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Abstract. GPUs are high performance co-processors of CPU for scientific computing including CFD. 

We present an optimistic shared memory allocation strategy to solve 2D CFD problems using 

Red-Black SOR method on GPU with CUDA (Compute Unified Device Architecture). Lid-driven 

results are compared with the benchmark data. The speed up ratio of same problem size by using 

NVDIA GTX480 and Intel Core-Dual 3.0GHz processor is discussed, the performance of GPU is 120 

times faster than the sequential code on CPU with the problem size of 756×756. Based on this work, 

we conclude that using the memory hierarchy properly has a key role in improving the computational 

performance of GPU. 

 

1. Introduction 
Simulating CFD problems efficiently and accurately is of great importance for scientific computing 

and engineering applications. GPUs that are originally designed for graphics rendering have become 

massively-parallel "co-processors" of the Central Processing Unit (CPU). In recent years, GPU 

technology develops quickly and modern GPU can provide memory bandwidth and floating-point 

performance that are orders of magnitude faster than a standard CPU [1]. Researchers in CFD field 

have done a lot of work in parallel computing algorithms and applications on GPU and gotten great 

achievements. In the aspect of algorithms of CFD, Senocak [2] presented a 3D Navier-Stokes solver 

on GPU for incompressible flows using Jacobi iteration method, Serban Georgescu [3] developed a 

Conjugate Gradient solver for 3D Poisson’s equation on GPU and reported up to 22 times 

acceleration when using three GPUs compared with CPU, Jonathan M. Cohen [4] implemented 3D 

Boussinesq code with Red-Black Gauss-Seidel on GPU and got an acceleration of up to 8 times faster 

than a CPU. 

Red-Black SOR which is a high efficiency, yielding simple, inexpensive and fully parallelizable 

method [5] is widely used in parallel computing both on CPU and GPU. Chih-Wei Hsieh [6] 

implemented Red Black method for solving 2D parabolic partial differential equations on GPU was 

11 times faster compared with CPU with the problem size of 400x400, Sheng-Hsiu Kuo [7] solved 2D 

nonlinear Burgers’ equation by using Red-Black SOR method on GPU and got a speed-up ratio of 12 

times at mesh size 1026×1026 on GPU compared with CPU, Jonathan M. Cohen [4] and Aaron F. 

Shinn [8] implemented the Red-Black SOR iteration method to solve 3D CFD problems on GPU with 

multi-grid relaxation schemes and achieved speed up ratio of 8 times and 15times respectively. As a 

highly parallel computational method, Red-Black SOR method is suitable for GPU computing and 

can achieve a high speed up ratio if we use the memory hierarchy properly and allocate memory 

efficiently according to our experience. 

The rest of this paper is organized as follows. Section 2 introduces the GPU hardware architecture 

and CUDA programming model. Section 3 briefly shows the governing equation and numerical 

method of incompressible fluid flows. The acceleration strategy of solving CFD problems on GPU is 

described in section 4 and the result verification and speed up discussion is shown in section 5. 

Finally, Section 6 gives the conclusion and future work. 
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2. GPU Hardware Architecture and CUDA Programming Model 

GPU Hardware Architecture. GPU which is originally built for graphics rendering has become a 

highly parallel, powerfully programmable, suitable for general purpose computing device owing to 

its’ unique hardware architecture. As is shown in Fig.1 (a), GPU is an example of a Single Instruction 

Multiple Data (SIMD) multiprocessor [11]. Each thread reads data in different memory locations 

when executes. Each thread has its own registers and local memory, each block has the same shared 

memory of its own, all threads in a grid can access the data in global memory. Besides, there are two 

kinds of read only memory: constant memory and texture memory [12]. 

