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The overall steady-state energy balance with two phases in a flow domain requires that
the change in energy of the domain is equal to the difference between the total energy
entering the domain and that leaving the domain. From the condition, the integral ther-
mal flux across the surface is studied for a steady thermocapillary drop migration in a
flow field with uniform temperature gradient at small and large Marangoni (Reynolds)
numbers. The drop is assumed to have only a slight axisymmetric deformation from a
sphere. It is identified that a conservative/nonconservative integral thermal flux across
the surface in the steady thermocapillary drop migration at small/large Marangoni
(Reynolds) numbers. The conservative flux confirms the assumption of quasi-steady
state in the thermocapillary drop migration at small Marangoni (Reynolds) numbers.
The nonconservative flux may well result from the invalid assumption of quasi-steady
state, which indicates that the thermocapillary drop migration at large Marangoni
(Reynolds) numbers cannot reach steady state and is thus a unsteady process.
C© 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4792476]

I. INTRODUCTION

The motion of a drop or bubble in the microgravity environment embedded in an immiscible
mother liquid with a uniform temperature gradient is termed as thermocapillary migration of the
drop or bubble, which is a very interesting topic for both fundamental theory and engineering
application.1 Young et al. (YGB) carried out an initial study in this area, called as YGB model,2

and gave an analytical prediction on its migration speed in the limit case of zero Reynolds(Re)
and zero Marangoni(Ma) numbers, and a series of theoretical analyses, numerical simulations and
experimental investigations on this subject were carried out ever since. Subramanian3 and Crespo
et al.4 extended the YGB results to small Ma numbers and obtained analytical results in series
expansion of Ma numbers. With consideration of thermal boundary layer, the analytical results for
migration speed of a bubble at large Ma(Re) numbers5, 6 agree well with the corresponding results
of steady state numerical simulations4, 7, 8 and experimental studies.9

Although the thermocapillary bubble migration processes are understood very well, the behavior
of thermocapillary drop migration appears rather complicated due to the transfer of momentum and
energy though the interface of two-phase fluids. For the migration of a drop, on the one hand,
the experimental result of the migration speed at small drops 11 ± 1.5 μm in diameter obtained
by Braun et al.10 agrees with the YGB model. On the other hand, another experiment for larger
drops with diameters ranging from 0.69 to 2.38 mm performed by Wozniak11 shows that the
migration velocities are smaller than those given by the YGB linear prediction. Afterward more
attention has been paid to thermocapillary drop migration for large Ma(Re) numbers. Hadland
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et al.9 carried out experiments based on Fluorinert liquid FC-75 and 10cst silicone oil as the drop
phase and continuous phase during the NASA Space Shuttle mission with the maximal Ma(Re)
number up to 3300(49.1). It was shown that the drop migration speed nondimensionalized by the
YGB velocity decreased as the Ma number increased and the global migration process exhibited an
unsteady nature. To further observe the variation trend of drop migration velocity with increasing
Ma number, Xie et al.12 adopted Fluorinert liquid FC-75 and 5cst silicone oil as the drop and the
continuous phases, respectively, and performed experiments in the Chinese spacecraft ShenZhou-4.
The experimental investigation was completed for several ranges of large Ma(Re) numbers, where the
drop did not reach the steady state in the migration process, and the maximal Ma(Re) number reached
5525(302.6). It was also observed that the non-dimensional drop migration velocity decreased as
the Ma numbers increased. However, from the theoretical analysis for the large Ma(Re) numbers,
it was reported13 that the migration speed of a drop increased with increasing Ma number, which
is in qualitative agreement with the corresponding numerical simulation.14 Both the theoretical
analysis and numerical simulation are based on the assumptions of quasi-steady state and non-
deformation of the drop. The above qualitative difference between experimental observations and
theoretical/numerical results may result from the quasi-steady state or non-deformation assumptions
of the drop in the model. Moreover, Herrmann et al.15 and Wu et al.16 adopted respectively the
numerical methods to investigate the thermocapillary motion of deformable and non-deformable
drops and indicated that the assumption of quasi-steady state was not valid for large Ma numbers.
Therefore, the thermocapillary drop migration at large Ma(Re) numbers is still a topic to be further
studied with emphasis laid on its physical mechanism.

