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ABSTRACT  
 
In this paper, the two dimension incompressible Navier-Stokes 
equations with pseudo-spectral method are solved using the 
related subroutines in FFTW and CUFFT. Compared with the 
codes on CPU, the performance of the codes on GPU is much 
better, especially when the resolution increases. For the 
resolution of 2048  2048, the acceleration reaches 14.45 
times. We also try to combine MPI (Message Passing Interface) 
and CUDA (Compute Unified Device Architecture) in our 
solver. Due to the inevitable frequent data transfers between 
Host and Device, the speedup is not so ideal compared with 
that of the single node, and 1.82 times acceleration is obtained 
in double precision for the resolution of 4096  4096.  
 
Keywords: CUDA, spectral method, N-S equation. 
 
 
1. INTRODUCTION 
 
In recent years, the Graphics Processor Unit (GPU) has 
tremendously developed. Though the purpose of these advances 
is to calculate the complex visual effects in computer games, it 
has been found that the same technology can be applied in 
scientific computing. In 2006, NVIDIA developed a Compute 
Unified Device Architecture (CUDA) on the extended set of C 
language. CUDA is a very convenient architecture because 
programmers do not need to master the graphical knowledge. 
Hence, CUDA provides a low entry level for the learning of 
many-core programming, so the general-purpose scientific 
computing on the GPU develops rapidly. 
 
Legyel first used GPU in scientific computing about the robot 
first [1], and it was then applied in various areas including fluid 
dynamics. In the past few years many researchers have studied 
how to use GPU to optimize the CFD (Computational Fluid 
Dynamics) codes, and found GPU can really improve the 
code's performance for one or two grades compared with that 
on CPU (Central Processing Unit). For example, Antoniou 
found that finite difference method WENO obtained 53 times 
acceleration for single-precision float when CUDA was 
adopted. Cohen and Molemaker  found similar performance 
improvements in the solution of three-dimensional 
incompressible Navier-Stokes (N-S) equations (double 
precision) [2]. Dong Tingxing et al. simulated two-dimensional 
RAE2822 wing flow around in the scale of 1024 × 128, and 
obtained 2.33 times acceleration [3]. When calculating 
two-dimensional diffusion equation in the size of 1024 × 1024, 
Dong Tingxing et al achieved a 34 times speedup [4]. 
 
According to the above information, CUDA is successfully 
applied in solving N-S equation with finite difference method, 
but few studies about spectral method have been done. For a 
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comparable error on the uniform mesh, spectral method 
requires a much finer mesh than finite difference or finite 
element methods. Unlike finite difference methods, most 
computation of spectral method is in DFT (Discrete Fourier 
Transform). FFTW is the widely adopted open-source DFT 
package in CPU, while CUFFT is mostly used on GPU [5].  In 
this paper, we use both FFTW and CUFFT to solve 
two-dimension incompressible N-S equations and focus on the 
performance improvement when replacing FFTW with CUFFT.  
 
Sometimes, due to memory limitations, a large-scale problem 
cannot be computed in a single GPU, so we also use the 
multi-node parallel computing with MPI (Message Passing 
Interface). Some tests in combination of MPI and CUDA are 
also performed. 
 
2. GOVERNING EQUATIONS & NUMERICAL 

METHODS 
 
2.1. Governing Equations  
Two dimension incompressible N-S equations: 
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Here, ( , )u v�v
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 is the velocity, f
�

 the external force, �   
the density, p  the pressure, and �  the kinetic viscosity 
coefficient. There is no external force in our problem, 

so 0�f
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.  
 
The computing domain is( , ) [0,2 ] [0,2 ]x y � ��  , and the 
periodic boundary conditions are adopted. The initial condition 
is 0( , 0) ( )�v x v x
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2.2. Numerical Method 
Spectral method is applied to discrete space. p , v

�
 is mapped 

from physical space to Fourier space as the following: 
ˆ( , ) ,

ˆ( , ) ,

i

i

t e

p t p e

�

�

�� ������ �����

�
�

k x
k

k
k x

k
k

v x V

x

�

        (2) 

where ( , )x y�x  is the position in physical space, and 

1 2( , )k k�k  represents different wave numbers. 
 
Applying the Fourier-Galerkin method to the N-S equations Eq. 
(1) and with the approximation Eq. (2), we get a set of 
differential equations for determining the Fourier coefficients 
ˆ
kV and p̂k : 
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When 2 0k � , no matter what the value of 0V̂  is, the 

original equation is automatically satisfied. We set 0̂ 0p �  
at that time, which means value of pressure is zero. 