 

        
a) GPU SIMD multiprocessor architecture                 b) CUDA thread organization 

Figure 1. GPU Hardware Architecture and CUDA Programming Model[12] 

 

CUDA Programming Model. CUDA is a general purpose parallel computing architecture that 

leverages the parallel compute engine in NVIDIA GPUs to solve many complex computational 

problems in a more efficient way than on a CPU. CUDA C extends C by allowing the programmer to 

define C functions which are called kernels. Each kernel is mapped to threads on GPU. Threads in the 

same block can communicate with each other and synchronize together while threads from different 

blocks can’t. Blocks which execute the same kernel function can be batched together into a grid and 

be executed in parallel [12], which are illustrated by Fig.1 (b). 
 

3. Governing Equation and Numerical Method of Incompressible Fluid Flows 

The Navier-Stokes equations for 2D incompressible fluid flows can be written as follows: 
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Where u, v is the velocity, p is the pressure, ν is the kinematic viscosity and Re is Reynolds number. 

To solve the equations above in numerical method, we choose first-order, explicit Euler scheme for 

time term and second-order central difference scheme for the diffusion and advection terms. The 

projection method is used to solve Navier-Stokes equations for incompressible flows [9]. 

To solve the Pressure Poisson equation on GPU in high speed, we choose the Red-Black SOR as 

iteration method which has the same convergence rate as the Gauss-Seidel method. As is shown in 

Fig.2, the red (black) points are surrounded by each other. We update the red points use the black 

points’ previous values firstly and then update the black points use the red just solved. The Red-Black 

SOR iteration number was set to be 20 for each time step to get convergence results for problems of 

Re=100. The flow diagram of the code procedure is shown in Fig.3. 
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Figure 2. Red and black point distribution   Figure 3. The flow diagram of executing code on GPU 

 

4. Acceleration Strategies of Solving CFD Problems on GPU 
As is mentioned above, solving CFD problems using Red-Black SOR is an optimal choice because 

of its highly parallel capability and efficiency. But the dependency on neighboring points reduces the 

extent of parallelism, which is also the bottle-neck of computing performance enhancement on GPU. 

Compared with the floating-point performances, the performance of computing is limited by the 

memory bandwidth of GPU when the data on Global memory was accessed by the execution units. 

Shared memory is chosen as the cache to improve computing performance in this paper. Firstly, the 

data (including boundary element data) is loaded into shared memory from global memory. Secondly, 

all the operations on data are completed in shared memory. Lastly, the data is written to global 

memory. 

The domain decomposition method is used for GPU implementation. The grids in computational 

domain are divided into sub-domains and mapped on GPU thread as is shown in Fig. 4. The block 

dimension is chosen 1D and threads number is times of 32 (64 or 128, will be discussed later) to 

utilize the shared memory properly and efficiently (Fig. 4), hence the coalescence is obtained during 

the data access. Firstly, the threads in the block read the data (including the boundary data) from 

global memory to shared memory in the form of lines, the data in columns will be read successively 

 

 

 

New  

time  

step Solve pressure (Red-Black SOR) 

Calculate velocity in new time 

Calculate intermediate velocity 

Copy data from CPU to GPU 

Time > time to end? 

Boundary condition on GPU  

Copy data from GPU to CPU 

Initial condition on CPU  

End 

Advanced Materials Research Vol. 320 337



by the same block thread. Secondly, the points of inner grid are calculated by the 1D thread in the 

same block which can change data with each other via the shared memory. Lastly, the solved inner 

points are copied from shared memory to global memory. The height of the sub-domain in which 

condition to get highest performance will also be discussed later. 

 

 
a) Computation domain decomposition              b) Sub-domain mapped on 1D GPU thread 

Figure 4. Domain decomposition method and thread allocation strategy 

 

The code snippet is composed of two loops, the outer loop for time advance and the inner for 

iterations of Red-Black solver to solve Poisson equations numerically. Firstly, the intermediate 

velocity is solved using the momentum equations. Secondly, the boundary condition is computed by 

the next two kernel functions. Thirdly, the divergence of every element is solved by the next kernel 

which will be used in the iterations. Fourthly, the Poisson equations are solved using Red-Black SOR 

method. Lastly, the new velocity at time n+1 is calculated with the intermediate velocity and pressure 

solved justly. 