To address the discrepancies between experimental and theoretical/numerical results, in this
paper, our effects are focused on the assumption of quasi-steady state in the process of thermocapillary
drop migration. The drop may have only a slight axisymmetric deformation from a sphere. By using
the asymptotic expansion method, we investigate the continuity of integral thermal flux across the
surface based on the overall steady-state energy balance in the flow domain, and analyze the existence
of quasi-steady migration of the drop at zero, small and large Ma(Re) numbers.

II. MODELS AND QUASI-STEADY STATE ASSUMPTION

Consider the thermocapillary migration of a spherical drop of radius R0, density γ ρ, dynamic
viscosity αμ, thermal conductivity βk, and thermal diffusivity λκ in a continuous phase fluid of
infinite extent with density ρ, dynamic viscosity μ, thermal conductivity k, and thermal diffusivity κ

under a uniform temperature gradient G. The change rate of the interfacial tension between the drop
and the continuous phase fluid with temperature is denoted by σ T. Axisymmetric energy equations
for the continuous phase and for the fluid in the drop in a laboratory coordinate system denoted by
a bar are written as follows:

∂ T̄
∂t + v̄∇̄ T̄ = κ
̄T̄ ,

∂ T̄ ′
∂t + v̄′∇̄ T̄ ′ = λκ
̄T̄ ′,

(1)

where v̄ and T̄ are velocity and temperature, and a prime denotes quantities inside the drop. The
solutions of Eq. (1) have to satisfy the boundary conditions at infinity

T̄∞ → T0 + Gz̄, (2)

where T0 is the undisturbed temperature of the continuous phase and the boundary conditions at the
interface (r̄b, z̄b) of the two fluids

T̄ (r̄b, z̄b, t) = T̄ ′(r̄b, z̄b, t),

∂ T̄
∂n (r̄b, z̄b, t) = β ∂ T̄ ′

∂n (r̄b, z̄b, t),
(3)

where n is a unit vector normal to the interface. In what follows, the undisturbed temperature T0 is
reduced for simplicity.
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In general, the surface tension decreases with the increasing of the local temperature. For a
temperature field with its gradient in the z̄ direction, the generated surface tension force is a net
force along the surface and the droplet starts to move towards the warm side under the action of
net force. When the net force acting on the drop at the flow direction is zero, the thermocapillary
drop migration reaches a stable process. However, due to the variation of physical parameters with
the ambient temperature, the migration process may not reach stable state. Only when the migration
is sufficiently slow that the order of relevant time scale for the transport process to generate stable
velocity and temperature fields is smaller than that for the drop to move an appreciable distance,
the assumption of the quasi-steady state is valid. It means that after experiencing an initial unstable
migration process, the drop migration may reach a steady state at the time t0 and the position r0

= z0k, i.e., migrating with a constant drop migration speed V∞. Using the coordinate transformation
from the laboratory coordinate system to a coordinate system moving with the drop velocity V∞,

r̄ = r + r0 + V∞(t − t0)k, v̄(r̄, t) = v(r) + V∞k, T̄ (r̄, t) = T (r) + G[z0 + V∞(t − t0)],

v̄′(r̄, t) = v′(r) + V∞k, T̄ ′(r̄, t) = T ′(r) + G[z0 + V∞(t − t0)],
(4)

the problem (1) can be formulated as

GV∞ + v∇T = κ
T,

GV∞ + v′∇T ′ = λκ
T ′.
(5)

The details of the transformation are given in the Appendix. By taking the radius of the drop R0,
the velocity v0 = −σT G R0/μ and GR0 as the reference quantities to make the coordinates, velocity
and temperature dimensionless, energy equations (5) combined with the continuous equations can
be written in the following dimensionless form in a spherical coordinate system (r, θ ):

V∞ + ∇ · (vT ) = 1

Ma

T, (6)

V∞ + ∇ · (v′T ′) = λ

Ma

T ′, (7)

where v = (u, v) and Marangoni number is defined as

Ma = v0 R0

κ
. (8)

By using the transformation (4), the boundary conditions (2) and (3) can be respectively written in
the form of dimensionless as follows:

T → r cos θ, as r → ∞ (9)

at places far away from the drop and

T (r0, θ ) = T ′(r0, θ ), (10)

∂T

∂n
(r0, θ ) = β

∂T ′

∂n
(r0, θ ) (11)

at the interface of the two fluids. Thus, once the drop migration reaches a steady state, the above
problem in the laboratory coordinate system can be described by the steady energy equations (6) and
(7) with the boundary conditions (9)–(11) in the coordinate system moving with the drop velocity.
This implies the overall steady-state energy balance with two phases in the flow domain in the
co-moving frame of reference.