2
2

ˆ
ˆ ˆˆd k

k
t �

�
� 
 
 	 k

kk k
k A

V AV k .               (4) 

In Eq. (4), 2 ˆk�
 kV  is linear term (viscous term) and 
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A k  nonlinear term (convection term). 

 
To carry out the time integration, the third order Runge-Kutta 
method is adopted. 
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Here, ( )L v  is the linear term 2 ˆk�
 kV  and ( )N v  the 

nonlinear term
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We define nv  as the speed at time t  and 1n	v  the speed 

at time t t	 � . The following equations show how the 

calculation of 1n	v  from nv  is conducted in three steps 
[6]: 
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where 
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The linear term ( )L v can be easily computed in Fourier space, 

but the calculation of the nonlinear term ( )N v  is a bit 
involved. So the nonlinear term is obtained by being transferred 
back and from the physical space with FFTs; in the meantime, 
the de-aliasing procedure has to be adopted to remove the 
aliasing errors. There are two kinds of de-aliasing techniques 
available: padding-truncation and phase-shifts. In this paper, 
we use phase-shifts, which reserves more high wave numbers 
information than that for padding-truncation. In summary, the 
calculation process is shown in Figure. 1: 
 
 
3. INTRODUCTION TO GPU COMPUTING 
 
3.1. The Structure of CUDA 
The CUDA code is divided into two parts: one part is on the 
CPU, known as the Host section, and another part in the GPU, 
which is called the Device portion. Host part completes a call 
to the GPU through Kernel function. As a highly parallel 
programming model, CUDA divides the tasks in the Kernel 
into the threads. The structure of the threads is indicated in 
Figure 2. Threads are organized by blocks, and each block is 
the same in size. A kernel function can be performed by 
multiple blocks, and each block is organized as a 

one-dimensional or two-dimensional grid [7]. This model 
guides the programmer to partition the problem into coarse 
sub-problems which can be solved independently in parallel by 
blocks of threads, and each sub-problem into finer pieces that 
can be solved cooperatively in parallel by all threads within the 
block. Indeed, each block of threads can be scheduled on any of 
the available processor cores, in any order. That is, blocks can 
be executed in parallel if there are available units; otherwise, 
they will be executed sequentially [7]. 

 
 

 
 

Figure 1. Computing process 
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Figure 2. Structure of threads in CUDA 
 
3.2. The Advantage of GPU over CPU in Computing    
There exist differences between the CPU and GPU in scientific 
computing capability, and the reason is that GPU is designed 
for compute-intensive, highly parallel computing. Thus, the 
design of GPU adopts more transistors in data processing rather 
than in the data cache or flow control. Many lines parallel 
collaboration is GPU internal design, and each computing 
pipeline is equal to a computing unit in CPU internal core (core) 
which can compute a set of data independently. Therefore, 
GPU can be considered as hundreds of simple CPU doing data 
calculations at the same time, or we can say that a GPU is a 
small MPI parallel cluster. The floating-point computing 
capability of GPU is much higher than that of the CPU in the 
same level. Of course, the development of computing ability is 
accompanied by some sacrifice. The GPU does not have the 
flow control unit, so it is only suitable for the program of order 
processing with a large amount of data. 
 
In CUDA, the thread structure is like matrix, so it is suitable for 
grid computing. The equations in this paper need to disperse 
the computational region into grids. This is naturally in line 
with the CUDA thread structure. In CFD, similar computation 
is often required again and again. The amount of computation 
is great but logical judgment is few. So CFD is suitable for 
GPU to perform its great computing capability. 
 
4. OPTIMAZATION STRATEGIES 
 
4.1. Reduce the Time in Host and Device Communication 
PCI-E bandwidth is relatively small, only the 8GB / s, and lags 
far behind the bandwidth of the GPU (the GPU adopted in this 
article uses is C1060, and its memory bandwidth is 102GB / s). 
Data transmission between CPU and GPU will inevitablely 
cause bottleneck. So the best strategy is to minimize the 
amount of data transferred between the CPU and GPU. 
Therefore, unnecessary transmission should be avoided. In 
order to achieve the purpose of reducing transmission quantity, 
we reduce the times of transmissions. We put all process into 
GPU, and the exchange of data between the GPU and CPU 
only occurs in data I/O. 
 
