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In this paper, a “macroscopic-scale” numerical method for drop oscillation in AC electrowetting is presented. The method is based
on a high-fidelity moving mesh interface tracking (MMIT) approach and a “microscopic model” for the moving contact line. The
contact line model developed by Ren et al. [Phys Fluids, 2010, 22: 102103] is used in the simulation. To determine the slip
length in this model, we propose a calibration procedure using the experimental data of drop spreading in DC electrowetting.
In the simulation, the frequency of input AC voltage varies in a certain range while the root-mean-square value remains fixed.
The numerical simulation is validated against the experiment and it shows that the predicted resonance frequencies for different
oscillation modes agree reasonably well with the experiment. The origins of discrepancy between simulation and experiment are
analyzed in the paper. Further investigation is also conducted by including the contact angle hysteresis into the contact line model
to account for the “stick-slip” behavior. A noticeable improvement on the prediction of resonance frequencies is achieved by using
the hysteresis model.
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Electrowetting (EW) is a phenomenon in which the wetta-
bility of a droplet on an insulator-coated electrode surface
is modified by externally applying electrical voltages. This
phenomenon originates from the electrostatic force, which is
a direct consequence of the excess charge at the three-phase
contact line [1]. A comprehensive review on EW, in both the-
ory and experiment, was presented in the paper by Mugele
and Baret [2]. EW can be used to manipulate small volume of
liquid very fast and efficiently, with relatively low electrical
potential and power consumption. Electrowetting on dielec-
tric (EWOD) avoids the electrolysis of the aqueous solution
in EW by coating the electrode surface with a thin dielectric
layer. EWOD has been widely used in various applications,
including microfluidics [3,4], liquid display [5,6], and micro-
switches [7,8].

Both DC and AC fields can be used in EW or EWOD.
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When a DC field is used, a new equilibrium state with a
smaller contact angle will be reached after a spontaneous
spreading process. If an AC field is used instead, more inter-
esting and complex features are observed. At low-frequency
AC excitation, the hydrodynamic response can follow the pe-
riodic change of the electric force at the contact line and the
shape oscillation of droplet is observed. If the AC frequency
exceeds a critical value for the hydrodynamic response, the
droplet behaves just as if it is excited by a DC field. The
final state of contact angle and shape depends only on the
time-averaged value of the applied voltage. Recently, drop
oscillation in AC EW at low frequencies (10–300 Hz) was
studied by experiment and theory [9–11]. The experiments
revealed that the drop oscillation became resonant at certain
input AC frequencies and the pattern of shape oscillation was
different at each resonance frequency. The theoretical mod-
els proposed in these works were able to predict some char-
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acteristics such as the resonance frequencies fairly well. The
spreading of droplet in EW at a high AC frequency of 1 kHz
was also studied [12]. It was found that the droplet behaved
like being excited by a DC voltage. In another experiment,
the oscillatory motion of droplet surface was observed up to
about 8 kHz AC frequency [13]. They also showed a differ-
ent flow pattern of EW in the high-frequency range of 35–256
kHz. Since this flow pattern was found to be very sensitive
to the position of the needle (electrode) and the conductiv-
ity of the solution, it was believed to be a kind of electro-
hydrodynamic flow and was controlled by the electric-field
distribution. More recent studies [14,15] suggested that this
type of high-frequency flow originated mainly from the elec-
trothermal effect. Several other groups also reported the ex-
istence of drop oscillations in AC EW [16–19]. As to the ap-
plication side of drop oscillation, a significant enhancement
of dye mixing was reported by Mugele et al. [20]. A thor-
ough understanding of the nature of such oscillation (e.g.,
pattern of oscillation and resonance with respect to forcing
frequency) can help optimize the mixing efficiency. More-
over, a fast and precise change in the shape of the meniscus
is required in EW-based liquid lenses [21,22] and reflective
displays [5].

In fact, drop oscillation is one fundamental problem in
fluid mechanics and its study has a much longer history than
that of EW. The first mathematical model for the oscillation
of a free inviscid drop neglecting the external flow was pro-
posed by Rayleigh [23]. This model was later extended by
accounting for the external flow [24]. Efforts have also been
made in the study of oscillation in partially constraint drops
(such as sessile drops in contact with a solid substrate). An
early theoretical study was motivated by the influence of liq-
uid drop vibrations on crystal growth in microgravity [25].
The oscillation of gravity-flattened drops (puddles) on a ver-
tically vibrated flat plate was studied by Noblin et al. [26].
They observed two different regimes of axisymmetric os-
cillations at different vibration amplitudes of the substrate:
namely, type I with pinned contact line and type II with mo-
bile contact line. The existence of non-axisymmetric (triplon)
mode at high-amplitude excitations was also reported in an-
other paper by Noblin et al. [27]. The resonant modes of
an oscillating sessile drop on a substrate subjected to lateral
vibration were studied by Dong et al. [28]. The stick-slip
dynamics of an oscillated sessile drop subjected to vertical
vibration were investigated recently by Fayzrakhmanova and
Straube [29]. Their work focused on the contact angle hys-
teresis.