III. INTEGRAL THERMAL FLUX ACROSS THE DROP SURFACE UNDER
THE QUASI-STEADY STATE ASSUMPTION

In general, for a two-phase flow, as is the case in the present problem, if the quasi-steady
state assumption is valid, the solutions of the problem not only satisfy the differential energy
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equations with boundary conditions, but also preserve the overall steady-state energy balance with
two phases in the flow domain under integral boundary conditions. However, if the quasi-steady
state assumption is invalid, the overall steady-state energy with two phases in the flow domain under
integral boundary conditions is not balanced. This means the solutions of the problem also cannot
satisfy the differential energy equations with boundary conditions. Thus, to confirm whether the
thermocapillary drop migrations at different Ma(Re) numbers are always in the quasi-steady state
processes, we may analyze the overall steady-state energy of two phases in the flow domain in the
co-moving frame of reference under integral boundary conditions.

For the thermocapillary drop migration, to get the overall steady-state energy transport of two
phases in the flow domain in the co-moving frame of reference, we have to integrate Eqs. (6) and
(7) in the continuous phase domain (r ∈ [r0, r∞], θ ∈ [0, π ]) and within the drop region (r ∈ [0, r0],
θ ∈ [0, π ]) as ∫ ∞

r0

∫ π

0
V∞dV +

∫ ∞

r0

∫ π

0
∇ · (vT )dV = 1

Ma

∫ ∞

r0

∫ π

0

T dV, (12)

∫ r0

0

∫ π

0
V∞dV +

∫ r0

0

∫ π

0
∇ · (v′T ′)dV = λ

Ma

∫ r0

0

∫ π

0

T ′dV, (13)

and Eq. (10) and Eq. (11) at the drop surface (r = r0, θ ∈ [0, π ]) as∫ π

0
T (r0, θ )d S =

∫ π

0
T ′(r0, θ )d S, (14)

∫ π

0

∂T

∂n
(r0, θ )d S = β

∫ π

0

∂T ′

∂n
(r0, θ )d S, (15)

where dV = r2 sin θdrdθ and dS = r2sin θdθ . And then transforming the volume integration of
Eq. (12) and Eq. (13) in the flow domains to the surface integration over the droplet surface and the
surface at infinity in terms of the Gaussian formula, we have

2V∞
3

(r3
∞ − 1

2

∫ π

0
r3

0 sin θdθ ) +
∮

(uT )|r∞d S −
∮

(uT )|r0 d S = 1

Ma
(
∮

∂T

∂n
|r∞d S −

∮
∂T

∂n
|r0 d S)

(16)
and

V∞
3

∫ π

0
r3

0 sin θdθ +
∮

(u′T ′)|r0 d S = λ

Ma

∮
∂T ′

∂n
|r0 d S. (17)

Using the zero normal velocity boundary condition at the interface, we can derive∫ π

0
∂T
∂n |r0r

2
0 sin θdθ = r2

∞
∫ π

0
∂T
∂r |r∞ sin θdθ − Mar2

∞
∫ π

0 (uT )|r∞ sin θdθ

− 2V∞ Ma
3 (r3

∞ − 1
2

∫ π

0 r3
0 sin θdθ ) (18)

and ∫ π

0

∂T ′

∂n
|r0r

2
0 sin θdθ = V∞Ma

3λ

∫ π

0
r3

0 sin θdθ, (19)

where the outer normal vector at infinity is the radial coordinate axis. Thus, Eq. (18) and Eq. (19)
display integral thermal fluxes across the drop surface obtained from the overall energy transport.
We assume that the drop has only a slight axisymmetric deformation from a sphere

r0 = 1 + f (θ ), f � 1. (20)

