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Abstract A general formulation is developed for the contact
behavior of a finite circular plate with a tensionless elastic
foundation. The gap distance between the plate and elastic
foundation is incorporated as an important parameter. Unlike
the previous models with zero gap distance and large/infinite
plate radius, which assumes the lift-off/separation of a flex-
ural plate from its supporting elastic foundation, this study
shows that lift-off may not occur. The results show how the
contact area varies with the plate radius, boundary condi-
tions and gap distance. When the plate radius becomes large
enough and the gap distance is reduced to zero, the con-
verged contact radius close to the previous ones is obtained.

Keywords Tensionless contact · Elastic foundation · Plate ·
Lift-off

1 Introduction

The separating tendency of a laterally loaded plate from
its supports was noticed more than fifty years ago [1].
The bending of flexural structures such as beam and
plate under a normal load induces the out-of-plane dis-
placement, which can lead to the lift-off/separation of
structures from their supports. The contact problem of
a flexural structure is called differently as the reced-
ing contact [2], unbonded contact [3, 4], tensionless con-
tact [5–11] and unilateral contact [12, 13]. Despite their
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different names they all emphasize one essential thing: bend-
ing and lift-off of flexural structure. The name of receding
contact emphasizes that the contact area under loading is
smaller than the unloaded one because of lift-off. The name
of unbonded contact emphasizes that the flexural structure
is allowed to lift-off/separate from its support. The name of
tensionless contact emphasizes that in a non-adhesive con-
tact, tensile stress can not be transmitted to the lift-off parts
of structure. The names of tensionless contact and unilateral
contact both emphasize that only compressive stress exists in
the contact area. The bending and lift-off of flexural struc-
tures introduce the localized effect (concentration of stress
and strain in a given area), which can have significant impact
on the nanoindentation test of one dimensional (1D) nanos-
tructures, such as nanobelt [14] and nanowire [15]. Besides
its marvelous electric properties [16], graphene together with
other 2D materials of one or a few atomic layers also demon-
strates extraordinary friction properties: friction increases
monotonously with the decrease of the layer numbers [17].
The“rigid” contact models such as the Hertz and Johnson–
Kendall–Roberts (JKR) models are developed for the contact
of two spheres in which the contact zone is extremely small
compared with the sizes of spheres and the radii of curva-
ture are thus assumed unchanged [14, 15]. By contrast, the
out-of-plane bending deflection (and thus the radius of cur-
vature) of flexural structures changes with the normal load.
In microscopic scale, friction force Ff is proportional to the
contact area, i.e., Ff = τA (τ is the constant shear strength
for given materials and geometry; A is the contact area) [18].
The tangential force is believed to have no impact on the
contact area [19]. The thickness of graphene is extremely
small compared with its other dimensions, which makes it
very flexural. The out-of-plane deflection due to normal
loading, referred to as “puckering”, is believed to increase
the graphene contact area and thus its friction force [17].
This work presents a study on the tensionless contact of a
finite circular plate under a concentrated load, which is the
loading case of nanoindentation [14, 15] and normal load ex-
erted by an atomic force microscope (AFM) tip in the friction
test [17]. The approach presented here may offer some in-
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sights on how to properly evaluate the contact area between
an indenter and a 2D flexural structure such as graphene.

The problem formulation of plate tensionless contact
can be either integral [3, 7–9, 20] or differential [4–6, 12, 13].
The substrate is modeled either as an elastic half space [3, 20]
or as an elastic foundation [4–9, 12, 13]. The elastic half
space model in essence is to solve a Boussinesq prob-
lem [21]. In an elastic half space model, the displacement,
strain and stress at a point is determined by the elastic de-
formation all over the area and its formulation can only
be integral [3, 20]. The formulation of an elastic founda-
tion model can be either integral [7–9] or differential [4–
6, 12, 13]. Compared with the differential formulation, the
integral formulation and the iterative algorithm needed to
solve the problem are rather lengthy and complex. Weits-
man [6] presented a differential formulation of a circular
plate on a tensionless foundation. However, Weitsman’s
matching conditions at the separation points assume the
disappearance of displacement, bending moment and shear
force [6], which are generally not true [4, 10]. Yang also
pointed out that the bending moment at the separation point
can not be zero [22]. Physically, Weitsman’s model is for
an infinitely large plate [6]. The difference between an in-
finitely long beam and a finite beam in tensionless contact
is demonstrated by Zhang and Murphy [10]. In the above
tensionless contact models of plate [3, 4, 6–9, 12, 13, 20], the
gap distance between the plate and support is zero.

