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Finite element simulation has been utilized to study the overall strength of metallic single lap joints with
defects in their adhesive layers. Three types of defects are taken into account respectively, which are local
debonding, weak bonding and void. For the first two types of defects, a developed numerical method
using the cohesive zone model modified by user-defined subroutines is carried out as to consider the
influences of the defect size and location. Furthermore, a modified-Gurson model is employed to simulate
the adhesive layer with voids, considering the influence of the void size. The results show that the overall
strength of the joints diminishes as the defect size is increased. Especially, the adhesive fracture proper-
ties and the size of the weak bonding region have combined influences on the strength of the joints.

Crown Copyright � 2011 Published by Elsevier B.V. All rights reserved.
1. Introduction

Adhesively bonded joints are economical, practical and easy to
make [1], thus they have been widely used in a variety of industries
for connecting dissimilar materials, such as civil engineering [2–4],
automotive [5–7] and aircraft industries [8]. However, one of the
limitations for adhesively bonded joins is the difficulty in predict-
ing joint strength after manufacture and during in-service opera-
tion due to the presence of defects in the adhesive [9]. The
defects generated by inadequate preparation of the joints or envi-
ronmental degradation (e.g., moisture effects) of the adhesive [9]
would reduce the bonding quality and influence the joint strength
accordingly [10].

Previous researchers have already developed some experimen-
tal methods to detect and evaluate the defects in the adhesives of
the joints. Heslehurst [11] used the technology of holographic
interferometry to study the structural response of bondline de-
fects. The defect regions could be indicated by the interferogram
fringe patterns. Yang et al. [12] implemented a nondestructive
detection that was vibration damping and frequency measurement
to evaluate the defects in composite joints. Llopart et al. [13] also
carried out a nondestructive test on the bonded specimens by
means of ultrasonic C-scan and X-ray imaging, for a purpose of
assuring that the adhesive had spread out to the full bonding sur-
face. Similarly, Tserpes et al. [14] also employed ultrasonic C-scan
to check the quality of the bondline in joints, the existence of the
defects (e.g., voids) could be inspected easily by the C-scan images.
Since the voids are harmful to the reliability of the adhesively
011 Published by Elsevier B.V. All
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bonded joints, it is of significance to assess the residual strength
of joints when defects are detected.

Experimental studies for the residual strength of the joints with
voids have been carried out by many groups [10,11,15,16], mean-
while, numerous models for the adhesively bonded joints with de-
fects have been developed, which may be grouped into two main
categorizes: one is theoretical models based on some assumptions.
Olia and Rossettos [17] proposed an analytical solution for a two-
dimensional plane strain problem of adhesively bonded joints with
gap defects in adhesive. They pointed out that the stresses in the
adhesive could be affected obviously when the defect was suffi-
ciently close to the end of the overlap. Chadegani and Batra [18] used
the first-order shear deformation theory (FSDT) to analyze stresses
and displacements in an adhesively bonded joint with an interfacial
crack and a void. They regarded both the adhesive and the adherends
as linear elastic and homogeneous materials in the theoretical mod-
el. They concluded that the results agreed with that of the numerical
model they carried out. The other category of models is numerical
models employing some calculation method such as finite element
analysis (FEA). In contrast with theoretical models, numerical mod-
els are easier for implementation with less assumptions, thus they
have been employed widely in studying adhesively bonded joints
with defects. Chow and Woo [19] studied the effects of internal flaw
size and its distribution along the adhesive layer on the fracture
behavior of an adhesively bonded joint by utilizing a FEA model.
They concluded that defect in the adhesive layer had definite effect
on the shear distribution and on the fracture strength of the joint. de
Moura et al. [9] simulated the composite bonded joints with strip de-
fects. The interface elements considering mixed-mode damage were
introduced to calculate the stresses and damage initiation and
growth in the adhesive. The results showed the specified strength
rights reserved.
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of the joints was not affected by the size of the defect. You et al. [20]
studied the influence of the strip defect on stress distribution in both
the mid-bondline and the adherend near the interface along the lap
zone of adhesively bonded joint. Ribeiro et al. [21] also developed
two-dimensional and three-dimensional FEA models to model the
stress distributions in single-lap adhesively joints with different
types of defects. The simulation result showed the stresses near
the defects and the glue extremities would be larger, and the defects
placed near to the extremities significantly reduced the joint
strength.