Some of the theoretical models have succeeded in predict-
ing the drop spreading and oscillation in EW [8–10]. Usually
in these models, the linearized flow field is analyzed instead
of solving the full Navier-Stokes equations for the fluid. The
simplifications made in the theoretical analysis, such as the
drop of inertial term and small-parameter perturbation, will
limit the range of validity. Compared to the theoretical mod-
els, significantly fewer simulations have been conducted us-

ing computational fluid dynamics (CFD). A CFD simulation
was performed by Dong et al. [28], using FLUENT package
to study the oscillation of a drop on a substrate subjected to
lateral vibration. In this study, however, only the case of im-
mobile contact line was considered. A numerical simulation
of static and sliding drop with contact angle hysteresis was
performed by Dupont and Legendre [30]. An augmented im-
mersed interface method (IIM) was proposed by Li et al. [31]
to simulate liquid drop spreading and recoiling on a solid sub-
strate. The spreading of a droplet in EWOD under DC voltage
was simulated by Hong et al. [32], using CFD-ACE+ package
in conjunction with a dynamic contact line model. However,
drop oscillation under AC voltage was not considered in their
study.

As far as we know, there has been no CFD simulation of
drop oscillation induced by AC EW. In this paper, we present
such a numerical investigation based on an axisymmetric
model and the moving mesh interface tracking (MMIT) ap-
proach for solving the Navier-Stokes equations. The study
focuses on the resonance phenomenon and patterns of oscil-
lation at different forcing frequencies. The MMIT approach
is an ideal numerical technique for this study because of its
capability in providing a more precise location of the inter-
face.

The rest of this paper is arranged as follows. Sect. 1
presents the mathematical model and numerical method. The
validations of the code are given in sect. 2. Sect. 3 describes
the results on drop spreading in DC EW and shape oscillation
in AC EW. Finally, conclusions are drawn in sect. 4.

1 Mathematical model and numerical method

In this work, we consider the EW-driven spreading and os-
cillating of a liquid drop in air. Due to the large density
ratio of liquid to air in the system, it is justified to use the
one-phase free-surface model as a simplified one for the two-
phase (liquid-air) problem by neglecting the influence of one
phase (air). The droplets are aqueous salt solutions with a
radius of the order of 1 mm in most EW experiments. Since
the Bond number (which represents the comparison of the
strength of gravity and the surface tension) is small, the grav-
ity is also neglected. The movement of the droplet is primar-
ily determined by the surface tension and the electric field ap-
plied. From numerical point of view, we need to solve the un-
steady Navier-Stokes equations with a moving boundary (free
surface). We use a MMIT technique to locate the free sur-
face. Therefore, the computational grids follow the physical
interface. Although other methods (level-set method, VOF
method, etc.) have proven their high efficiency in simulating
fluid flows with moving interfaces, the choice of the moving
mesh approach here is motivated by two arguments. First, no
topological change is expected to happen in the problem we
are dealing with. Second, this technique provides a highly ac-
curate prediction of the free surface. A high precision on the
position of the interface is preferable in the moving contact
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line simulations.

1.1 Moving-mesh front tracking technique

The MMIT method was proposed by Perot and Nallapati [33]
to simulate 2D liquid sloshing and free-surface channel flow.
The method uses an exact projection procedure which re-
duces the number of unknowns as well as satisfying the con-
tinuity constraint without solving a pressure Poisson equa-
tion. This solution procedure was also analyzed and com-
pared with that in the classic projection methods by Chang et
al. [34]. Recently, with a further developed re-meshing capa-
bility, this method was used to study more complex problems,
such as droplet deformation, collision, jet pinching-off [35–
37], etc. A brief introduction to the numerical methodology
is given here to make the paper as self-contained as possible.
For a more complete description, please refer to the afore-
mentioned papers.

The integral form of the incompressible Navier-Stokes
equations in a moving and deforming control volume can be
written as:

d
dt

∫∫∫
CV

dv −
∫∫

CS
vm · nds = 0, (1)

d
dt

∫∫∫
CV
ρdv +

∫∫
CS
ρ(u − vm) · nds = 0, (2)

d
dt

∫∫∫
CV
ρudv +

∫∫
CS
ρu(u − vm) · nds = −

∫∫
CS

pnds

+

∫∫
CS
μ(∇u + ∇uT) · nds. (3)

Here u and p are the velocity and pressure; ρ the fluid den-
sity; μ the dynamic viscosity; vm the velocity of the moving
mesh. CV and CS are the control volume and control sur-
face respectively. n stands for a normal unit vector which
points out of the CS. Eq. (1) is the geometric conservation
law (GCL) which simply states that for each control volume,
the rate of change of volume must exactly balance the net vol-
ume swept due to the motion of its control surfaces. Eqs. (2)
and (3) are the continuity and momentum equation, respec-
tively.

