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Abstract

A span-wise flexible wing undergoing a rapid pitch-up and pitch-down ma-
neuver in a steady free stream is studied with a lattice Boltzmann flexible particle
method (LBFPM) in a three-dimensional space at a chord based Reynolds number
of 100. The pitching rates and flexibility are systematically varied, and their ef-
fects on the generated aerodynamic forces and power efficiency are explored. It is
found that at a higher pitch rate average lift coefficient increases first, as flexural
rigidity decreases, and arrives at a maximum, then falls down as the flexural rigid-
ity continuously decreases, while at a lower pitch rate, no similar phenomena is
observed. It seems that flexibility can be utilized to improve lift at a high reduced
frequency. A small deformation at a level of 5% due to flexibility can largely im-
prove lift force only during pitch-down time period. On the Contrary, flexibility
has a negative impact on the lift during pitch-up time period. Most likely, deforma-
tion may passively and dynamically adjust the trailing edge position along the span
direction, induce larger leading edge vortices (LEV) and tip edge vortices (TEV),
and enhance trailing vortex shedding due to Kutta condition, thus improve lift.

Nomenclature
∆T the holding period

ψ the pitch angle

ρ f the density of fluid

t1 the start time of the pitch-up

t2 the end of the pitch-up

t3 the start of the pitch-down

t4 the end of the pitch-down

κ the maximum of pitch angle

ψ0 the freuency
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ρs

c the chord length

Cd the drag coefficient

Cl the lift coefficient

EI the flexural rigidity

GI the torsional rigidity

Re the Reynolds number

Res the rotational Reynolds number

s the span length

T the wing thickness

U0 the velocity of free stream

1 Introduction and background
Mechanisms of biologically inspired insets fight recently becomes an important re-
search subject, in particular, for potential usage of micro-scale vehicles in defense
surveillance and environmental monitoring. Although prevailing challenge in under-
standing aerodynamics of insets flight comes from complex interactions among de-
formable wing, its periodically plunging (translation) and pitching (rotation) kinemat-
ics, and surrounding fluid flows, much progresses on the effects of flexibility on thrust,
lift and flight efficiency have been achieved experimentally and numerically.

A moth wing as a linearly elastic structure was modeled using finite element anal-
ysis and a slight increases in lift during downstroke was found by Smith [1]. Experi-
ments were conducted to investigate the effect of flexibility in the chord [2] and span-
wise [3] directions on the thrust, lift and power efficiency by Heathcote et al. [4]. They
found that the thrust coefficient of the airfoil with intermediate stiffness was greatest at
high plunge frequency while least stiff airfoil generates a larger thrust at low frequency.
Similarly, at an intermediate level of span-wise flexibility, a 50% of improvement in
thrust coefficient was reported. Effects of bending and torsion on thrust were studied
experimentally by Frampton et al. [5]. They found that a wing with in phase bending
and torsional motion generated the largest thrust whereas a wing with the torsion mo-
tion lagging the bending motion by 900 delivered the best efficiency. A computational
aero-elasticity framework for analyzing flapping wing in three dimensional space was
presented by Chimakurthi et al.[6]. Their computational results for the flexibility in
span-wise direction of a plunging wing were in good agreement with the experimental
results of Heathcote et al. [3]. They confirmed that flexibility benefits the thrust force
[7, 8, 9, 6, 10, 11].

Toomey and Eldredge [12], Eldredge et al [13], Vanella et al [14], used a two di-
mensional model wing with two and three rigid beam segments connected by a torsion
spring through a hinge to simulate the motion of a chord-wise flexible wing. Eldredge
et al found that wing flexion generally reduces the power consumed by flapping com-
pared to a rigid wing. Toomey and Eldredge found that the rate and timing of wing
rotation primarily controls the generation of lift in rapid rotation; in contrast, the trans-
lational acceleration has little effect. Vanella et al.[14] identified that the wing flexibil-
ity can enhance aerodynamic performance and that the optimization is realized when
the wing is excited by a non-linear resonance at 1/3 of the natural frequency.
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Very recently, the two-segment beam model in a two-dimensional space has been
extend to a multi-segment beam model in a three dimensional space by Qi et al[15,
16]. They demonstrated that as the number of the beam segment increases, the multi-
segment beam model can approximate the nonlinear Euler-Bernoulli beam equation
and that the model, incorporated with lattice Boltzmann (LB) method, is suitable for
simulation of aerodynamics associated with a flexible wing. This method is called
lattice Boltzmann flexible particle method (LBFPM).