In a test of a 2048 × 2048 simulation, when data exchange 3 
times at each time step, each 1000 steps takes about 20 minutes, 
while only 16 minutes is needed without these exchanges. 
 
No direct communication between the GPU exists in a 

multi-node computing. There is no good way to avoid the 
exchange between CPU and GPU. In the low resolution case, 
data exchange has become the most time-consuming part in the 
whole program. 
 
4.2. Shared Memory 
The latency accessing to shared memory is 1 to 2 clock cycles 
(in the situation with non-Bank Conflict), much smaller than to 
the global memory (about 500 clock cycles). According to the 
information provided by the NVIDIA SDK, the program of 
matrix transpose speeds up 10 times compared with the case in 
which shared memory is not used. NVIDIA offers an idea to 
avoid bank conflict by padding an empty row. In this program, 
the little teaser is also applied in other sub program. Because 
the data in shared memory is visible to the threads in the same 
block, we use shared memory to avoid every thread getting its 
data from global memory one by one in the program of matrix 
adding. 
 
4.3. Memory Coalescing 
In C language, memory storage is arranged by line. 16 
continuous threads' visit to continuous data period in global 
memory can be combined into a storage affair. In our program, 
besides FFT, memory operation to matrix fits this condition 
naturally. 
 
Warp is organized by the SM automatically in a continuous 
way. For example, if there are 128 threads in a block, they will 
be divided into four warps: 0-31 threads will be warp 1, 32-63 
warp 2, 64-95 warp 3, and 96-127 warp 4. So the best amount 
of threads per block is a multiple of 32. Otherwise, it will cause 
a warp less than 32 threads to use the same resources as a warp 
full of 32 threads. In this paper, each block contains 16 × 16 = 
256 threads in a single node case. In multi-node computing, we 
just call CUFFT functions, and the left computation is on CPU, 
so we needn't take it into consideration. 
 
4.4. Others 
Some constants are calculated in the CPU, and then copied 
them to GPU for repeated calls. 
 
When we have to operate with a small number of threads, we 
use “if threadID<N” to avoid multiple threads running at the 
same time which takes more time or even produce incorrect 
results. 
 
Because synchronization in our program is relatively few, it is 
difficult to have a big performance improvement at this point. 
 
5. RESULTS AND COMPARISON 
 
5.1. Computing Environment 
Our programs run at tesla.sccas.cn, a server of Supercomputing 
Center of Chinese Academy of Science. Its environment is 
shown as the following. 
 
Single node: CPU Intel Xeon E5410, 2GHz CPU Clock Speed, 
2 6MB second-level cache; GPU tesla C1060 2; memory 
8GB; hard disk SATA 500GB. 
 
Compiler: FFTW program uses “g++” to compile and CUFFT 
program employs “nvcc”.  
 
Multi-node uses 4 nodes with the same configuration as above. 
 
 

64



5.2. Result in Single Node 
Two codes are programmed with CUFFT and FFTW. We test 
our codes with different resolution (128 × 128, 512 × 512, 2048 
× 2048). The performance is shown in Table 1. To confirm 
whether our result is right, three different times are chosen to 
output. After comparison of each resolution, the results of 
FFTW and CUFFT are found the same (Figure 3, Figure 4). 
 
In 128 × 128 resolution, we calculate 6000 steps. At last, the 
streamlines both become two vortexes. It is a stable situation. 
The result of CUFFT(float) is the same, so we won't show the 
picture here to save space. 
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Figure 3. 128 128 result at t=36 CUFFT(double)(left), 
FFTW(right) 

 
We also calculate 10000 steps in 512 × 512 resolution. At last, 
they both reach the stable situation (two vortexes).  
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Figure 4. 512 512 result at t=100 CUFFT(double)(left), 
FFTW(right)

 
In 2048 × 2048 resolution, the results are also the same. We 
calculate 170000 steps, but do not reach the two vortexes' 
stable situation at last. However, we can see the tendency to 
stable situation. When calculated 100000 steps, the streamlines 
become several vortexes and small vortexes roll into big vortex. 
At last, there are two big skew vortexes in the streamline chart, 
which are not like the regular ones above.  

 
Table 1. Till 1000 steps, time required by different methods 
resolution FFTW(s) CUFFT(double)(s) CUFFT(float)(s)
128 128 35.3 11.7 3.7
512 512 695 56 21
2048 2048 14431 999 424

 

 
Figure 5. Speed up with CUFFT in different resolution 

 
In 128 × 128, 512 × 512, and 2048 × 2048 cases, the 
corresponding CUFFT speedups are 3.03, 12.41, and 14.45.  
 