The discrete form of the governing equations can be writ-
ten as:

Vn+1
c − Vn

c

Δt
=

cell-faces∑
f

Umesh
f , (4)

cell-faces∑
f

U f = 0, (5)

ρn+1
c un+1

c Vn+1
c − ρn

cun
cVn

c

Δt
+

cell-faces∑
f

ρ f u f (U f − Umesh
f )

= −Vn+1
c (∇p)n+1

+

cell-faces∑
f

1
2
μ[(∇u f · nA f )n+1+(∇u f · nA f )n] (6)

with the definitions of the velocity area integral, mesh veloc-
ity area integral and average cell velocity as:

U f =

∫∫
CS

u · nds, (7)

Umesh
f =

∫∫
CS

vm · nds, (8)

uc =
1
Vc

∫∫∫
CV

udv. (9)

Here Vc is the volume of a cell and Δt is the time step.
In this numerical scheme, uc is re-constructed from U f by

uc =
1
Vc

cell-faces∑
f

U f (x f − xc), (10)

where x f and xc are the position vectors for the centroids of
faces and cells, respectively (see Figure 1). Eq. (10) can be
written in a matrix notation as u = V−1

c RU, where R de-
notes the ‘face-to-cell’ operator. Conversely, an integration
(or ‘cell-to-face’) operator can be defined as:

W f = wc1 · (x f − xc1) − wc2 · (x f − xc2), (11)

where wc1 and wc2 are two vector quantities defined at cen-
troids of cells and W f is a scalar quantity defined at centroids
of faces. Eq. (11) can also be written in a matrix notation as
W = RTw, where RT is the transpose of R.

Eq. (4) is not solved in the computation but acts as a con-
straint on the mesh velocity vm. In order to be compatible
with GCL, the approach suggested by Perot and Nallapati
[33] is used to calculate the grid velocity vm. In this approach,
the mesh velocity is defined as a constant within the time in-
terval of Δt but varies linearly in space (see Figure 2). The
product of the face normal and face area is assumed to vary
linearly in time. Thus, each face can be approximated by

Umesh
f ≈ 1

2
(vmN1

+ vmN2
) · 1

2
(An+1

f nn+1
f + An

f nn
f ). (12)

Figure 1 Variable locations on a triangular mesh; u→ cell (�); U f , Umesh
f→ face (�); s→ node (•).
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Figure 2 The mesh moving velocity (for each face) which is compatible
with GCL.

Here A f is the face area and nf is the unit normal vector on
the face. vmN1 and vmN2 are the velocities of the two moving
nodes associated with the face.

In the MMIT method, the nodes on the free surface move
in a Lagrangian fashion and follow the physical motion of the
interface. The velocities on these nodes are computed by

dxN

dt
= vm,N =

1
Nc

node-cells∑
c

uc + (xN − xc) · ∇u|c, (13)

where Nc is the total number of cells associated with one
node. To avoid too dense (or sparse) distribution of mesh
points on some portions of the free surface, the tangential
component (component along the free surface) of the mesh
velocity above is modified in some cases, while the vertical
motion follows that of the local fluid strictly. The mesh mo-
tion in the interior region is chosen somewhat arbitrarily so
that the distortion of the computational cells is minimized.
For this purpose, the mesh smoothing technique based on the
spring analogy [33] has been implemented in this work.

In a matrix form, the discretized eqs. (5) and (6) can be
written as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{
1
Δt

Mn+1 − 1
2

(RT)n+1Ln+1

}
G

GT 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[

U f
p

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(RT)n+1 Vn

Vn+1

{
1
Δt

un
c −

1
2

Ln + Nn+1/2

}
+ fsurf

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (14)

where Mn+1 = (RT)n+1( ρ
Vn+1 )Rn+1 is the mass matrix; L is the

diffusion term and N is the nonlinear convection term. G and
GT are the gradient operator and its transpose respectively.
fsurf is an additional term on the free surface due to the sur-
face tension force, i.e., fsurf = Δp|free-surface. The computation
of surface tension will be further discussed in sect. 1.2.

In this method, solving a Poisson equation for the pressure
is not required. Instead, the stream-function s is defined at

nodes such that U f = Cs. Here C is the constructed null
space of the gradient operator G, such that GTC ≡ 0. By def-
inition, the discrete incompressibility is satisfied to machine
precision. By constructing the transpose of C and performing
such an operation on the momentum equation, the pressure
term can be eliminated and the following equation for s can
be obtained,

CT

{
1
Δt

Mn+1 − 1
2

RTLn+1

}
Csn+1

= CTRT Vn

Vn+1

{
1
Δt

un
c −

1
2

RTLn+1 + Nn+1/2

}
+ CT fsurf . (15)

This approach also reduces the number of unknowns in the
system when the mesh is tetrahedral or triangular, thereby
speeding solution times. The system in eq. (15) is symmetric
and can be solved using a Jacobi preconditioned conjugate
gradient solver.

A three-step second-order, low storage, Runge-Kutta
scheme is used for time advancement:

φ(1)
n+1 − φn = ΔtF(φn),

φ(2)
n+1 − φn = Δt

1
2
{F(φn) + F(φ(1)

n+1)}, (16)

φn+1 − φn = Δt
1
2
{F(φn) + F(φ(2)

n+1)}.