Although the mechanical behaviors of adhesively bonded joints
with defects have been investigated by plenty of researchers, sys-
tematical results taking various types of defects into account are
lacking according to our literature search. Moreover, most models
concerned the influence of defects on the stress distributions in
adhesives instead of the overall strength of joints. Besides, the de-
fects in most numerical models were introduced by modeling con-
figurations of discontinuous adhesives, which need to be meshed
densely in the regions near the defects so as to improve the calcu-
lation accuracy. Sometimes it would be complicated and inefficient
way to achieve the modeling defects. To address these deficiencies,
in the present research, an alternative numerical model utilizing fi-
nite elements method is established to describe the mechanical
behavior of the metallic lap joints with defects, focusing on the
overall strength of the joints. Three types of defects are taken into
account, which are local debonding, weak bonding and voids. For
the first two types of defects, a developed numerical method using
the cohesive zone model modified by user-defined subroutines is
carried out as to consider the influences of the defect size and po-
sition. Furthermore, the Gurson–Tvergaad–Needleman (GTN)
model is employed to simulate the adhesive layer with voids, con-
sidering the influence of the void size. Obtained results provide
fundamental principles for factual strength assessment of adhe-
sively bonded joints with defects in their adhesives.
2. Simulation approach

In this section, a numerical model of the single lap joint is built
with the commercially available FEM code ABAQUS. In practice, the
width of the sheets used for the joints is far larger than their thick-
ness, thus the model can be simplified as a plane strain model with
the consideration of saving computational resources without los-
ing accuracy.

Fig. 1a depicts the computational model of the single lap joint,
which consists of two same metal sheets with the thickness of h
and the length of a (=40h). The sheets are connected by an adhesive
layer with the length of l, which can be also called overlap length.
The sheets are meshed using four-node quadrilateral plane strain
elements, of which the total number is set at 1920 upon checking
the convergence of the numerical results. Under uniaxial stretch-
ing, the joint is taken to deform under plane strain. Along the left
side of the joint, the horizontal displacement is set to be zero,
whereas a uniform displacement of u is applied to the right side
of the joint.

The metal sheets are modeled as elastic–plastic solids, with
their true stress versus strain curves fitted using power-law hard-
ening laws [22], as:

r ¼
Ee e 6 rY=E

rY e
rY =E

� �N
e > rY=E

8<
: ð1Þ

where E is the Young’s modulus, N is the strain hardening exponent,
and rY is the yield strength. For the present model, the three mate-
rial properties are 70 GPa, 0.02 and 275 MPa, respectively, taken
from Ref. [23].
As depicted in Fig. 1a, the region highlighted by rectangular
dashed box is termed overlap, which contains the adhesive with
defects. Fig. 1b displays the overlap regions with three types of de-
fects respectively, which are local debonding, weak bonding and
voids. In the following text, various interface elements would be
implemented to simulate the adhesive with those defects. For a
purpose of obtaining better computational accuracy, the overlap
region is meshed densely while sparse mesh is adopted in other re-
gions as shown in Fig. 1c.
3. Local debonding

3.1. Interface elements

Cohesive zone models (CZMs) based on traction laws are well
suitable to describe the decohesion in composite structures. The
CZMs require traction–separation (T–S) relations for characterizing
the constitutive laws of them. So far, considerable researches have
focused on the constitutive laws of CZMs and their applications
[24]. It has been established that whilst the peak value and area of
the T–S curve are vital for capturing the interface separation behav-
ior, its precise shape is of much lesser significance [25]. Conse-
quently, for simplicity, the bilinear T–S law [24,26,27] shown in
Fig. 2 is selected for the present study. Built upon the bilinear cohe-
sive zone model (CZM), the adhesive, also treated as interface be-
tween the two metal sheets, is modeled with the cohesive zone
elements.

Fig. 2 presents the traction–separation (T–S) relation of the
CZM, with Fig. 2a and b representing the relations in tensile and
shear direction respectively. To distinguish the tensile T–S law
from the shear one, let the superscript ‘‘n’’ represent the normal
direction and ‘‘s’’ denote the shear direction. In Fig. 2, um and uc

are the maximum and critical separation, respectively, and T is
the traction stress.