In many micro-electro-mechanical systems (MEMS)
structures, there is a nonzero gap distance between the
micro-structure and substrate [22–28]. Therefore, it is of a
practical use to have a nonzero gap distance incorporated in
the model. The previous models mentioned above also ex-
plicitly assume the lift-off of plate [3, 4, 6–9, 12, 13, 20]. As
shown in this study, there is no lift-off for the plate with a
small radius and the whole plate is in contact with substrate.
Only when the plate radius reaches some critical value and
the plate becomes flexural enough, the plate can lift-off from
substrate.

2 Model development

As shown in Fig. 1, a circular plate with a radius of R′ is
separated from a tensionless elastic foundation by a gap dis-
tance of Zo. The boundary conditions can vary as the free,
clamped and simply-supported ones. Zo can only be zero for
a free plate. The coordinate system is also shown in Fig. 1,
which is at the center of the undeformed plate. The substrate
is modeled as Winkler foundation with the modulus of k; D
is the plate flexural rigidity and D = ET 3/12(1 − ν2) (E,T
and ν are the plate Young’s modulus, thickness and Pois-
son’s ratio, respectively). The circular plate is subjected to
a concentrated load P at its center. The plate separates from
the elastic foundation once its displacement is less than Zo.
Otherwise, the plate is in contact with the elastic foundation.
The plate displacement of W is divided into the following
two parts as shown in Fig. 1.

Fig. 1 The schematic diagram of a circular plate under a point load
P at the center and the coordinate system. R′ is the plate radius, Zo

is the gap distance and r′o is the contact radius. W1 and W2 are the
displacements of the contact and lift-off zones, respectively

W =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

W1(r′), contact region,

W2(r′), lift-off region.
(1)

The governing equation of the contact region is the follow-
ing [6]

DΔ2
r′Δ

2
r′W1 + k(W1 −Zo) =

P
2π
δ(r′)

r′
, W1 ≥ Zo, 0 ≤ r′ ≤ r′o,

(2)

where r′o is the unknown plate contact radius as shown
in Fig. 1, Δ2

r′ is an operator defined as Δ2
r′ = (1/r′)

(d/dr′)(r′d/dr′), δ is the Dirac delta function used to model
the concentrated load, k(W1 − Zo) is the compressive pres-
sure exerted by the elastic foundation due to contact. The
governing equation of the lift-off zone is as follows

DΔ2
r′Δ

2
r′W2 = 0, W2 ≤ Zo, r′o ≤ r′ ≤ R′. (3)

The following quantities are introduced to nondimen-
sionalize Eqs. (2) and (3)

l4 =
D
k
, r =

r′

l
, w =

W
l
, zo =

Zo

l
, R =

R′

l
, ro =

r′o
l
. (4)

Equations (2) and (3) are now nondimensionalized as follows

Δ2
rΔ

2
r w1 + w1 − zo =

P
2πDl2

δ(r)
r
, w1 ≥ zo, 0 ≤ r ≤ ro, (5)

Δ2
rΔ

2
r W2 = 0, w2 ≤ zo, ro � r � R. (6)

The solutions to Eqs. (5) and (6) are given as follows [6]

w1 = A1ber(r) + B1ber(r) − 2Fober(r) + zo, (7)

w2 = A2r2 + B2 ln r +C2r2 ln r + D2, (8)

where Fo is a dimensionless quantity defined as Fo =

Pl2/(4πD); A1, B1, A2, B2, C2 and D2 are the unknown con-
stants to be determined. ber, bei and kei are the Bessel func-
tions [29], whose forms are given in Appendix I. r4, r2, ln r,
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r2 ln r and constant (D2) together are all five possible solu-
tion function forms for Eq. (6) [30]. However, keep in mind
that r4 is the function form associated with the uniformly dis-
tributed load [30]. Because there is no uniformly distributed
load, there is no r4 term in the solution of Eq. (8). There are
total seven unknowns (A1, B1, A2, B2, C2, D2 and ro) to be
determined in this formulation.

