperature on the IS barrier energy. Considering
the experimental data in Fig. 1 that are extracted from the quasi-static
cases, ln ω0=C _γð Þe30 [13]. For inhomogeneous deformation,WTg

is cho-
sen to be about 1.4×10−18 J [13,20]. Again, ignoring the weak temper-
ature dependence, G0T=G0Tg

e1. Therefore, rther is calculated to be about
−0.194. Inserting this value into Eq. (2) and joiningwith Eq. (5), we ob-
tain the expression of the lower bound line (i.e., the blue solid line in
Fig. 1) for the RT real strengths:

τyT
τ0

¼ rconf þ rther ¼
1ffiffiffiffiffiffi
10

p −0:194 ¼ Γ lower: ð7Þ

The remarkable agreement between the theoretical predictions
[Eqs. (5) and (7)] and the empirical fitting lines confirms that the
ideal-real strengths gap results from the configurational and thermo-
vibrational contributions to cooperative shearing of STZs. In fact, the
two contributions are highly coupled and strongly material dependent,
because the experimental data scatter in a narrow region, instead of
following one single line. If the configurational softening dominates,
the real strengths can approach the upper limit that is predicted by
Eq. (5). Additional thermo-vibrational softening makes the strengths
decrease furthermore. Their lower bound is given by Eq. (7), which
corresponds to the strongest thermo-vibrational softening.

Finally, we briefly discuss related works. Very recently, the ideal
strength of a Cu–Zr metallic glass at RT has been achieved by Tian et
al. [20] through consciously choosing sample size and loading tech-
nique. In their experiments, materials deform mainly elastically (initial
linear and followed nonlinear) and plastic deformation is very small,
during which shear-banding does not occur. In fact, this sample state
should be very close to that of an ideal glass shown on the left in
Fig. 2, just at RT rather than low temperature. The resultant deformation
mechanism can be illustrated by the insert (a) to Fig. 3. Similar defor-
mation mode transition and ideal strengths have also been obtained
in probing very small volumes of metallic glasses that are likely to be
defect free [12,57–59]. Furthermore, we can envision an attractive situ-
ation, in which the potential STZ sites can homogeneously and abun-
dantly distribute in samples, having the chance to grow into true STZs.
It is then expected that not only higher strength but also larger plasticity
would be obtained before sudden failure of materials [59–61]. Yu et al.
[50] have recently reported a La-based metallic glass which shows
significant tensile plasticity. Their observations reveal that plenty of
nanoscale heterogeneous structures are distributed homogeneously in
this material with strong β relaxations. Such a structure facilitates
simultaneous maturation of potential STZs that self-organize into
multiple shear bands to accommodate large plastic deformation. In
addition, it is well known that decreasing temperature canmakemetal-
lic glass strengths increase [62–64]. This strengthening effect should
contribute both to the decrease of IS depth and the weakness of β
relaxations.

4. Conclusions

In conclusion, the upper and lower bounds of RT real strengths
and their relationship with the “athermal” ideal limit for metallic gas-
ses were investigated, which could be characterized in terms of PEL of
cooperative shearing of STZs. The upper bound is determined by the
configurational softening due to the deformation mode transition
from homogeneous to inhomogeneous. The thermo-vibrational soften-
ing further decreases strengths from the upper to lower bound. We
believe that the strength softening mechanism revealed in the present
work could be generalized to nonmetallic glasses (oxides, polymers,
etc.) and even crystalline solids although both rconf and rther may vary.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.jnoncrysol.2012.09.016.
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