Due to the explicit treatment of the convective and surface
tension term, the time step is limited by the following stabil-
ity criteria [35]:

Δt �
CFL · h

U
, (17)

Δt � C ·
√
ρh3

2πγ
, (18)

where γ is the surface tension coefficient between the liquid
and the air; h is the grid size; U is the characteristic velocity;
CFL and C are two constants of order unity and both are set
to 0.5 in this work.

It should be noted that there are some differences in the
computational cells (control volumes) for the 2D and the ax-
isymmetric situations (see Figure 3). These differences must
be taken into consideration in the discretization procedure,
such as the calculation of face areas and cell volumes.

1.2 Boundary conditions and contact line model

There are three types of boundaries in the simulation of ax-
isymmetric droplet spreading: the free surface Γ1, the fluid-
solid interface Γ2 and the plane of symmetry Γ3 (see Figure
4). In addition, special treatment is needed to deal with the
motion of the contact line (node C) and that of the droplet
apex (node S). The boundary conditions are described as fol-
lows.
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Figure 3 Computational cells used in the finite volume method (FVM) for
(a) 2D and (b) axisymmetric situations.

Figure 4 An illustration of an axisymmetric droplet on a solid substrate.
Γ1 represents the free surface; Γ2 the fluid-solid boundary; Γ3 the plane of
symmetry. The two nodes that need special treatment are the contact line
(denoted by C) and the droplet apex (denoted by S).

On the free surface Γ1, we consider a constant pressure
boundary condition outside the free surface. Thus the surface
tension is treated as an additional term to the pressure of the
boundary (ghost) cell. This additional pressure is computed
by

Δp = γ(κ1 + κ2), (19)

where κ1 and κ2 are the principle curvatures of the liquid-air
interface. It is noted that the normal viscous stress term is
neglected in the pressure boundary condition (eq. (19)). This
is because the capillary number (which represents the relative
importance of viscous forces versus surface tension) is much
smaller than unity (10−4–10−5) in the present study.

For both two-dimensional and axisymmetric drops, κ1
is the curvature of a one-dimensional curve. For a two-
dimensional drop, κ2 is zero; while for an axisymmetric drop
(see Figure 4), κ2 is given by

κ2 =
cosα

r
, (20)

where r is the distance to the axis of revolution and α is the
angle between the normal vector on the curve and the (posi-
tive) horizontal direction.

The curvature κ1 of the one-dimensional curve is calcu-
lated on each segment of the free surface by using a curve-
fitting method very similar to that described in the paper by
Dai and Schmidt [36]. The only difference is that in the
present work, we fit a circle rather than a parabola to a se-
ries of points representing the interface.

In the solution procedure, s on the free surface are treated
as unknowns and solved (just as the internal nodes) to deter-
mine the normal velocity, while for the tangential velocity,
the zero-gradient condition is imposed at the “ghost” cells.
All the nodes on the free surface (excluding node C and node
S) move with the velocity computed by eq. (13) (The tangen-
tial component is modified in some cases).

The contact line (node C) is the place where the interfaces
of the two fluid phases intersect the solid substrate. In the
presence of moving contact lines, the no-slip boundary con-
dition will lead to a non-integrable force singularity. Several
different techniques have been proposed to remove this singu-
larity [38–41]. In this paper, the dynamic contact line model
developed by Ren et al. [41] is employed. In this model, the
mesh velocity of node C is prescribed as a function of the
contact angle:

ucl =
γ

βcl
(cos θ − cos θs), (21)

where ucl represents the contact line velocity (which is par-
allel to the solid surface); βcl is the friction coefficient in the
contact line region; θ is the dynamic contact angle and θs the
static contact angle.

In this contact line model, the friction coefficient is related
to a slip length by

βcl = μ/	s1. (22)

The slip length 	s1 is an important parameter which deter-
mines the spreading rate of a drop on a solid substrate. Its
effect will be demonstrated by the numerical tests in sect. 2.2.

The change of static contact angle due to the electric field
can be predicted by the Lippmann-Young equation

cos θs = cos θs0 +
εV(t)2

2γd
, (23)

where θs0 is Young’s angle; ε the permittivity; d the thickness
of the insulating layer; V the input electric voltage. Although
there is a contact angle saturation at large voltages, the ex-
periment and computation by Oh et al. [10] indicate that no
large deviation from the Lippmann-Young equation is found
if the voltage is less than 130 V.

On the solid surface Γ2, s is set to a constant to satisfy the
no-penetration condition, while for the tangential component
of velocity, the following Navier’s slip boundary condition is
applied to the ghost cells

u = ls2
∂u
∂y
, (24)

where ls2 is another slip length for the Γ2 region.
On the plane of symmetry Γ3, s is also set to a constant

to satisfy the no-penetration condition. This constant should
be the same as that on Γ2 due to the compatibility require-
ment. In addition, free-slip condition is applied to the tan-
gential component of velocity.
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The droplet apex (node S) is the place where the symmet-
ric plane intersects the free surface. For the mesh velocity of
node S, the horizontal component should be subtracted from
the velocity computed by eq. (13) due to the symmetry con-
dition.

2 Validations

Two validation tests are presented in this section. The first
test is the free oscillation of 2D inviscid drop. The numerical
results of oscillating frequencies are compared with the the-
oretical ones. The second test is the axisymmetric spreading
of viscous drop on a solid. In this case, in order to match the
experimental data, a parameter calibration of the slip length
	s1 is performed.