For this case, Eq. (18) and Eq. (19) may be written as∫ π

0
∂T
∂n |r0r

2
0 sin θdθ = r∞2

∫ π

0
∂T
∂r |r∞ sin θdθ − Mar2

∞
∫ π

0 (uT )|r∞ sin θdθ

− 2V∞ Ma
3 [r3

∞ − 1 − 3
2

∫ π

0 f sin θdθ + O( f 2)] (21)
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and ∫ π

0

∂T ′

∂n
|r0r

2
0 sin θdθ = V∞Ma

3λ
[2 + 3

∫ π

0
f sin θdθ + O( f 2)]. (22)

To next-to-leading (first) order in f, Eq. (21) and Eq. (22) may finally be written as
∫ π

0
∂T
∂n |r0r

2
0 sin θdθ = r2

∞
∫ π

0
∂T
∂r |r∞ sin θdθ − Mar2

∞
∫ π

0 (uT )|r∞ sin θdθ

− 2V∞ Ma
3 (r3

∞ − 1 − 3
2

∫ π

0 f sin θdθ ) (23)

and ∫ π

0

∂T ′

∂n
|r0r

2
0 sin θdθ = V∞Ma

3λ
(2 + 3

∫ π

0
f sin θdθ ). (24)

From Eq. (14) and Eq. (15), we have integral boundary conditions across the drop surface
∫ π

0
T |r0r

2
0 sin θdθ =

∫ π

0
T ′|r0r

2
0 sin θdθ, (25)

∫ π

0

∂T

∂n
|r0r

2
0 sin θdθ = β

∫ π

0

∂T ′

∂n
|r0r

2
0 sin θdθ. (26)

Thus, for a quasi-steady state thermocapillary migration of the drop with the slight deformation from
the sphere, the overall steady-state energy balance of two phases in the flow domain in the co-moving
frame of reference requires that the integral thermal fluxes (23) and (24) at the drop surface obtained
from the overall energy transport are self-consistent with the integral boundary condition (26). In
the following, we will investigate the self-consistency for the different Ma(Re) numbers.

A. Conservative integral thermal flux across the drop surface at zero Ma (Re) numbers

In the case of zero Re (Re = v0 R0
ν

) and zero Ma numbers, i.e., the YGB model, scaled velocity
and temperature fields of the continuous phase and within the drop in Eq. (6) and Eq. (7) may be
described2, 17 as

u = −V∞ cos θ (1 − 1
r3 ),

v = V∞ sin θ (1 + 1
2r3 ),

T = (r + 1−β

2+β
1
r2 ) cos θ,

(27)

and

u′ = 3
2 V∞ cos θ (1 − r2),

v′ = − 3
2 V∞ sin θ (1 − 2r2),

T ′ = 3
2+β

r cos θ.

(28)

Since Ma = 0, using the temperature field in (27), we can derive the following equality from
Eq. (23) and Eq. (24)

∫ π

0

∂T

∂n
|r0r

2
0 sin θdθ = β

∫ π

0

∂T ′

∂n
|r0r

2
0 sin θdθ = 0. (29)

Thus, under the quasi-steady state assumption, the integral thermal flux across the drop surface
at zero Re and zero Ma numbers is conservative, which corresponds to the integral thermal flux
boundary condition (26). This implies the overall steady-state energy balance of two phases in the
flow domain in the co-moving frame of reference. The quasi-steady state assumption is valid.
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B. Conservative integral thermal flux across the drop surface at small Ma (Re) numbers

For small Re number, the velocity fields in Eq. (6) and Eq. (7) may be described by the creeping
flow. The general solutions of the scaled flow field in the continuous phase and within the drop are
given by18, 19 as

u = −V∞ cos θ (1 − 1
r3 ) − (1 − 1

r2 )
∑∞

n=3 Dnr−n+1 Pn−1(cos θ ),

v = V∞ sin θ (1 + 1
2r3 ) + ∑∞

n=3 Dn(−n+3
rn−1 − −n+1

rn+1 )C−1/2
n (cos θ )/ sin θ, (30)

and

u′ = 3
2 V∞ cos θ (1 − r2) + ( 1

r2 − 1)
∑∞

n=3 Dnrn Pn−1(cos θ ),

v′ = − 3
2 V∞ sin θ (1 − 2r2) − ∑∞

n=3 Dn[nrn−2 − (n + 2)rn]C−1/2
n (cos θ )/ sin θ,

(31)

where C−1/2
n (cos θ ) is the Gegenbauer polynomial of order n and degree − 1

2 , Pn − 1(cos θ ) is the
Legendre polynomial of order n. Dn is given as

Dn = −n(n − 1)