Since the maximum value of Tn is rm while that of |Ts| is sm, the
interfacial fracture energies in the two directions can be expressed
as:

Cn ¼
Z un

m

0
Tndun ¼ 1

2
rmun

m

Cs ¼
Z us

m

0
Tsdus ¼ 1

2
smus

m

ð2Þ

As the loading is increased beyond a critical value, the interface
begins to soften and degrade, namely, the interface is now in the
damaged (or softening) state. Typically, damage is initiated when
a certain criterion is satisfied. In the present study, inspired by
the bilinear law of Fig. 2, the quadratic nominal stress criterion is
adopted to characterize the interfacial damage, described as:

hTni
rm

� �2

þ Ts

sm

� �2

¼ 1 ð3Þ

where h i represents the Macaulay bracket defined by hxi = 1/
2(x + |x|), with the usual interpretation that a pure compressive
deformation or stress state does not initiate damage.

It is assumed that interfacial damage occurs when Eq. (3) is sat-
isfied and a single damage variable D based on the total displace-

ment jump D is introduced (i.e., D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
huni2 þ ðusÞ2

q
) [28,29], as:

D ¼ Df ðDmax � DcÞ
DmaxðDf � DcÞ

ð4Þ

where Dc and Df denote the total displacement at damage initiation
and complete failure. Df is determined by Df ¼ 2C=Teff

c with Teff
c as

the effective traction at damage initiation (i.e.,



Fig. 1. (a) Computational model of the adhesively bonded joint with adhesive containing defects; (b) overlap of the adhesively bonded joint with three types of defects and (c)
finite element mesh of the computational model.

Fig. 2. Typical bilinear traction–separation law of cohesive zone model: (a)
traction–separation relation in tension; (b) traction–separation relation in shear.
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Teff
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTn

c Þ
2 þ ðTs

cÞ
2

q
). In Eq. (4), Dmax denotes the maximum total

displacement ever experienced during the loading history.
Noting that C is the total interfacial fracture energy, it can be

also seen as the fracture energy of the adhesive. Generally, the
interface fracture energy C depends on the mode-mixity. In other
words, the interface fracture energy varies as a function of the
mode-mixity. Thus the interface fracture energy could be termed
the mixed-mode fracture energy. In the present investigation, the
linear fracture criterion is employed to describe the mixed-mode,
which could be expressed as,

Gn

Cn þ
Gs

Cs ¼ 1 ð5Þ

where Gn and Gs denote work done by the traction and its conjugate
relative displacement in the normal and shear directions, respec-
tively. Cn and Cs refer to the critical fracture energies required to
cause failure in the normal and shear directions, respectively, with
the definition in Eq. (2). Consequently, the total interface fracture
energy could be determined by C = Gn + Gs when Eq. (5) is satisfied.
It should be mentioned a major assumption is proposed in the pres-
ent simulation, namely, Cn = Cs. By this assumption, the interface
fracture energy C is a constant in the present simulation.

Moreover, it is worth mentioning that the peak traction stresses
rn

m and ss
m are also called the separation strengths. Strictly speak-
ing, the separation strength is different from the yield strength.
In practice, however, the separation strength is sometimes treated
equal to the yield strength of the adhesive when evaluating the
strength of the adhesive bonding system [23]. Accordingly, the
same approach is followed in the present study and the two peak
traction stresses are assumed equal (i.e.,
rn

m ¼ ss
m ¼ rad ¼ 8:27 MPa) [23].

The adhesive layer containing defect is modeled with a single
layer of four-node modified cohesive elements, which share nodes
with the neighboring elements in the upper and lower sheets. The
defect is first considered as the form of local debonding, which
means the interface elements lose the capability of connecting
the sheets in some positions of the adhesive layer. In the present
investigation, the local debonding is introduced by the user sub-
routine USDFLD of ABAQUS, which stands for user subroutine to
redefine field variables. The subroutine is employed to define the
distribution of the total fracture energy C along the adhesive layer,
which can be expressed as the function of the horizontal coordi-
nate x initiated at the left extremity of the adhesive layer (see,
Fig. 1b),

C ¼ CðxÞ ¼
0 x 2 b� 1

2 d; bþ 1
2 d

� �
C0 x R b� 1

2 d; bþ 1
2 d

� �
(

ð6Þ

where C0, with a typical value of 1 N/mm, is the fracture energy of
interface elements in the bonding area.

3.2. Influence of defect size

The influence of defect size on the load-bearing capacity has
been investigated by the present numerical model. In this section,
the center of the strip-defect coincides with the center of the adhe-
sive. In other words, the strip-defect locates at the mid-region of
the adhesive layer.