Here it is heuristic to have a comparison with Weits-
man’s solution of Eq. (6), which is given as the following
for an infinite plate with R = ∞ and zo = 0 [6]

w2 = B2 ln

(
r
ro

)

. (9)

There are only four unknowns in Weitsman’s formulation
(A1, B1, B2 and ro). The reason to have the solution form
of Eq. (9) is due to the assumption of the vanishing displace-
ment and shear force at the separation point of r = ro [6].
Here the limitation and drawback of Eq. (9) should be ana-
lyzed. Clearly, the solution of Eq. (9), which gives w2(ro) =
0 can not apply to the case with a nonzero gap distance as
shown in Fig. 1. The (dimensionless) shear force in the lift-
off zone is given as follows [1]

Qr(r) =
d3w2

dr3
+

1
r

d2w2

dr2
− 1

r2

dw2

dr
. (10)

By substituting Eq. (9) into Eq. (10), it is readily evident that
Qr of an infinite plate is always zero not only at the separa-
tion point but also in the whole lift-off zone of ro � r � R.
The shear force indeed disappears in the lift-off zone for
a finite free plate as shown in Appendix II. However, it is
also demonstrated in Appendix II that the shear force in the
lift-off zone is not zero for a finite plate with other types of
boundary conditions. Therefore, the solution form of Eq. (9)
can not apply to the plate with the other types of boundary
conditions.

Because the continuity of the displacement and slope,
the matching conditions at r = ro give the following

w1(ro) = w2(ro),
dw1(ro)

dr
=

dw2(ro)
dr

. (11)

The (dimensionless) bending moment is given as fol-
lows [1]

Mr(r) = −
[
d2w(r)

dr2
+
ν

r
dw(r)

dr

]

. (12)

In conjunction with the slope continuity condition in
Eq. (11), the continuity of bending moment leads to
d2w1(ro)/dr2 = d2w2(ro)/dr2. Similarly, in conjunction
with the continuity of both the slope and bending mo-
ment, the continuity of shear force concludes d3w1(ro)dr3 =

d3w2(ro)dr3. Therefore, at r = ro, the matching conditions
which require the continuity of the bending moment and
shear force give the following

d2w1(ro)
dr2

=
d2w2(ro)

dr2
,

d3w1(ro)
dr3

=
d3w2(ro)

dr3
(13)

The four matching conditions of Eqs. (11) and (13) at r = ro

are the same ones derived by Kerr [4] via a variational ap-
proach. The matching conditions are also often referred to as
the transversality conditions [4, 26]. The displacement con-
straint condition at r = ro is the following [10]

w1(ro) = zo. (14)

Alternatively, one may use w2(ro) = zo. For a free plate,
the following boundary conditions of vanishing moment and
shear force hold

Mr(R) = 0, Qr(R) = 0. (15)

For a clamped plate, the following boundary conditions of
vanishing displacement and slope hold

w2(R) = 0,
dw2(R)

dr
= 0. (16)

For a simply-supported plate, the following boundary condi-
tions of vanishing displacement and moment hold

w2(R) = 0, Mr(R) = 0. (17)

Therefore, four matching conditions, one constraint condi-
tion and two boundary conditions give seven equations in
total to solve the seven unknowns of (A1, B1, A2, B2, C2,
D2 and ro). Because ro is unknown, solving these seven
unknowns is a nonlinear problem and Newton–Rhapson
method is required [10]. The equation set of A1, B1, A2, B2,
C2, D2 and ro is presented in Appendix III.

3 Results and discussions

3.1 Free circular plate

In this study k and D are taken as 1 for simplicity and com-
parison reason. For a free circular plate, zo can only be taken
as 0. Figure 2 plots the R versus ro. The contact radius of ro

in Fig. 2 keeps increasing linearly with increase of the plate
radius of R until R = 2.84. The slope of the curve is 1. After
R = 2.84, the contact radius increases with a much smaller
slope and the curve is then flattened. The contact radius of
ro converges to 2.665 6 around R = 40. Because the bound-
ary condition Mr(R) = 0 is applied and Mr(r) as indicated
by Eq. (12) is dependent on the plate Poisson’s ratio of ν, it
is taken as 0.25 in Fig. 2. However, the convergence of ro

is not sensitive to the plate Poisson’s ratio of ν at all. The
converged contact radius only changes from 2.665 6 of ν = 0
to 2.665 8 of ν = 0.5. It is worth pointing out that the R–ro

curve presented in Fig. 2 is independent of the concentrated
load P. The ro independence of the concentrated load of P is
a rather counter-intuitive and important feature of the plate
tensionless contact [3, 6, 7, 9]. Because the same problem is
computed in Refs. [3, 6, 7, 9], ro is presented for a compari-
son in Table 1.
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Table 1 ro of a free plate when zo = 0 and R is infinite or very
large