From Figure 5, we can see CUDA's acceleration is more and 
more obvious with the increase of the resolution.  
 
5.3. Performance of CUFFT and FFTW 
We test the performance of CUFFT and FFTW which don't 
contain the communicating time. We use arrays of different 
sizes to test our codes. Every array performs FFT and IFFT, 
and then we count the time. The function clock() is adopted for 
timing in FFTW and the function cudaevent in CUFFT.  
 

Table 2. Time required by different resolutions 
Array size FFTW(ms) CUFFT(double)(ms) speedup 
128 128 1 0.3026 3.30
512 512 20 1.189 16.82
2048 2048 370 18.099 20.44

 
Table 2 shows that as the size increases, the advantage of 
CUFFT is more obvious. It meets the conclusion we get in 5.1. 
In addition, it is worth mentioning that the speedup radio of 
both the N-S equation and pure FFT becomes smaller as the 
size increases. As the size grows, the communication time 
grows too, but we never take any measures to speed up the 
communication.  
 
Table3. The different performance of CUFFT in single and 

double precisions  

Array size 
CUFFT(float)
(ms) 

CUFFT(double)
(ms) 

double/float 

128 128 0.1505 0.3026 2.01
512 512 0.308 1.189 3.86
2048 2048 2.968 18.099 6.10

 
By comparison, we can find that single precision data has an 
advantage over that of double precision in GPU computing. In 
addition, the advantage gets bigger with the increase of the 
resolution. However, with the increase of data amount, besides 
computing ability, the bandwidth will become a limit to the 
calculating speed [8]. 
  
5.4. Result in Multi-Node 
As the case in a single node, we use CUFFT and FFTW 
programming to solve the N-S equations at 4 nodes. At last 
FFTW and CUFFT achieve the same results under different 
resolutions. 
 
In the following, the time of 100 steps’ calculation at 4 nodes is 
shown for different methods. In the case of 2048 × 2048 

x

vorticity contours at t=100

1 2 3 4 5 6

1

2

3

4

5

6

65



resolution, CUFFT needs 374s and FFTW needs 493s; the 
speedup is 1.32 times. When resolution is 4096  4096, 
1063s is required for CUFFT and 1936s for FFTW; the 
speedup increases to 1.82 times. 
 
By the above comparison, we find that as the resolution 
increases, GPU shows a greater advantage. When calculating 
the case of 4096 × 4096, MPI is used to collaborate on multiple 
nodes. So the data transfer between Host and Device is 
inevitable in every step in our code. Because of a lot of time 
consumed in coping data, acceleration is not so obvious as 
which in single node. Even so, there is noticeable advantage 
when using GPU to compute a large amount of data. With the 
larger resolution, CUFFT will have better acceleration. 
However, limited by communication problems, acceleration 
will not be as obvious as that in the single node. 

6. DISCUSSION AND CONCLUSION 
 
We use CUDA to accelerate our CFD code, and there is 
obvious improvement after we replace the FFTW subroutines 
with those of CUFFT. 
  
In the case of a single node, the performance improvement of 
CUDA can be found in every resolution. In addition, with 
higher resolution, the accelerating effect is more obvious. 
When the resolution is 2048 2048, the speedup is 14.45 times. 
This allows us to use a higher resolution to observe the changes 
of the vorticity field in a fixed calculating time, and more 
subtle fluid structures can be observed. 
 
TeslaC1060 is about 3 times more expensive than Intel 
XeonE5410. When the calculated amount is small, the 
economic benefit of using GPU is not very obvious, and it is 
not very economical to use GPU. When the resolution of our 
simulation increases, it is much cheaper to use GPU.  
 
The tests in Section 5.2 show that CUDA has better 
performance in the single-precision calculation than in double 
precision, but the gap between single and double precisions 
does not reach the eight times speedup in theory. On the GPU 
of the next generation (C2050), the gap between single and 
double precision becomes only two-times speedup in theory. If 
our double-precision program is carried out on tesla C2050, 
better acceleration may be achieved. 
 
Direct communication between the GPU is not supported in 
CUDA2.0 in multi-node. When using MPI to increase the 
resolution, communications must occur between Hosts. The 
communication between GPU and CPU is inevitable; a lot of 
time has to be wasted in coping data, so the advantages of GPU 
computing will be hidden. Maybe for a problem in which 
transfers between nodes are not required so frequently, the 
performance of GPU will be better. 
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