4(1 + α)

∫ π

0
C−1/2

n (cos θ )
∂T

∂θ
dθ. (32)

And scaled temperature fields in the continuous phase and within the drop at the small Ma numbers
are given in19 as

T = (r + 1−β

2+β
1
r2 ) cos θ

+ 1
3λ(2+β)2(2+3α) [

δ1
r + δ2

r4 + P2(cos θ )( δ3
r + δ4

r3 + 2δ2
r4 )]ε + O(ε2),

T ′ = 3
2+β

r cos θ

+ 1
λ(2+β)2(2+3α) [δ

′
1 + δ′

2r2 − 3
4r4 + P2(cos θ )(δ′

4r2 + 3
7r4)]ε + O(ε2),

(33)

where δ1 = 2[λ(1 − β) − β(2 + β)], δ2 = − λ
2 (1 − β), δ3 = − λ(4 − β), δ4 = 1

7(3+2β) [7λ(8

+ 5β − 4β2) − 18β], δ′
1 = 1

12 [6λ(1 − β) − (8β2 + 20β + 17)], δ′
2 = 1

6 (2β + 13), δ′
4 = − 1

21(3+2β)
[7λ(7 − β) + 9(3 + 4β)] and the small parameter is ε = Ma. Then, using the temperature field in
(33), we simplify Eq. (23) and Eq. (24) to∫ π

0
∂T
∂n |r0r

2
0 sin θdθ = − 2

3λ(2+β)2(2+3α) (δ1 + 4δ2
r3∞

)ε + 2(1−β)
3(2+β) (1 − 1

r3∞
)V∞ε

+ V∞
∫ π

0 f sin θdθε + O(ε2)

≈ − 2δ1
3λ(2+β)2(2+3α)ε + 2(1−β)

3(2+β) V∞ε + V∞
∫ π

0 f sin θdθε + O(ε2)

= [ 2β

3λ
V 0

∞ + 2(1−β)
3(2+β) (V∞ − V 0

∞) + V∞
∫ π

0 f sin θdθ ]ε + O(ε2) (34)

and ∫ π

0

∂T ′

∂n
|r0r

2
0 sin θdθ = V∞

3λ
(2 + 3

∫ π

0
f sin θdθ )ε, (35)

where V 0
∞ = 2

(2+β)(2+3α) is the migration velocity of the droplet at zero Re and zero Ma numbers.
From Eq. (34) and Eq. (35), we have∫ π

0 ( ∂T
∂n |r0 − β ∂T ′

∂n |r0 )r2
0 sin θdθ = 2

3 ( β

λ
− 1−β

2+β
)(V 0

∞ − V∞)ε

+ (1 − β

λ
)V∞

∫ π

0 f sin θdθε + O(ε2). (36)

Since ε → 0(V∞ → V 0
∞) and f � 1, we have

∫ π

0

∂T

∂n
|r0r

2
0 sin θdθ ≈ β

∫ π

0

∂T ′

∂n
|r0r

2
0 sin θdθ. (37)
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Thus, under the quasi-steady state assumption, the integral thermal flux across the drop surface at
small Re and small Ma numbers is conservative, which corresponds to the thermal flux boundary
condition (26). This implies the overall steady-state energy balance of two phases in the flow domain
in the co-moving frame of reference. The quasi-steady state assumption is valid.

C. Nonconservative integral thermal flux across the drop surface
at large Ma (Re) numbers

For large Re number, the velocity fields in Eq. (6) and Eq. (7) can be described by potential
flows and boundary layer flows.20 The scaled inviscid velocity field in the continuous phase and
Hill’s spherical vortex within the drop can be respectively written as

u = −V∞ cos θ (1 − 1
r3 ),

v = V∞ sin θ (1 + 1
2r3 )

(38)

and

u′ = 3V∞
2 cos θ (1 − r2),

v′ = − 3V∞
2 sin θ (1 − 2r2).