Ref. ro

[3] 2.926 3

√
(1 − νs)D

Gs

4

√

k
D

*

[6] 2.85

[7] 2.76

[9] 2.72

Present study 2.665 6 – 2.665 8

* νs and Gs are the Poisson’s ratio and shear modulus of the
substrate modeled as an elastic half space [3], respectively.
The 4√k/Dterm is due to the nondimensionalization scheme
of Eq. (4), which is also shared by Refs. [6, 7, 9].

Fig. 2 R–ro relation for a free circular plate with zo = 0

In the previous models, the plate radius is either infi-
nite [3, 6] or very large compared with the contact radius of
ro [7, 9]. The effect of R on lift-off is thus not presented in
the previous studies [3, 6, 7, 9]. Figure 2 is to present such
study and shows the R–ro relation of a free plate with zero
gap distance. When zo = 0, the contact radius of ro is in-
dependent of load [3, 6, 7, 9] and therefore R is the unique
parameter which can influence ro in a finite free plate. Two
questions should be asked for the R–ro curve presented in
Fig. 2: (1) why does the contact radius of ro increase linearly
with the slope of one until R = 2.84 ? and (2) why is the
curve flattened/converged after R = 2.84 ? These two ques-
tions can be answered by examining the deflections of plate
with different values of R.

Figure 3 shows the deflections of the plate with R = 2
and zo = 0 under two different P’s. The whole plate is in
contact with the elastic foundation under these P’s and no
lift-off occurs: larger load P just pushes the plate deeper into
the elastic foundation. Therefore, the contact radius is the
plate radius, i.e., ro = R, which is responsible for the slope
of one. It is also necessary to have a discussion on the con-
straint condition of Eq. (14) in this scenario. It is noticed that
the displacements in Fig. 3 are all greater than zero and the
constraint condition seems violated. In fact, it is not. What

happens is that the contact radius of ro computed at this sce-
nario is larger than the plate radius of R and the constraint
condition is still mathematically satisfied. Of course, it is
physically impossible to have ro > R. In this scenario, the
contact radius is taken as R not ro. In this scenario, the as-
sumption in Refs. [3, 6, 7, 9] that lift-off always occurs can
not be true. Figure 4 shows the deflections of a free plate
with R = 20 under two different load P’s. The plate now
lifts-off at the same ro = 2.665 6 marked by circles for both
loads, which, again, demonstrates the independence of ro on
P [3, 6, 7, 9]. The lift-off mechanism is the reason why the
curve in Fig. 2 is flattened/converged after R = 2.84.

Fig. 3 Deflections of a free plate with R = 2 and zo = 0 under
P = 0.1 and P = 0.2. Poisson’s ratio of the plate is 0.25

Fig. 4 Deflections of a free plate with R = 20 and zo = 0 when
P = 0.1 and P = 0.2. Poisson’s ratio of the plate is 0.25

3.2 Clamped circular plate

Compared with a free plate, a clamped plate can have
nonzero gap distance of zo. Figure 5 shows the R–ro rela-
tions with different zo’s at P = 0.1. In comparison with
Fig. 2, the independence of ro on P is no longer valid for
a clamped plate with a nonzero zo. When a free-standing
clamped circular plate is with a concentrated load P at its
center, its displacement is given as follows [1]

w(r) =
Pr2 ln(r/R)

8πD
+

P(R2 − r2)
16πD

. (18)
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The maximum displacement is the plate center displacement,
which gives the following

wmax = w(0) =
PR2

16πD
. (19)

Setting the maximum displacement equal to the gap size per-
mits one to determine the plate radius of R at which the con-
tact initiates. Therefore, when P = 0.1 and wmax = zo =

0.01(D = 1), R = 2.25; when P = 0.1 and wmax = zo =

0.1(D = 1), R = 7.12. This is the reason why the contact
radius of zo = 0.01 remains zero until R = 2.25 and that of
zo = 0.1 until R = 7.12 as seen in Fig. 5.