2.1 Free oscillation of 2D drop

To validate the solver in handling free surface problem, we
simulate the free oscillation of a two-dimensional drop. A
2D inviscid liquid drop is perturbed according to r = a[1 +
εcos(nθ)], where a is the mean radius; ε is a small ampli-
tude of perturbation and n the oscillation mode (see Figure
5). The computational meshes are also shown in this figure.
Approximately 2000 elements are used in the simulation. Lo-
cal mesh refinement is performed near the free surface and
coarser meshes are deployed in the interior region.

The theoretical oscillating frequency for mode n is given
by

ω =

√
n(n2 − 1)γ/ρa3. (25)

Figure 5 The drop oscillation patterns for four different modes: (a) n = 2;
(b) n = 3; (c) n = 4; (d) n = 5. The initial shape of the drop is perturbed
as r = a[1 + εcos(nθ)], where ε is set to 0.02 in the simulations and 0.05 for
good visualization effect in this figure.

Figure 6 compares the numerical oscillation periods (T =
2π/ω) with the theoretical ones, which shows an agreement
between them.

2.2 Spreading of axisymmetric drop on solid surface

The objective of this validation is to test the method in han-
dling moving contact lines. For this purpose we consider the
partial wetting of an axisymmetric droplet on a solid sub-
strate. The simulations are compared with the experiment
conducted by Lavi and Marmur [42] in which they studied
a Cyclooctanone drop partially wetting a coated wafer and
represented their experimental data by an exponential power
law.

In this simulation, the volume of the drop V is 1.75 μL.
The initial shape of the drop is a spherical crown with a con-
tact radius of R0 = 0.966 mm. The corresponding initial con-
tact angle is 75◦.

The physical properties of the fluid used in the simula-
tion (the same as those in the experiment) are listed in Table
1. As to the slip length 	s1, accurate data for realistic sub-
strates/liquids are not easily available. Theoretically speak-
ing, this parameter is introduced in the phenomenological
models to remove singularity. Its physical origin is of mi-
croscopic nature and its value can possibly be determined by
molecular dynamic (MD) simulations [40].

In the numerical simulations, we experimented with dif-
ferent values of 	s1 and the time histories of wetting area are
shown in Figure 7. The contact area is non-dimensionalized
using the equilibrium value of the wetting area A f . τ =

γ

μV1/3 t
is the dimensionless time, where V is the volume. From this
figure, it is seen that the rate of drop spreading is very sensi-
tive to this parameter. The slip length 	s1 can thus be tuned
to fit the experimental data. Our numerical tests show that
the simulation result obtained by setting 	s1 to be 0.0116R0

matches the experimental data reasonably well.

Figure 6 The oscillation periods of an inviscid 2D drop as a function of
oscillation mode number. The numerical results are compared with the an-
alytical solutions from eq. (25). In the simulations, the initial shape of the
drop is perturbed as r = a[1 + εcos(nθ)], where ε is set to 0.02.
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Table 1 Material properties of the liquid/substrate used in the experiment

and simulation of Cyclooctanone drop spreading

Density (kg/m3) Viscosity (Pa · s)

974 62.2 × 10−3

Surface tension (N/m) Static contact angle (◦)
4.1×10−2 54.2

Figure 7 The effect of slip length 	s1 on the spreading of the drop. The
time histories of wetting area obtained by using four different values of
	s1 (0.0085R0, 0.0116R0, 0.0284R0 and 0.256R0) are shown in the figure to-
gether with the experimental result from Lavi and Marmur [42]. The best fit
to the experimental result is obtained by using 	s1 = 0.0116R0.

The effect of the slip length 	s2 is also tested by varying 	s2

in the range of 0.0001R0–0.01R0 while keeping other param-
eters unchanged. The results of these simulations are shown
in Figure 8. It is seen that the spreading rate is not very sen-
sitive to the selection of 	s2 in the simulation. The reason for
the variation of 	s2 having little effect on the final results is
that the velocity gradient is very small on the substrate (ex-
cept near the contact line).

Based on the parameter sensitivity tests above, in the study
of AC EW that follows, the slip length 	s1 is first tuned by
using the experimental data of DC EW; while 	s2 is set to
0.001R0.

A mesh-independency test has been conducted by per-
forming simulations with four mesh resolutions (h =

0.09R0, 0.06R0, 0.03R0, respectively) while keeping other pa-
rameters unchange. The result of the test is shown in Figure
9. From this figure, it is seen that there are only minor dif-
ferences among the solutions. In the subsequent simulations,
the mesh size of h = 0.03R0 is used.

3 Results and discussion

In this section, the drop movement induced by EW is studied
numerically. We first perform a simulation of drop spread-
ing induced by DC EW. The slip length 	s1 is calibrated by
using the experimental data from Oh et al. [10]. The same

slip length is then used in the simulation of AC EW that fol-
lows. The mesh resolution used in the simulation is compara-
ble with that described in sect. 2. Careful tests are performed
to make sure that the solutions obtained are independent of
the mesh size and time step size used. We investigate the
response amplitudes of oscillating drop under the input elec-
tric frequency ranging from 10 to 230 Hz. The resonance
frequencies for different patterns (modes) of oscillation are
analyzed and compared with the experimental results from
ref. [9].