Fig. 3 displays the normalized load–displacement curves con-
sidering various sizes of debonding in the adhesive. In order to
present the discrepancy between the cases with and without de-



Fig. 3. Normalized load plotted as the function of displacement for the cases
considering the selected normalized defect sizes d/l.
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fects, the curve corresponding to perfect bonding is hence shown
in the figure. All the curves present linear rising up at the begin-
ning, which can be seen as the first stage of the deformation. How-
ever, the curves drop down after the loads arrive to peak values,
which can be used to assess the load-bearing capacity of the adhe-
sively bonded joints [30]. It is interesting in Fig. 3 that not only the
peak values exhibit discrepancy but also the curves drop in differ-
ent styles. The curves with relatively smaller defect sizes (i.e.,
d = 0.125l, 0.25l) drop sharply while the curves with relatively lar-
ger defect sizes (i.e., d = 0.5l, 0.75l) drop moderately. It suggests
that the damage mode changes from the brittle fracture to ductile
fracture as the defect size is increased.

In order to check the validity and feasibility of the present
numerical method for introducing defects, the computational pre-
dictions of the normalized peak loads are compared with the exist-
ing experimental results [16], as shown in Fig. 4, the value F0

p

denotes the peak load for the case without defect. Overall, the pres-
ent computational results agree well with those measured, thus
the present numerical method is suitable for the study of defects.

3.3. Influence of defect location

In this section, the influence of the defect location is investi-
gated and a single defect is accordingly considered for simplifica-
tion. As shown in Fig. 1b, a length variable b, representing the
distance between the left extremity of the adhesive layer and the
symmetry axis of the defect, is introduced to describe the location
of the defect.
Fig. 4. Normalized peak load plotted as the function of normalized defect sizes d/l:
comparison between the present model predictions with the experimental mea-
surements [16].
Fig. 5 plots the normalized load as a function of displacement
for the cases considering the defect location for selected defect
sizes d: (a) 0.125l; (b) 0.25l; (c) 0.375l; (d) 0.5l and (e) 0.75l. All
the curves in Fig. 5 consist of the rising part and declining part. Dif-
ferently, when the defect size is relatively smaller (e.g., d = 0.125l
shown in Fig. 5a), the load–displacement curves decline sharply.
On the contrary, when the defect size is relatively larger (e.g.,
d = 0.75l shown in Fig. 5e), the curves decline slowly. Based on
the results of Fig. 5, the peak load is plotted as a function of the
length b for selected defect sizes, as shown in Fig. 6, so as to pres-
ent the influence of the defect location on the load-bearing capabil-
ity. Generally, with the varying of the defect location, the variation
of normalized peak load is slight. In other words, the influence of
defect location on the peak load is negligible.

However, it should be mentioned that the influence of the spe-
cial defect size should be considered when the defect location is
studied. When the joint is stretched, the normal and shear stress
in the adhesive attain to high values at the overlap extremities
and very low values in the central region of the overlap. The central
region with the low stress values has a length of some value.
Accordingly, when the defect size is small (e.g., d = 0.125l), the de-
fect on the mid-region would influence the stress distribution in
the adhesive less significantly compared to that close to one over-
lap extremity. Therefore, the peak load declines slightly as the de-
fect is located close to the overlap extremity, with the defect size of
0.125l (see, Fig. 6). By contrast, when the defect size is large (e.g.,
d = 0.75l), even larger than the length of central region with the
low stress values, the defect on the mid-region would influence
the stress distribution in the adhesive more remarkably than the
case of small defect. Consequently, it is not obvious to judge that
which case will induce low joint strength by comparison between
the cases with the defect on mid-region and on overlap extremity.
Therefore it is acceptable that the peak load increases slightly as
the defect is located close to one overlap extremity, with the defect
size of 0.75l (see, Fig. 6).
4. Weak bonding

In contrast to local debonding, weakly bonded joints show no
sign of separation in the bondline [11]. In other words, a weakly
bonded joint is still bonding the two adherends together, which
is shown in Fig. 1b. In practice, weak bonding may be caused by
many reasons, such as the use of heterogeneous glue and rough
bonding surface. In this section, the influence of weak bonding is
investigated by the numerical model described below.