Fig. 5 R–ro relation for a clamped plate with different zo’s when
P = 0.1

For the case of zo = 0, Fig. 5 shows that ro increases lin-
early with the slope of one until R = 3.94, then decreases and
finally converges to 2.691. Compared with the converged
contact radius of 2.665 6 for a free plate, the plate bound-
ary conditions have a weak influence on ro of the plate with
large R. Again, to explain the ro–R relation as seen in Fig. 5,
we have to examine the deflections of plate with different
R’s. Figure 6 shows the deflections of a clamped plate with
R = 3 and zo = 0 under two different P’s. Similar to Fig. 3,
the whole plate is in contact with the elastic foundation and
there is no lift-off; larger load P pushes the plate deeper into
the elastic foundation. Figure 7 shows the deflections of the
plate with R = 20 and zo = 0 under two different concen-
trated loads. The plate now lifts off at the same ro = 2.75 for
two different P’s. Again, for a clamped plate, the same fact
that the whole plate is in contact with the foundation is re-
sponsible for the result that ro increases with the slope of one
when R is relatively small; the lift-off is also the mechanism
responsible for the convergence of ro.

Figure 8 shows the plate radius versus contact radius
with different gap distances under a much larger load of
P = 1. Compared with Fig. 5, the curve with zo = 0 keeps
unchanged. Other two curves with finite zo change dramati-
cally. They come closer to the curve with zero gap distance.

Fig. 6 Deflections of a clamped plate with R = 3 and zo = 0 when
P = 0.1 and P = 0.2

Fig. 7 Deflections of a clamped plate with R = 20 and zo = 0 when
P = 0.1 and P = 0.2

The comparison between Figs. 5 and 8 clearly shows the
breakdown of the independence of ro on P for nonzero zo’s.
For the same nonzero zo, a larger load (P = 1) in Fig. 8
has larger ro than that of a smaller load (P = 0.1) in Fig. 5.
It is also noticed that when the contact is initiated, all these
three ro’s start at 0, which physically corresponds to the point
contact. With the presence of adhesion, ro will start with a
finite number rather than zero [26, 27]. The model presented
here does not incorporate the adhesion effect. Adhesion is a
rather weak surface interaction and its effect stands out only
when both the structure dimension and mechanical load are
small [14]. Adhesion can have significant impact on the in-
dentation [14, 15], friction [17, 18] and stiction [22–25, 27]
of micro/nano-scale structures. The study of adhesion effect
on the plate contact will be carried out in our future work.

Figures 9 and 10 are both with R = 20 and zo = 0.1. Fig-
ure 9 shows the deflections of the plate under two relatively
small Ps. The contact radius is 1.037 for P = 0.1 and 1.462
for P = 0.2. Figure 10 shows these deflection shapes of the
plate under much larger P’s. The contact radius increases to
ro = 2.349 for P = 1 and ro = 2.5 for P = 2. Clearly the
deflection shapes in Fig. 10 are very different from those in
Fig. 9.
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Fig. 8 R–ro relation for a clamped plate with different zo’s when
P = 1

Fig. 9 Deflections of a clamped plate with R = 20 and zo = 0.1
under relatively small loads of P = 0.1 and P = 0.2

Fig. 10 Deflections of a clamped plate with R = 20 and zo = 0.1
under relatively large loads of P = 1 and P = 2

Figure 11 shows the zo–ro relation under two different
P’s for a clamped plate with R = 20, which is a way of
showing the ro dependence on zo and P. The two curves
starts from the same point of (0, 2.75) because at zo = 0
the contact radius of ro is independent of load P. This is
also the only point they share. For the curve with P = 0.1,

the contact radius becomes zero at zo = 0.795 8. For the
curve with P = 0.2, the contact radius ro becomes zero at
zo = 2 × 0.795 8. The reason for this is that for R = 20 and
P = 0.1, the maximum plate displacement calculated from
Eq. (19) is 0.795 8. So if the gap distance zo is larger than
0.795 8, the plate with R = 20 has no contact with the elas-
tic foundation under a given load of P = 0.1. Also from
Eq. (19), wmax is linear with load P, that is why for P = 0.2
the contact radius ro becomes zero at zo = 2 × 0.795 8.