3.1 Drop spreading driven by DC EW

The experiment data from Oh et al. [10] on drop spreading by
DC EW is used to tune the parameter 	s1. In their experiment,
NaCl solution was used as the conducting liquid and a

Figure 8 The effect of slip length 	s2 on the spreading of drop. The
time histories of wetting area obtained by using four different values of 	s2

(0.0001R0, 0.001R0, and 0.01R0) are shown in the figure. All other parame-
ters are kept the same. The results indicate that the drop spreading rate is not
sensitive to this parameter.

Figure 9 The effect of mesh resolution on the spreading rate of the drop.
The time histories of wetting area obtained by using four meshes (h =
0.09R0, 0.06R0, 0.03R0, respectively) are shown in this figure. All other pa-
rameters are kept the same. It is seen that the mesh-independency is achieved
for the mesh resolution in this range.
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dielectric layer and a hydrophobic layer were coated on the
electrode plate. Some physical properties of the materials
used in the experiment (and the simulation) are listed in Table
2. Two different DC voltages, 80 V and 100 V were applied
in the experiment.

Figure 10 shows the contact radius as a function of time.
It is seen from this figure that a single slip length (	s1 =

0.00252R0) can be used to reproduce the experimental results
for two different electric voltages (80 V and 100 V) with ac-
ceptable accuracy. We strongly believe that the slip length 	s1

is one material property of the substrate/liquid which is not
sensitive to the electric voltages applied. Thus in all the sim-
ulations of AC EW that follow, the slip length of 0.00252R0

is used.

3.2 Drop oscillation driven by AC EW

In this subsection, we study the motion of an aqueous drop in
AC EW. The same material properties (those listed in Table
2) are used in the simulation. The input electric voltage is
prescribed as:

V(t) =
√

2Vrms sin 2π f t, (26)

where Vrms = 60 V and f varies in the range of 10–340 Hz.

3.2.1 Resonance frequencies and patterns of oscillation

The amplitude of drop oscillation, which is defined as the

Table 2 Material properties of the liquid/substrate used in the experiment

and simulation of drop spreading and oscillation in DC and AC EW

Density (kg/m3) Viscosity (Pa · s) Surface tension (N/m)

997 0.894 × 10−3 7.2×10−2

Young’s angle (◦) εd/d (F/m2) Volume (μL)

117 6.62×10−6 5.16

Figure 10 The time variation of contact radius of the drop in the spreading
due to 80 V and 100 V DC EW. The numerical results by using a slip length
of 	s1 = 0.00252R0 are plotted together with the experimental ones from
Oh et al. [10]. It is seen that the numerical simulations can reproduce the
experimental results with acceptable accuracy.

maximum vertical displacement of the drop’s apex, is plotted
as a function of the input frequency in Figure 11. As shown in
this figure, there is an overall trend that the amplitude of os-
cillation decreases with the increase of input frequency. The
local peak amplitudes found in the figure indicate the reso-
nance phenomena at certain frequencies (40, 117, 205 and
300 Hz). The patterns of drop motion at these four frequen-
cies correspond to the oscillation mode of n = 2, 4, 6, 8, re-
spectively (see Figure 12). It is interesting to see that the odd
modes do not show up in the amplitude-frequency diagram of
Figure 11. In the experiment by Oh et al. [9], the odd modes
higher than 3 are not observed and the origin of mode 3 is

Figure 11 The variation of drop oscillation amplitude with input AC fre-
quency. The rms voltage applied is 60 V. The slip length of 	s1 = 0.00252R0

is used in the simulation. The data obtained in the simulation (those denoted
as black squares) are connected by solid lines. Four resonance frequencies
(40, 117, 205 and 300 Hz) can be identified from the figure.

Figure 12 Drop oscillation patterns at the resonance frequencies (a) 40 Hz;
(b) 117 Hz; (c) 205 Hz; (d) 300 Hz. Each image is produced by superposing
the drop shapes at 25 equally divided time steps in one period. The small ar-
row plotted in the figure indicates the existence of one node. The oscillation
mode can be determined by counting the number of nodes in each image.
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conjectured to be the gravitational force acting on the drop.
This is consistent with the current numerical result since no
gravitational force is included in the simulation.