 

5. Result Verification and Speed Up Discussion 

Result Verification. The lid-driven flow was chosen as a benchmark for validation of our numerical 

method. Fig. 5 shows the contour distribution of velocity u and v, the stream line of lid-driven 

problem of Reynolds number 100 at steady state respectively.To numerically validate the GPU code, 

results of computed on GPU are compared with data from Ghia [10], which is shown in Fig. 6. As is 

shown in Fig. 6, the two velocity components u and v along the vertical and horizontal lines through 

the geometric center are in excellent agreement with results of Ghia [10] both for Reynolds numbers 

100 and 1000. 

 

 
Figure. 5 Steady state Contour distribution of u, v and stream line at Reynolds number 100 
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a) Results comparison for Re=100                    b) Results comparison for Re=1000 

Figure. 6 Comparison of GPU results with benchmark data from Ghia for Re=100 and Re=1000 

 

Speed Up Discussion. Next we will present the GPU computing performance compared with CPU . 

The lid-driven flow of Reynolds number 100 is chosen as the test case. We compared the time of the 

code executes 1000 time steps on different platforms. Table 1 shows the time of two codes for 

problems of different sizes with different thread allocation methods and the same sub-domain height 

(of 8), the speed up ratio can get 120 for 756×756 size when allocate 1D 128 threads in the block. The 

same thread allocation method (1D 128 threads in the Block) and different sub-domain heights are 

shown in table 2, we can get a higher speed up ratio for small problem size (120×  for 756×756) when 

the height of the sub-domain is 8. The codes are complied by Microsoft Visual Studio 2008. The GPU 

we choose is GTX 480 and CPU is Intel 3.0GHz processor. 

Table 1. Time comparison for problems of different sizes 

with different thread allocation methods and sub-domain height of 8. 
Grid number CPU time (s) GPU time (s) Speed up 

372×372 46.437 0.531 87.45 

744×744 189.25 1.641 115.33 

a) problems of different sizes with 64 threads in a block 

Grid number CPU time (s) GPU time (s) Speed up 

378×378 47.578 0.516 92.21 

756×756 199.046 1.657 120.12 

b) problems of different sizes with 128 threads in a block 

Table 2. Time comparison for problems of different sizes with 128 thread in a block and different 

sub-domain heights. 
Grid number CPU time (s) GPU time (s) Speed up 

504×504 87.375 0.922 94.77 

1008×1008 355.172 3.219 110.34 

a) problems of different sizes with sub-domain height of 6 

Grid number CPU time (s) GPU time (s) Speed up 

378×378 47.578 0.516 92.21 

756×756 199.046 1.657 120.12 

b) problems of different sizes with sub-domain height of 8 

Grid number CPU time (s) GPU time (s) Speed up 

504×504 87.375 0.829 105.40 

1008×1008 355.172 2.937 120.93 

c) problems of different sizes with sub-domain height of 10 
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6. Conclusion and Future Work 

We found a new strategy to allocate the memory hierarchy of CUDA programming model properly 

to improve the overall bandwidth utilization and thus to hence the performance of computing on 

GPU. Based on the algorithm, we have gotten a CFD solver for incompressible fluid problems with 

Red-Black SOR on GPU with higher speed up ratio than ever reported. Overall, the numerical solver 

of incompressible fluid flow equations was accelerated by a factor 120 by using the NVDIA GTX 480 

compared with the serial code on CPU 3.0 GHz processor when computing problems size of 

756×756. It’s found that using the memory hierarchy properly has a key role in improving the 

computational performance of GPU. 

In our future work, we will execute the free surface code on GPU using the method offered above 

and investigate the speed up performance of our method. 
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