Using the LBFPM a numerical simulation of sinusoidal plunge and pitch of a span-
wise flexible and a chord-wise flexible wing in hover without free-stream were con-
ducted, respectively[16, 17] It was found that span-wise and chord wise flexibility
could significantly improve lift forces due to a mixture of four mechanisms: wake cap-
ture, rotational[18], leading edge vortices (LEV) [19], and downwash flow leading a
smaller effective angle of attach.

However, due to the complex interactions between large deformation and fluid
flows, the question "to what extend and how does the flexibility affect each mechanism"
is still open and remains a great challenge. To distinguish and quantify the different
contribution from each of the four mechanisms to lift and drag forces due to flexibility,
the kinematics of wing flapping should be simplified. It is possible that a pitch motion
may be isolated from periodic plunge motion. A canonical kinematics with a pitch-up
and pitch-down without periodic motion was suggested and used experimentally and
numerically for rigid wings by many authors [20, 21, 22, 23, 24, 25, 26, 27, 28, 29].
Such the simplicity allows us focus on the effects of pitch only without considering
the influence of the periodic plunge motion. This scheme may effectively reduce the
number of variables and the degree of the difficulty in exploring all of the possible me-
chanics of aerodynamics, in particular, for a flexible wing. Only after understanding
the pitch effect and its relationship with flexibility whole physical picture of complexity
of flapping flight will be more easily captured and understood.

Therefore, the canonical kinematics will be adopted to simulate a span-wise flexi-
ble wing embedded in a free stream at a chord based Reynolds number of 100, which
is within the range of insect flight. This study utilizes the same LBFPM as investigated
by Qi et al[16] and Qi and Liu [17] to examine how flexibility affect lift and drag forces
and power efficiency as well as fluid structures at a given pitch rate. Further, with vari-
ation of pitch rates, their effects on lift and drag forces at different levels of flexibility
can be systematically studied. Therefore, information about flight performance due to
flexibility could be extracted and analyzed and the question "how do insets use their
flexibility to improve lift and power efficiency" will be partially answered in the present
work.

The next section will briefly introduce the simulation method and the canonical
kinematics. The section 3 will present the results of lift and drag forces and power
efficiency at different levels of flexibility and pitch rate. Simultaneously influence of
flexibility on flow structures will be reported. The conclusions will be made in the last
section.

2 Simulation method
In general, the algorithm of the LB method for simulating a fluid domain is extremely
simple and consists of only two operations, collision and streaming. It has been demon-
strated that the LBFPM is particularly suitable for simulations of flexible bodies in fluid
flows. The LBFPM has been reported in details elsewhere by Qi [15] and Qi et al[16]
and will not be repeated here. In this method, the body of the wing has been dis-
cretized into a chain of rigid beam segments. The segments are connected through ball
and socket joints at the segment ends as shown in figure 1. Bending and twisting of the
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Figure 1: The beam segments are connected through ball and socket joints [circles].
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wing are obtained through relative rotation between neighboring segments. Constraint
forces have been introduced at each joint to ensure that the segments are connected to
each other. The motion of fluid and its interactions with solid boundaries are handled
by the lattice Boltzmann equation. The validation of the LBFPM was extensively pro-
vided by comparing its results with experimental and numerical results of Toomey and
Eldredge[12]. It has been demonstrated that the LBFPM is faithful and replicates the
correct physics of flow response to deformable either span-wise or chord-wise flexible
wing. This method will be used here again.

2.1 Kinematics
A flexible wing is subjected a pitch-up and pitch-down motion in an incompressible
fluid with a density of ρ f and a kinematic viscosity of ν at a chord based Reynolds
number of 100 in a free stream flow with a velocity of U0.

The wing with a rectangular cross section could be described either in a space-
coordinate system (X ,Y,Z) or a body-fixed coordinates system. The body-fixed co-
ordinates (X ′,Y ′,Z′) can be transferred to the space coordinates (X ,Y,Z) through the
Euler angles φ, θ, and ψ [30] if rotation is imposed. Initially the body-fixed coordinate
system (X ′,Y ′,Z′) overlaps with the space coordinate system (X ,Y,Z). The flexible
wing is placed in the center of the simulation box such that the span s is along the
Z’-direction; the chord c along the X’-direction; the wing thickness of T along the
Y ′-direction.