(39)

Since Eq. (9) only gives the primary approximation of the temperature field at infinity, we have to
obtain an asymptotic expansion of T for the integration of Eq. (23). To determine the asymptotic
behavior of T at r 	 1, the analytical result of outer temperature field in the continuous phase at the
small parameter ε = 1/

√
V∞Ma is given6 as

T = r cos θ +
∫ r

∞
(v sin θ − u cos θ − 1)/u|�dr̃ + o(1), (40)

where �[= 1
2 sin2 θ (r2 − 1/r )] is the streamfunction of the continuous phase and the symbol “ + ”

before the integral is determined to preserve the monotonously increasing trend of T(r, 0) with
r( > 1) in the continuous phase. Using Eq. (38), it can be derived as

T = r cos θ +
∫ r

∞

1

r̃3 − 1

1 − 3 sin2 θ

2 cos θ
|�dr̃ + o(1). (41)

Replacing θ by � in Eq. (41), we have

T = r cos θ +
∫ ∞

r

1

r̃3 − 1

3�/(r̃2 − 1/r̃ ) − 1

±
√

1 − 2�/(r̃2 − 1/r̃ )
|�dr̃ + o(1), (42)

where the symbol “ ± ” in the integral depends on the value of θ (the symbol “ + ”/“ − ” corresponds
to θ ∈ [0, π /2)/[π /2, π )). At r 	 1, the result (42) can be expressed as

T ≈ r cos θ + ∫ ∞
r

1
r̃3

3�/r̃2−1

±
√

1−2�/r̃2
|�dr̃ + o(1)

= r cos θ − 1
2r2 cos θ + o(1), (43)

where � ≈ 1
2 sin2 θr2.

Using the temperature field at the infinity in (43), we can simplify Eq. (23) and Eq. (24) and
derive ∫ π

0
∂T
∂n |r0r

2
0 sin θdθ = − 1

3ε2 (1 − 1
r3∞

) + 1
ε2

∫ π

0 f sin θdθ + o( 1
ε2 )

≈ − 1
3ε2 (1 − 3

∫ π

0 f sin θdθ ) (44)

and ∫ π

0

∂T ′

∂n
|r0r

2
0 sin θdθ = 1

3λε2
(2 + 3

∫ π

0
f sin θdθ ). (45)
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From Eq. (44) and Eq. (45), we have∫ π

0 (β ∂T ′
∂n |r0 − ∂T

∂n |r0 )r2
0 sin θdθ = 1

3ε2 (1 + 2β

λ
) + ( β

λ
− 1) 1

ε2

∫ π

0 f sin θdθ

= 1
3 (1 + 2β

λ
)V∞Ma + ( β

λ
− 1)V∞Ma

∫ π

0 f sin θdθ. (46)

Since both β and λ are positive and f � 1, we have

β

∫ π

0

∂T ′

∂n
|r0r

2
0 sin θdθ 	

∫ π

0

∂T

∂n
|r0r

2
0 sin θdθ. (47)

So, if the overall steady-state energy with two phases in the flow domain under integral boundary
conditions is balanced, Eq. (47) should be reduced to Eq. (26), which seems impossible. It is termed
as a nonconservative integral thermal flux across the surface for the steady thermocapillary drop
migration at large Ma(Re) numbers. This implies the overall steady-state energy unbalance of two
phases in the flow domain in the co-moving frame of reference and indicates that the thermocapillary
drop migration at large Ma(Re) numbers cannot reach steady state. Thus, it is clear that the invalid
assumption of quasi-steady state for the thermocapillary drop migration process is a reasonable
explanation for the nonconservative integral thermal flux across the drop surface.