Table 3 compares the resonance frequencies predicted by
the numerical simulation with those by linear analysis and
from experiment in Oh et al. [9]. It is seen that for the lower
modes (n = 2 and 4), there are relatively larger discrepan-
cies (21% and 17%, respectively) between the numerical re-
sults and the experimental ones. The ones predicted by linear
analysis is marginally better than the numerical results. For
higher modes (n = 6 and 8), however, the numerical simu-
lation gives a better prediction. More specifically, the rela-
tive errors in the numerical prediction are 4.6% and 3.8% for
mode 6 and mode 8, respectively, while the errors in the pre-
diction by linear analysis are 7.9% and 11.6% for mode 6 and
mode 8, respectively. We conjecture that the origin of large
discrepancies at lower modes in the present simulation is that
the contact line model is inherently flawed. The reason for
the reduced discrepancies in higher modes is that the ampli-
tudes of oscillation of the contact line are much smaller. The
reason that the numerical simulation gives a better prediction
than the linear analysis for high modes is still not clear. One
possible reason is the viscous damping effect that is neglected
in the linear analysis and this effect becomes larger with the
increase of mode number n. However, after further investiga-
tion of the formulation for shape mode presented by Oh et al.
[9], we find that the modification of the resonance frequency
by the damping effect is less than 0.05 Hz for mode 8. We
thus believe that the reason for the improved prediction in
the present numerical simulation is the inclusion of the non-
linear (convective) term in Navier-Stokes equations, which is
neglected in the linear analysis.

The effect of drop volume on the resonance frequency is
investigated by studying drops of three different volumes,
4 μL, 8 μL and 12 μL. By applying the AC voltage with
Vrms = 25 V, the variation of resonance frequency for mode 2
with the increase of drop volume is shown in Figure 13. It is
seen that the smaller drop has a higher resonance frequency.
The same trend has been observed in the experiments by Sen
and Kim [8].

Figure 14 shows the variation of contact radius and contact
angle as a function of time at four different input frequencies.
From this figure, it is seen that around the resonance frequen-
cies (e.g., 40 and 117 Hz), the contact radius and contact an-
gle are in phase with each other; while away from the reso-
nance frequencies (e.g., 85 and 170 Hz), the contact radius
and contact angle are anti-phase. It is interesting to notice
that an opposite trend has been found in the experiment by
Sen and Kim [8]. The reason for the two conflicting results
is still not clear. If we compare the setups of the two exper-
iments by Sen and Kim [8] and by Oh et al. [9], the drop
volume, solid substrate and range of electric voltage are all
different.

As shown in Figure 14, due to the time-invariant part of
the input AC electric field, the static contact angle has been

Table 3 Comparisons among the resonance frequencies (Hz) from the

present numerical simulation, the linear analysis and the experimental data

from Oh et al. [9]

N Simulation Linear analysis Experiment

2 40 38.5 33

4 117 115.6 100

6 205 211.1 196

8 300 322.5 289

Figure 13 The variation of resonance frequency for mode 2 with drop vol-
ume. Drops of three different volumes, 4 μL, 8 μL, 12 μL, under 25 V AC
EW are studied. The slip length 	s1 is set to 0.00252R0. The data obtained in
the simulation (those denoted as black squares) are connected by solid lines.

lowered to 105◦. With the increase of input frequency, the
trend of variation in the oscillation amplitude of contact ra-
dius is very similar to that of the drop’s apex. A similar trend
of variation in the oscillation amplitude for contact angle is
also observed in this figure. For example, local peaks of os-
cillation amplitude for contact angle are reached around the
resonance frequencies (12◦ at 40 and 117 Hz), while nadir
values are encountered away from the resonance frequencies
(7◦ at 85 Hz and 4.5◦ at 170 Hz).

3.2.2 Inclusion of hysteresis into contact line model

In the previous subsection, the inaccuracy of the contact line
model is blamed for the large deviations between the mea-
sured and the predicted resonance frequencies for low-mode
oscillations. In this subsection, a (supposedly) more accurate
contact line model [10,43] which takes into account the con-
tact angle hysteresis is used and the result is compared with
that obtained by using the original model.

This more sophisticated model for moving contact line is
given by

ucl = 0, if θr < θ < θa;

γ(cos θ − cos θs) = βclucl+ (27)
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cpinsgn(ucl) − cpin

π/2
arctan

(
βcl

cpin/(π/2)
ucl

)
, otherwise.

The pinning force cpin represents the maximum force that
can resist the motion of the drop, whose value is deter-
mined from the contact angle hysteresis (|cos θs − cos θa| or
|cos θr − cos θs|), where θa is the advancing angle and θr is the
receding angle. A schematic representation of this model is
shown in Figure 15.

A preliminary experiment [10] on DC EW with the elec-
tric voltage in the range of 0–140 V showed that the contact
angle hysteresis θa − θr varied in between 5◦ and 20◦. In the

present study, a 10◦ contact angle hysteresis is used. In the
simulation, in order to properly apply the boundary condition
at the moving contact line, the transcendental equation (eq.
(27)) is solved at every time step. A bisection method is used
to find the root of this equation numerically. The criterion for
the iterations to stop is that the error is less than 10−8.

We first perform the simulation of drop spreading driven
by DC EW (same as that described in sect. 3.1), but with
the contact angle hysteresis. Figure 16 shows the variation
of contact radius with time. It is seen from the figure that
by including a hysteresis of 10◦ and using a slip length of
	s1 = 0.00361R0, there is a perfect match between the numer-

Figure 14 The variation of contact radius and contact angle as a function of time at four different input frequencies: (a) 40 Hz (around the resonance
frequency for mode 2); (b) 85 Hz (away from resonance frequencies); (c) 117 Hz (around the resonance frequency for mode 4; (d) 170 Hz (away from
resonance frequencies).