The wing is uniformly discretized along the span as N segments. At this stage,
whole the wing is rotated by θ = 900 around the X-axis. As a result, the wing span is
oriented along the Y -direction in the space coordinate system as shown in figure 2.
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Figure 2: The root segment is alway fixed in the body-coordinate system (X ′,Y ′,Z′).
Initially the wing is along the Z′-axis. After rotating 900 around X axis, the wing span
is along Y axis. The wing is plunging in X or horizontal direction and rotating around
Z′ or -Y axis.
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Thus, the angle ψ of the root segment spinning around its Z′ or -Y axis is the pitch
angle or the angle of attack. Following Eldredge work[31], this pitch angle is pre-
described and given by

ψ(t) = ψ0
G(t)

maxG
(1)

where ψ0 is the maximum of the pitch angle and G describes a complete pitch-up and
pitch-down maneuver,

G(t) = ln[
cosh(aU0(t− t1)/c)cosh(aU0(t− t4)/c)

cosh(aU0(t− t2)/c)cosh(aU0(t− t3)/c)].
(2)

The parameter a control the speed of the pitch transition between kinematic inter-
vals, with larger values producing sharper transitions. A moderate value of 11 through-
out the present study is used. The times t1, t2, t3, t4 represent transition instants during
the maneuver: t1 is the start of the pitch-up, t2 = t1 +ψ0/ψ̇0 is the end of the pitch-up,
t3 = t2 +∆T is the start of the ensuing pitch-down; and t4 = t3 +ψ0/ψ̇0 the end of the
pitch-down where ψ̇0 is the pitch rate; c is the chord length. The reduced frequency
κ is defined by κ = ψ̇0c/(2U0).

Previously, a similar kinematic function of the pitch-ramp-return was employed to
drive a flexible 2D beam flapping by Toomey and Eldredge [12], and their experimental
and numerical results were used to validate the LBFPM (see figure of 9 reference[16]).
Now, the exact same case as figure 5 of Eldredge and Wang’s article [31] is run by using
the lattice Boltzmann method and the results of lift and drag coefficients are compared
and presented in figure3. A good agreement between the two results further validates
the lattice Boltzmann method with the pitch-ramp-return kinematic function.

In the present work, pitch starts at t1 = c/U0, the parameters are fixed at ψ0 =
450, θ = 900, φ = 00, s/c = 2.5. The reduced frequency is varied at κ = 0.2,0.7,1.0
and 1.25. Two holding time are used, one is short ∆T = 0.05c/U0, other is longer
∆T = c/U0. The wing is always flapping around the central axis of the chord for
all simulations. The wing thickness is fixed at T = 0.075c; the number of segments
is N = 9; the simulation box size is (Nx,Ny,Nz) = (240,200,240) and the wing with
s = 100 and c = 40 is used. These selected simulation resolutions for the box and wing
sizes and the number of the segments were tested in the previous publication[16] and
will be used here again.

In the present work, the chord based Reynolds number is defined by

Re =
U0c

ν
(3)

and the rotational Reynolds number is defined by

Rer =
ψ̇c2

ν
. (4)

The lift coefficient is defined by

Cl =
Fz

0.5ρ fU2
0 sc

(5)

where Fz is the vertical component of the total hydrodynamic force on the wing.
The drag coefficient is defined by

Cd =
−Fx

0.5ρ fU2
0 sc

(6)

where Fx is the horizontal component of the total hydrodynamic force on the wing.
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Figure 3: The lift (top) and drag coefficients (bottom) as a function of time during pitch-
up motion at κ = 0.5, 0.4, 0.3, 0.2 are compared with those (solid lines) of Eldredge
and Wang[31] at Re = 1000. The non-solid lines present the lattice Boltzmann method
results. Two grids of 2000× 2000 and 1600× 1600 are used and the results are little
different.
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There are two parameters that control the wing flexibility: the bending flexural
rigidity EIw and the twisting or torsional rigidity GIp. They can be normalized by

EI =
EIw

0.5νρ fU0s3 (7)

and
GI =

GIp

0.5νρ fU0s3 . (8)

GI is fixed at a large value of 13,700 to ensure a neglected torsion deformation while
EI is varied at different levels. The ratio of the wing density to the fluid density is
fixed at ρs/ρ f = 16.27. the density of solid

3 Results

3.1 Flexibility on lift and drag forces
Flexion of the wing in the span direction was observed decades ago [32]. The flexion
often occurs at the end or beginning of stroke. Several functions of the flexion were
hypothetically suggested. Although recent numerical simulations have shown that the
combination of bending with rotation may benefit lift, controversy exists. For example,
the experiments (see page 1960 of [33]) did not observed an increase in lift due to span-
wise flexibility.