To analyze the thermal flux near the boundary, we write the integrals of Eq. (44) and Eq. (45)
in the discretization scheme as follows

∫ π

0

∂T

∂n
|r0r

2
0 sin θdθ =

N∑
i=1

∂T

∂n
(r0, θi )r

2
0 sin θi
θ < 0 (48)

and
∫ π

0

∂T ′

∂n
|r0r

2
0 sin θdθ =

N∑
i=1

∂T ′

∂n
(r0, θi )r

2
0 sin θi
θ > 0, (49)

where θ i ∈ [0, π ] and 
θ = π /N. Since r2
0 sin θi ≥ 0, we reach a conclusion that there must be some

interface points θ i ∈ [0, π ] where the following equation holds

∂T

∂n
(r0, θi ) < 0 <

∂T ′

∂n
(r0, θi ), (50)

or some interface points θ i and θ j ∈ [0, π ] where the following equations hold

0 < ∂T
∂n (r0, θi ) < ∂T ′

∂n (r0, θi ),

∂T
∂n (r0, θ j ) < ∂T ′

∂n (r0, θ j ) < 0.
(51)

Physically, this means that near these points θ i the thermal energy is transferred from the interface
to outside (the surrounding fluid) as well as from the interface to inside (the droplet) or near these
points θ i/θ j the transference of thermal energy from outside/the interface to the interface/outside
is weaker/stronger than that from the interface/inside to inside/the interface. On the one hand, if
Eq. (50) can satisfy the integral thermal flux boundary condition in Eq. (26), thermal sources inside
the interface will be introduced to balance the transference of thermal energy. On the other hand, if
Eq. (51) can satisfy the integral thermal flux boundary condition in Eq. (26), thermal sinks inside
the interface or thermal sources in the droplet will be introduced to decrease the transference of
thermal energy from the interface to outside or to increase the transference of thermal energy from
inside to the interface. Since there is absolutely no thermal sources or sinks inside the interface or
thermal sources in the droplet, the above transport processes of thermal energy near the interface
seem impossible. It means that the thermal flux across the drop surface is nonconservative.

IV. CONCLUSIONS

In summary, from the condition of overall steady-state energy balance with two phases in a flow
domain, we have identified a conservative/nonconservative integral thermal flux across the surface
for a steady thermocapillary migration of a drop with a slight axisymmetric deformation from a
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sphere in a uniform temperature gradient at small/large Ma(Re) numbers. The conservative integral
thermal flux confirms the assumption of quasi-steady state in thermocapillary drop migration at
small Ma(Re) numbers. The nonconservative integral thermal flux may well result from the invalid
assumption of quasi-steady state, which indicates that the thermocapillary drop migration at large
Ma(Re) numbers cannot reach steady state and is thus a unsteady process.
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APPENDIX: ENERGY EQUATIONS UNDER TRANSFORMATION BETWEEN TWO INERTIA
FRAMES

Based on the transformation between two cylindrical coordinate systems (r̄ , z̄) and (r, z) of
Eq. (4), we have

∇̄|t = ∂
∂ r̄ |t i + ∂

∂ z̄ |t k = ∂
∂r |t i + ∂

∂z |t k = ∇|t ,

̄|t = 1

r̄ [ ∂
∂ r̄ (r̄ ∂

∂ r̄ ) + ∂
∂ z̄ (r̄ ∂

∂ z̄ )]|t = 1
r [ ∂

∂r (r ∂
∂r ) + ∂

∂z (r ∂
∂z )]|t = 
|t .

(A1)

And for energy equation (1) of the continuous phase fluid, we can also write its unsteady, convection
and conductivity terms as follows

∂ T̄
∂t |r̄ = ∂T

∂t |r̄ + GV∞ = ∂T
∂r |t ∂r

∂t |r̄ + ∂T
∂z |t ∂z

∂t |r̄ + ∂T
∂t |r ∂t

∂t |r̄ + GV∞

= ∂T
∂z |t (−V∞) + ∂T

∂t |r + GV∞ = −V∞ ∂T
∂z + GV∞,

v̄∇̄ T̄ |t = (v + V∞k)∇̄(T + GV∞t)|t = (v + V∞k)∇̄T |t
= v∇T + V∞ ∂T

∂z ,


̄T̄ |t = 
̄(T + GV∞t)|t = 
̄T |t = 
T,

(A2)

where ∂r
∂t |r̄ = ∂r

∂t |r̄ = 0, ∂z
∂t |r̄ = ∂z

∂t |z̄ = −V∞, and ∂T
∂t |r = 0. Then, substituting Eq. (A2) into Eq. (1)

in the laboratory coordinate system, we obtain Eq. (5) in a coordinate system with its origin fixed at
the drop center

GV∞ + v∇T = κ
T . (A3)

Similarly, we can also transform the energy equation within the drop as above.
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