Fig. 11 zo–ro relation for a clamped circular plate with R = 20
under two different loads of P = 0.1 and P = 0.2

4 Summary

The differential formulation of the tensionless contact of a
finite circular plate presented here offers a more general ap-
proach for this type of problem. The matching conditions at
the separation point and the solution forms outside the con-
tact area are modified; the plate boundary conditions and the
gap distance are incorporated in the formulation. The anal-
ysis shows that a plate with a relatively small radius does
not lift-off and lifting-off is demonstrated to be dependent
on the plate radius and boundary conditions. When the gap
distance is zero and the plate radius is large, the contact ra-
dius is demonstrated to be independent of the load, which is
also shown by previous investigators. For a finite plate with a
small radius, the boundary conditions can have significant in-
fluence on the contact radius under the same load. However,
as the plate radius increases, the contact radius of the plate
with zero gap distance becomes insensitive to the boundary
conditions and converges to a value close to that of an infinite
plate. For the plate with a nonzero gap distance, the contact
radius is demonstrated to be dependent on the load, the gap
distance, boundary conditions and plate radius.

Appendix

A1. Bessel functions of ber(r), bei(r) and kei (r)

ber(r) = 1 − (r/2)4

(2!)2
+

(r/2)8

(4!)2
− (r/2)12

(6!)2
+

(r/2)16

(8!)2
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− (r/2)20

(10!)2
+

(r/2)24

(12!)2
+ . . . , (A1)

bei(r) = (r/2)2 − (r/2)6

(3!)2
+

(r/2)10

(5!)2
− (r/2)14

(7!)2

+
(r/2)18

(9!)2
− (r/2)22

(11!)2
+ . . . , (A2)

kei(r) = (ln 2 − γ − ln r)bei(r) − 1
4
πber(r) + (r/2)2

− (r/2)6

(3!)2

(

1 +
1
2
+

1
3

)

+
(r/2)10

(5!)2

(

1 +
1
2
+

1
3
+

1
4
+

1
5

)

− (r/2)14

(7!)2

(

1 +
1
2
+

1
3
+

1
4
+

1
5
+

1
6
+

1
7

)

+ . . . ,

(A3)

where γ ≈ 0.577 215 7 is the Euler number and ln 2 − γ ≈
0.115 9.

A2. Shear force in the lift-off zone of a finite plate

w2 is the displacement of the lift-off zone, which is an
annulus of ro � r � R. Substitute w2 of Eq. (8) into Eq. (10)
and after some simple manipulations, the shear force Qr is
readily given as follows

Qr(r) = 4
C2

r
, ro � r � R. (A4)

For a free circular plate, the boundary condition of zero shear
force gives Qr(R) = 4C2/R = 0, which yields C2 = 0. There-
fore, Qr(r) = 0 in the annulus of ro � r � R. For the plate
with other type of boundary conditions, Qr(R) �0 and thus
C2 � 0, which is to say that the shear force is not zero in the
lift-off zone.

A3. Equation set of A1, B1, A2, B2, C2, D2 and ro

The four matching conditions of Eqs. (11) and (13) at
r = ro give the following four equations

A1ber(ro) + B1bei(ro) − 2Fokei(ro) + zo

= A2r2
o + B2 ln ro +C2r2

o ln ro + D2, (A5)

A1ber′(ro) + B1bei′(ro) − 2Fokei′(ro)

= 2A2ro +
B2

ro
+ C2(2ro ln ro + ro), (A6)

A1ber′′(ro) + B1bei′′(ro) − 2Fokei′′(ro)

= 2A2 − B2

r2
o
+ C2(2 ln ro + 3), (A7)

A1ber′′′(ro) + B1bei′′′(ro) − 2Fokei′′′(ro)

= 2
B2

r3
o
+ 2

C2

ro
, (A8)

here ()′ = d/dr() . The displacement constraint condition of
Eq. (14) gives the following

A1ber(ro) + B1bei(ro) − 2Fokei(ro) + zo = 0. (A9)

The two boundary conditions for a free plate of Eq. (15)
gives the following two equations

2A2(1 + ν) − B2

R2
(1 − ν) + C2(2 ln R + 1)(1 + ν) + 2C2 = 0,

(A10)

C2 = 0. (A11)

There are now seven (nonlinear) equations in total to solve
the seven unknowns of A1, B1, A2, B2, C2, D2 and ro, which
can only be done numerically by Newton–Rhapson method.
Clearly, Eq. (A10) is the reason why our computed ro listed
in Table 1 is dependent on the plate Poisson’s ratio of ν.

The two boundary conditions for a clamped plate of
Eq. (16) are the following

A2R2 + B2 ln R +C2R2 ln R + D2 = 0, (A12)

2A2R +
B2

R
+ C2(2R ln R + R) = 0. (A13)
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