To understand rotational or pitch effect on lift and drag, at a given reduced fre-
quency, the lift and drag coefficients are computed at different levels of the bending
flexural rigidity while keeping other conditions same. The results of lift and drag coef-
ficients as a function of time within a pitch-up and pitch-down interval at three different
levels of bending flexural rigidity are shown in figure 4 for the cases of κ = 1.25. The
kinematics of pitching angle is also shown in the figure. It can be seen that all the
peaks of the force curves at the three levels of the rigidity have a phase lead to the
pitch angle function as expected. The phase lead is due to the acceleration peak (added
mass) of the rotation (or pitch) that appears in the very earlier stage of the time in the
pitch-ramp-return function. This has been clearly explained by Ol et al (see figure 2 of
reference[20]).

As the value of the bending flexural rigidity decreases from an infinite large (cor-
responding to a rigid wing) to the value of EI = 223.42, the right shoulder of the peak
of the lift coefficient curve shifts to the right side and becomes more wide as compared
with the rigid wing (see figure 4). The average lift coefficient over the time interval
of the entire pitch-up and pitch-down motion is Cl = 1.753 for the flexible wing of
EI = 223.42 and Cl = 1.412 for the rigid wing. In other words, with pitch or rotation
the flexibility results in a 24% increase in lift as compared with the rigid wing, although
the maximum value of the peak is smaller for the flexible wing than for the rigid wing.
It is clear that the widened right shoulder of the lift curve has more positive values for
the flexible wing with the optimized flexural rigidity of EI = 223.42 than for the rigid
wing. However, when the wing becomes excessively flexible, for example, the rigidity
becomes EI = 11.17, its lift coefficient reduces to Cl = 1.01. In this case, the lift curve
becomes narrower and shorter. The drag coefficient has a similar behavior. But, the
maximum of the drag Cd = 1.48 occurs at the slightly larger flexibility of EI = 288.49.

To further distinguish the different effects of the flexibility on the pitch-up motion
and on the pitch-down motion, the lift and drag coefficients are computed and averaged
over the pitch-up time period between t1 and t2 and over the pitch-down time period
between t2 and t4, respectively, so that the force coefficient is divided into two portions:
one called a pitch-up lift coefficient and other called a pitch-down lift coefficient. The

10

D
ow

nl
oa

de
d 

by
 C

H
IN

E
SE

 A
C

A
D

E
M

Y
 O

F 
SC

IE
N

C
E

S 
on

 J
an

ua
ry

 1
3,

 2
01

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
2-

30
0 



Figure 4: The lift coefficient (top) and drag coefficient (bottom) as a function of time
during the time interval between t1 and t4 at three different levels of the wing rigidity
(rigid ; EI = 223.42; EI = 11.17 ) at κ = 1.25. The pitch angle as a function of time
is also shown on the right vertical axis where the arrow points to the angle scale. The
pitch-up starts at t1 = U0/c and the pitch-down ends at t4 = 1.6785U0/c.
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results of the lift coefficient Cl along with the pitch-up lift coefficients, Cu
l , and the

pitch-down lift coefficient, Cd
l , as a function of EI are shown in figure 5 for the case

of κ = 1.25. The figure shows that Cl increases first as the values of EI decreases,
then decreases. There is a maximum at EI = 223.42, indicating that the optimization
of flexibility is necessary. It is remarkable that the pitch-up lift continuously decreases
as the flexural rigidity decreases, suggesting that the flexibility does not improve lift
during pitch-up rotation. In fact, the flexibility has a negative effect on lift through
pitch-up rotation. On contrary, the pitch-down coefficient increases first as the flexural
rigidity decreases, then falls down. Its maximum peak appears clearly. It is surprised
that the pitch-down lift coefficient is Cd

l = 0.974 for the flexible wing of EI == 223.42
and significantly larger than Cd

l = −0.125 for the rigid wing, demonstrating that the
flexibility is able to convert a negative lift coefficient for the rigid wing to a large
positive value for flexible wing by using the pitch-down motion. It is demonstrated
that the increase in lift due to flexibility is dominated by the pitch-down rotation, not
by the pitch-up. In short, the enhancement in lift due to flexibility occurs only during
the pitch-down motion.