Figure 15 A schematic representation of the contact line model in which
the contact angle hysteresis is included. The solid line denotes the more
sophisticated model and the dashed line denotes the original model without
hysteresis. Please note that the solid line asymptotes towards the dashed line.

Figure 16 The variation of contact radius as a function of time for a 5 μL
drop in the spreading due to 80 V AC EW and the comparison of results
with and without contact angle hysteresis. The numerical result by including
a 10◦ contact angle hysteresis and using a slip length of 	s1 = 0.00361R0

perfectly matches the experimental one.
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ical and the experimental results. Compared with that ob-
tained without including the hysteresis (the one obtained in
sect. 3.1), the discrepancy between the numerical and the ex-
perimental results is further reduced by using the new model.
Thus, in the simulation of AC EW that follows, the slip length
of 0.00361R0 is used in conjunction with the contact angle
hysteresis of 10◦.

Figure 17 shows the time history of contact radius and con-
tact angle for the input frequency of 37 Hz, with the inclusion
of hysteresis. Compared with Figure 14, the effect of hys-
teresis is clearly seen in the form of stops (sticks) in the time
history of contact radius and the multiperiodic nature of the
time history of contact angle. Similar features have also been
observed in the experiment by Sen and Kim [8].

The amplitude-frequency diagram with the inclusion of
contact angle hysteresis is shown in Figure 18. It is seen that
all resonance frequencies are shifted towards the lower side
when the contact angle hysteresis is included into the model.
However, the trend of variation of the oscillation amplitude
(at the resonance frequencies) with the inclusion of hystere-
sis is quite complicated. For modes 2, 4 and 6, the oscilla-
tion amplitude is reduced, while for mode 8, the amplitude is
enhanced if compared with the one without hysteresis. The
increase of oscillation amplitudes due to contact angle hys-
teresis is against our intuition since the hysteresis is normally
considered as an extra friction on the contact line.

The predicted resonance frequencies using the sophisti-
cated model are summarized in Table 4, where the compar-
isons with the results from the original model and from the
experiment are made. It is seen that the inclusion of hystere-
sis significantly improves the prediction. The relative error
in the predicted resonance frequency has been reduced from
21% to 12% for mode 2; from 17% to 11% for mode 4. For
the higher modes (6 and 8), there is a perfect match between
the predicted values and the ones measured in the experiment.

4 Conclusions

The drop oscillation driven by AC EW is investigated numeri-
cally by using an axisymmetric model in conjunction with the
MMIT method and the contact line model proposed by Ren et
al. [41]. We studied the patterns of drop oscillation at the AC
electric voltage of Vrms = 60 V with the input frequency rang-
ing from 10 to 330 Hz. When we compare the experimental
results, a reasonably good prediction of resonance frequen-
cies for different modes has been achieved. The discrepancy
between the experimental result and the present simulation
can be further reduced by using a more sophisticated contact
line model which includes the contact angle hysteresis.

There are two important dimensionless parameters which
characterize the relative importance of inertial, viscous and
surface tension forces in this problem: the Reynolds number
(Re = (ρuclR0)/μ) and the Weber number (We = (ρu2

clR0)/γ).
In the present study, the Re number is in the range of 10–100
and the We number is of the order of 10−2. The implications

Figure 17 The variations of contact radius and contact angle as a function
of time at the input frequency of 37 Hz. The simulation is performed by us-
ing the contact line model which includes the contact angle hysteresis of 10◦.
Effect of the contact angle hysteresis can be clearly seen in the figure in the
form of stops (sticks) in the time history of contact radius and multiperiodic
feature in the time variation of contact angle.

Figure 18 The amplitude-frequency diagram with and without the inclu-
sion of contact angle hysteresis. By including the contact angle hysteresis,
the resonance frequencies for all modes are shifted to the lower side. The
oscillation amplitude is reduced for modes 2, 4, 6; but enhanced for mode 8.

Table 4 Comparisons among the resonance frequencies (Hz) predicted by

using the more sophisticated model and the original model and the ones from

the experiment by Oh et al. [9]

N No hysteresis With 10◦ hysteresis Experiment

2 40 37 33

4 117 111 100

6 205 196 196

8 300 289 289

of this parameter range are as follows. First, in this range of
Re number, the validity of linearized models is dubious. Sec-
ond, this type of flow is clearly dominated by surface tension.

To achieve a prediction which can be used to aid the design
of EW-based devices, an accurate value of the slip length in
the contact line model is the key to success. For realistic
liquid/substrate, this parameter is not easily available and it
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can only be determined through a calibration process using
some experimental data. In the present work, this parameter
is tuned using the data from the experiment of drop spread-
ing driven by DC EW. A noticeable improvement has been
made in the prediction of resonance frequencies by includ-
ing the contact angle hysteresis into the model. Note that the
prediction error can be further reduced by using a more ac-
curate value of contact angle hysteresis and more carefully
designed calibration process (such as some optimization al-
gorithms) other than the crude trial and error method used
here. Also, it should be noted that other dynamic models for
moving contact line [39,44–47] can be readily incorporated
into our numerical method.
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