4.1. Model description

As presented in Fig. 1b, the overlap of the model considering
weak bonding is similar to that considering local debonding. Dif-
ferently, the local debonding is replaced by the weak bonding with
assigning the prescribed material parameters. Generally, the local
debonding is a special kind of weak bonding with the material
parameters having zero-value. Accordingly, the present model is
similar to the model considering local debonding except the mate-
rial parameters of defect. It has been established that whilst the
peak value and area of the T–S curve are vital for capturing the
interface separation behavior [31]. In other words, the separation
strength and fracture energy are two sensitive parameters to de-
scribe the fracture properties of adhesives. Thus, the weak bonding
can be regarded as the case that the values of the interface param-
eters are lower in some region of the adhesive layer. The present
simulation only considers the case with the weak bonding locating
at the mid-region of the adhesive layer. The weak bonding are
hence determined by the equations below,



Fig. 5. Normalized load plotted as the function of displacement for the cases considering the defect location for the selected normalized defect sizes d/l: (a) 0.125; (b) 0.25; (c)
0.375; (d) 0.5; and (e) 0.75.
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Cd ¼ CdðxÞ ¼
pC0 x 2 b� 1

2 d; bþ 1
2 d
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2 d
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ad ¼ rdðxÞ ¼

qrad x 2 b� 1
2 d; bþ 1

2 d
� �

rad x R b� 1
2 d; bþ 1

2 d
� �

( ð7Þ
where Cd and rd
ad represent the fracture energy and separation

strength of the weak bonding. In order to describe the weaken de-
gree of the defect, weakening coefficients p and q are introduced,
varying between 0 and 1. Obviously, the weaken degree becomes
higher as the weakening coefficients are lower. Then defect
degrades to the local debonding with the two weakening coeffi-
cients of 0, while the defect disappears with the coefficients of 1.
4.2. Results

As mentioned in Section 3.2, peak load could be used to assess
the load-bearing capability of the adhesively bonded joints. Fig. 7
shows the normalized peak load plotted as a function of normal-
ized separation strength of the adhesive in weak bonding area,
considering various adhesive fracture energies (C) and sizes (d)
of the weak bonding region. Fig. 7 presents the variation of load-



Fig. 6. Normalized peak load plotted as a function as location variable for the
selected defect sizes.

Fig. 7. Normalized peak load plotted as a function as normalized separation
strength of the adhesive in weak bonding region, considering various adhesive
fracture energies and sizes of the weak bonding region.
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bearing capability due to the defect. All the curves in this figure de-
cline as the separation strength of the weak adhesive is decreased.
It should be mentioned the influence of the fracture energy, two
selected values of which are considered, namely C = C0 and
C = 0.1C0. When the size of the defect is small (i.e., d = 0.25l), dif-
ference between the curves corresponding to the case of C = C0

and the case of C = 0.1C0 is negligible. However, when the size
of the defect is large (i.e., d = 0.75l), the difference of that is notice-
able. The peak load corresponding to the case of C = C0 is higher
than that corresponding to the case of C = 0.1C0, which is more
remarkable when rd

ad is relatively larger. In addition, when rd
ad is

small enough, namely rd
ad=rad ¼ 0:25, the values of the peak load

corresponding to the two cases are extremely close.

5. Void

Besides strip defects, void-like defect is another common type
of defect in adhesive, which arises both from volatile by-products
that can evolve during the adhesive curing or from entrapped air
bubbles [36]. In this section, an alternative approach employing
modified Gurson model is carried out to simulate the adhesive
with voids.

5.1. Interface elements

Gurson model was established for porous materials which de-
pend on the void volume fraction as an additional internal variable
[32]. The model was further developed by Tvergaad with respect to
the yield condition and damage evolution [33,34] and by Needle-
man to include the law of void nucleation [35]. Therefore, the Gur-
son model used in present simulation can also be referenced as
Gurson–Tvergaad–Needleman (GTN) model, which is an isotropic
formulation that employs the invariants of the Cartesian compo-
nents of the Cauchy stress (i.e., rij). The yield function of the GTN
model is specified by:

U ¼ req

r0

� �2

þ 2q1f cosh
3q2rm

2r0

� �
� 1þ ðq1f Þ2
h i

¼ 0 ð8Þ

where req denotes the von Mises stress, req ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3sijsij=2

p
, with sij

representing stress deviator (i.e., sij = rij � 1/3rkkdij). And rm de-
notes the hydrostatic stress (i.e., rm = rkk/3); r0 represents the yield
strength of the adhesive without defect in the present simulation;
q1 and q2 are the fitting parameters with the given values, namely,
q1 = 1.5 and q2 = 1.0 [33,36]. The current state is characterized by
the damage parameter f, which can be interpreted as the void vol-
ume fraction.