The force coefficient results are also obtained and displayed in figure6 for the case
of κ = 1.0 and in figure7 for the case of κ = 0.7. All the lift forces have maximum and
the similar behavior as the case with the high rate of κ = 1.25. However, a comparison
among figures 5, 6 and 7 shows that the rotation rate has an important impact on the
forces. It looks that a larger pitch rate results in a larger lift force and that the lift
increases due to flexibility as the pitch rate increases. The lift force increases a 24% for
the case of κ = 1.25, a 20% for the case of κ = 1.0, and a 13% for the case of κ = 0.7,
as compared with their corresponding rigid wings.

When the pitch rate is low, say κ = 0.2, the lift force remains at almost the same
level as the flexural rigidity reduces, then drops to a very low level when the flexural
rigidity becomes excessively small, illustrating that when the pitch rate is low, the
flexibility may not significantly improve the lift, as shown in figure 8. In other words,
a large rotation rate is required for flexibility to significantly improve lift.

3.2 Deformation and vortices
Dynamic interaction between the deformation of a flexible wing and fluid flows may
alter the fluid structures and lift and drag forces. The deformation may be measured by
a deflection ratio of the distance between the undeformed and deformed wing tips to a
half of span length. This deflection ratio as a function of time is plotted in figure 9 and
the pitch angles are shown in the same figure. The maximum deflection is only about
4.5% for the optimized flexible wing of EI = 223.42. The deformation is much smaller
as compared with the hovering flapping wing case[16] where the deflection ratio could
be as large as 30%. Also, the time of maximum deformation does not coincide with
that of the maximum of the pitching angle. The maximum deformation shifts to a later
time and occurs after beginning of pitch down.

The vorticity is computed for the flexible and rigid wings. The iso-surfaces of
vorticity magnitude are plotted at three different time instances t = 1.45c/U0, 1.57c/U0
and 1.65c/U0 during pitch-down period in figure10 for the value of the iso-surface of
p = 0.4, in figure11 for p = 0.3 and in figure11 for p = 0.2. In these figures, the wings
in the same row are at the same instance; the left for the flexible wing is compared with
the right for the rigid wing. It is obviously seen that the flexible wing has not only larger
LEV but also larger TEV. In particular, the TEV is well developed for the flexible wing
along the wing tip top surface, implying that the small span-wise flexibility induces
considerably large TEV. The areas and volumes covered by LEV and TEV are larger
for the flexible wing than the rigid wing. The difference increases as time increases,
suggesting that the vortex separation is smaller for the flexible wing than for the rigid
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Figure 5: a) The lift coefficient Cl along with the pitch-up lift coefficient Cu
l and the

pitch-down lift coefficient Cd
l b) their corresponding drag coefficient as a function of

the flexural rigidity for the case of κ = 1.25.
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Figure 6: a) The lift coefficient Cl along with the pitch-up lift coefficient Cu
l and the

pitch-down lift coefficient Cd
l b) their corresponding drag coefficient as a function of

the flexural rigidity for the case of κ = 1.0.

14

D
ow

nl
oa

de
d 

by
 C

H
IN

E
SE

 A
C

A
D

E
M

Y
 O

F 
SC

IE
N

C
E

S 
on

 J
an

ua
ry

 1
3,

 2
01

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
2-

30
0 

http://arc.aiaa.org/action/showImage?doi=10.2514/6.2012-300&iName=master.img-008.jpg&w=213&h=435
http://arc.aiaa.org/action/showImage?doi=10.2514/6.2012-300&iName=master.img-008.jpg&w=213&h=435


Figure 7: a) The lift coefficient Cl along with the pitch-up lift coefficient, Cu
l , and the

pitch-down lift coefficient, Cd
l , b) their corresponding drag coefficient as a function of

the flexural rigidity for the case of κ = 0.7.
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Figure 8: a) The lift coefficient Cl along with the pitch-up lift coefficient, Cu
l , and the

pitch-down lift coefficient, Cd
l , b) their corresponding drag coefficient as a function of

the flexural rigidity for the case of κ = 0.2.
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Figure 9: The deflection ratio along with pitch angles is plotted as a function of time
for the flexible wing of EI = 223.42. The solid line is for the deflection ratio and the
broken line is for the pitch angle.
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wing.
In order to further understand why the pitch-down motion enhance the lift, a simu-

lation of the wing with EI = 223.42 and κ = 1.25 is conducted at the same condition
except using a longer hold time ∆T = c/U0 so that the pitch-up motion is stopped at
t = t2 = 1.314c/U0, hold for a longer time period of c/U0, then becomes pitch-down.
The results of lift force for the flexible wing are plotted and compared with the rigid
wing in figure 13. It is shown that after the wing pitch-up or rotation is stopped at
t = t2 = 1.314c/U0 the lift force still remains positive and is larger for the flexible
wing than the rigid wing until t = tc = 1.72c/U0. The average lift coefficient between
t2 and tc is 1.16 for the rigid wing and 1.36 for the flexible wing, 17% larger for the later
one, illustrating that the lift force is diminishing much slower for the flexible wing at
the earlier stage of the pitch-up rotation is stopped. Although the lift becomes smaller
between t = tc = 1.72c/U0 and t = td = 2.15c/U0 ( see figure 13 for tc and td) for the
flexible wing, the average lift coefficient over all the time period is 1.49 for the rigid
wing and 1.57 for the flexible wing.