In the GNT model, as the deformation of the adhesive is in-
creased, the void volume fraction would increase, which is caused
by two factors, namely, void nucleation and void growth. They are
both controlled by mean plastic strain ep

kk. The current value of the
void volume fraction changes due to the growth of existing voids
and the nucleation of new void, which can be expressed by:

f
�
¼ f
�
growth þ f

�
nucleation ¼ ð1� f Þ ep

kk

�
þA �eP

�
ð9Þ

where �eP is the equivalent plastic strain and ep
kk is the hydrostatic

component of the plastic strain. A is specified by,

A ¼ fN

S
ffiffiffiffiffiffiffi
2p
p exp �1

2
�eP � eN

S

� �2
" #

ð10Þ

where fN is the volume fraction of the nucleated void, the nucleation
function A/fN agrees with the normal distribution with a mean value
eN and standard deviation S. Both of them have the value of 0.1 in
the investigation.

In this simulation for voids, the interface elements are regarded
as a single layer of four-node plane strain elements with the yield
function fitting the GTN model described above. The interface ele-
ments have thickness and a typical value of adhesive thickness (i.e.,
0.5 mm) is selected in the simulation. The interface elements lose
their connecting capability totally (i.e., total failure) when the
value of f reaches 1.
5.2. Influence of void size

Various initial void fractions are explored, for the purpose of
studying the influence of voids on the load-bearing capacity, with
the result shown in Fig. 8, all the curves in this figure present the
similar trend, the load rises up to a peak value and declines subse-
quently as the displacement is increased. With the increasing of
the initial void fraction, the load–displacement curves exhibit sig-
nificant discrepancy. With the initial void fraction increasing from
0 (i.e., the case without defect) to 0.6, the peak load reduces by
nearly 2/3 times. For the latter case, the joint lost its load-bearing
capacity totally when the normalized displacement increases to
0.073, which could be regarded as the failure displacement. It is
reasonable to predict that the failure displacement would be larger
according to the tendency of the plots for other cases. Fig. 8 implies
the strength of the joints has strong size-scale dependence of the
initial void fraction in the adhesive layer.



Fig. 8. Load–displacement relations for selected initial void fractions.
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6. Concluding remarks

In summary, the method of finite element has been utilized to
study the strength of metallic lap joints with defects in their adhe-
sive layers. Three types of defects are taken into account respec-
tively, which are local debonding, weak bonding and void. For
the first two types of defects, a developed numerical method using
the cohesive zone model modified by user-defined subroutines is
carried out as to consider the influences of the defect size and loca-
tion. Furthermore, the GTN model is employed to simulate the
adhesive with voids, considering the influence of the void size.
The results show that the overall strength of the joints diminishes
as the defects size is increased. Especially, the adhesive fracture
properties and the size of weak bonding region have combined
influences on the strength of the joints. The residual strength of
joints is significantly influenced by fracture properties of the weak
adhesive when the weakly bonded area is relatively larger. Ob-
tained results provide fundamental principles for factual strength
assessment of adhesively bonded joints with defects in their
adhesives.

It should be noted that in the present research, several assump-
tions and simplifications are adopted, which would cause the devi-
ation between the simulation and practice. Firstly, three types of
defects are considered separately. Combined influence of multi-
type defects should be investigated in the future. Secondly, both
the shape and the distribution of the defects in the present model
are regular, while the situations of the defects in practice are ran-
dom. More sophisticated models are certainly needed to study the
effects of random defects. Thirdly, Generally speaking, the adhesive
thickness could influence the strength of the adhesively bonded
joints, previous researches have studied the influence and shown
some results [37]. The present investigation aim to study the influ-
ence of defects, the influence of adhesive thickness is thence not
considered. CZM could be regarded as an equivalent approach to
simulate the adhesive. It has been established that the separation
strength (i.e., peak traction) and fracture energy are vital for cap-
turing the interface separation behavior when the CZM are em-
ployed. Since the previous researches have proposed that the two
important cohesive parameters varied as functions of adhesive
thickness [38], the variation of adhesive thickness could be imple-
mented by introducing different cohesive parameters in the future
simulation.
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