The differences of the iso-surfaces of vorticity between the optimized flexible wing
and rigid wing are compared in figures 14 and 15. Two instances are shown in these
figures: one is t = ta = 1.61c/U0 (top row) within the holding-time period and other
is t = tb = 2.42c/U0 (bottom row) during the pitch-down time period. The left for
the optimized flexible wing is compared with the right for the rigid wing at the same
instance in the same row. Clearly, the flexible wing has much larger vortices located
on the tip edges of the wing surface than the rigid wing at t = ta within the holding
time. The vortices covers not only the leading edge surface but also the wing tip edge
surfaces. At this time instance although the wing pitch is stopped, the vortices on
the wing surface are still larger for the flexible wing, evidencing that the flexibility
enhances the vortices. At tb during the pitch-down motion, the vorticity are still larger
for the flexible wing than for the rigid wing. Reasonably, the surface areas covered
by the vortices at time t = tb are reduced as compared with those at the previous time
instance t = ta due to vortex separation. However, such the reduction is smaller for the
flexible wing due to flexibility retarding the vortex separation.

Most likely, flexibility can dynamically and passively adjust the trailing edge po-
sitions along span direction. According to Kutta-Joukowski theorem, the flows will
separate in the trailing edge due to Kutta condition and form trailing edge vortices
which are shedding to wake area and benefit lift[34]. In other words, the trailing edge
position change in a flexible wing induces a larger LEV and TEV and a larger trailing
edge vortex shedding and enhances lift.
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Figure 10: The iso-surfaces of the vorticity (normalized by the maximum value) for the
flexible case (the left colum) of EI = 223.42 are compared with those for a rigid wing
(right colum) at different time instances t = 1.45c/U0 (top row), t = 1.57c/U0 (middle
row) and t = 1.65c/U0(bottom row) during the pitch-down time period. The iso-value
of the vorticity is 0.4.
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Figure 11: The same as figure 10 except that the value of the iso-surface is 0.3
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Figure 12: The same as figure 10 except that the value of the iso-surface is 0.2
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Figure 13: The lift coefficient of the flexible wing as a function of time is compared
with the rigid wing where the hold time is ∆T = c/U0.
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Figure 14: The iso-surfaces of the vorticity (normalized by the maximum value) for the
flexible case (the left colum) of EI = 223.42 are compared with those for a rigid wing
(right colum) at t = ta = 1.61c/U0 (top colum) and t = tb = 2.42c/U0 (top row). ta and
tb are shown in figure13. The value of the iso-surface is 0.4.
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Figure 15: The same as figure 14 except that‘ the value of the iso-surface is 0.3.
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4 Conclusions
The direct simulations of the pitch-up and pitch-down of flexible and rigid wings in a
free stream are conducted at the Reynolds number of Re = 100 by using the LBFPM.
The effect of bending flexibility in span-wise direction on unsteady aerodynamics are
investigated. The following conclusions can be made from the cases with the selected
kinematic parameters.

1. It is found that when the reduced frequency is large, the lift and drag forces in-
crease nonlinearly upto a maximum as the flexibility increases, then falls down
as the flexibility becomes excessively large. The maximum value in both lift and
drag forces are significantly larger for a flexible wing than for a rigid wing. How-
ever, when the reduced frequency is small, no obvious lift maximum is observed.
It seems that flexibility can be used to enhance the lift force at a high reduced
frequency.

2. It is surprised that flexibility improves lift only during pitch-down motion while
the flexibility has a negative impact on lift during pitch-up motion, indicating
that the pitch-down motion dominates the lift improvement due to flexibility.

3. In a maneuver case, a small and adequate span deformation may change trailing
edge position along span direction and enhance circulation due to Kutta condi-
tion. The larger LEV and TEV and the larger trailing vortices shedding benefit
lift.

A valuable discussion with Dr. Eldredge is appreciated.
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