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Abstract—The influence of the mesoscale eddy on seismic

wave propagation and seismic imaging in deep sea is investigated.

Based on fundamental fluid equations, an appropriate partial dif-

ferential equation is derived for the acoustic pressure field in water

with eddies, including current effects. Seismic wavefields and

synthetic seismograms in the center of the eddy are simulated.

Numerical experiments demonstrate that velocity variations caused

by the eddy can lead to traveltime perturbations. Further, in seismic

images, the reflectors below the water layer are positioned incor-

rectly due to the perturbation of the eddy and this image

perturbation depends linearly on the migration velocity of the layer

below the corresponding reflector. The zero-offset seismic profiling

throughout the affected area of the eddy shows that the maximum

traveltime perturbation appears at the center of the eddy and the

structure of horizontal reflectors below the water layer are

distorted.

Key words: Partial differential equation, synthetic seismogram,

seismic imaging, depth perturbation.

1. Introduction

Exploration and development of offshore hydro-

carbon resources has advanced into remote deepwater

regions over the last decade (HOUGH et al., 2011;

VARTANYAN, 2010). Development drilling targets

increasingly requires precise in both horizontal and

vertical positioning. Production facility design errors,

either over-building or under-building, can yield

heavy losses in complicated and costly industrial

activity. However, the development of deepwater field

continues to have imaging problems which is due in

large measure to complex conditions in deepwater.

Recently, the studies in seismic oceanography have

shown that the mesoscale eddies in deep sea can be

imaged through processing the seismic reflection data

(BIESCAS et al., 2008; SONG et al., 2008, 2009; HU

et al., 2009; PINHEIRO et al., 2010). Some geophysi-

cists have found that the temperature steps are

typically large enough, a few hundredths of a degree

over only a few meters, to be seen as reflecting fea-

tures in seismic data. Depending on the sign of the

temperature change caused by eddies reflections may

undergo a 180� phase change or not (GONELLA and

MICHON, 1988; HOLBROOK et al., 2003; BENITEZ-NELSON

and MCGILLICUDDY, 2008; KRAHMANN et al., 2008;

WOOD et al., 2008). The results provide us with insight

that the existence of the mesoscale eddies should have

influenced seismic imaging. Thus in this paper, we

investigate the effect of mesoscale eddy which are

observed more frequently in the South China Sea.

Mesoscale eddies are large coherently rotating

bodies of water and commonly appeared in deepwater.

A striking environmental characteristic of eddies is a

large distortion of the normally horizontal isotherms and

eddies have been shown to be responsible for isothermal

uplifts of 500 m or more (HENRICK et al., 1977, 1980;

NYSEN and POWER, 1978; BAER, 1980). Much attention

has been focused on mesoscale eddies by underwater

acousticians and physical oceanographers other than

seismologists. In underwater acoustics, the propagation

of acoustic wave is treated with quasi-horizontal direc-

tion (large distance propagation), while seismic model

deals with quasi-vertical propagation (LIU and TAO,

1997; JENSEN et al., 2000; KORMANN et al., 2010). Thus

underwater acoustic propagation methods are not opti-

mal to be applied to seismic models. Recently, KORMANN

et al. simulated seismic oceanography experiments

numerically by using a simplified wave equation and

second-order complex frequency shifted perfectly

matched layers (PML) at the numerical bound-

aries (KORMANN et al., 2008, 2010; KORMANN, 2009).

This simplified wave equation is derived based on two
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basic assumptions: one is that the density q and the

sound speed c of the fluid satisfied c ¼
ffiffiffiffiffiffiffiffiffi

K=q
p

where

K is the compression modulus of the fluid; the other is

that the fluid is static or moving with uniform speed.

However, for the analytic eddy model in our paper, the

relation between the density and the sound speed of

mesoscale eddies are much more complicated (HEN-

RICK et al., 1977). Further, as mentioned above, in

mesoscale eddies the water rotates with a nonuniform

velocity, so a wave equation including nonuniform

current effect is more desirable (ROBERTSON et al.,

1985). In this paper, to investigate the effect of meso-

scale eddy, an appropriate partial differential equation

is derived for the acoustic pressure field while includ-

ing the density variations and nonuniform currents in

the eddy.

The outline of this paper is as follows: in Sect. 2, the

derivation of the appropriate partial differential equa-

tion is briefly presented. Subsequently, the PML are

introduced to avoid spurious reflections at the lateral

boundaries. In Sect. 3, we examine the characteristics of

wavefields and synthetic seismograms for having eddy

and no-eddy case. Then we demonstrate that the image

perturbation caused by the eddy is dependent on the

arrival time perturbation and the migration velocity

below water. Finally, the distortion of migrated images

of the target stratum is discussed.

2. Methodology

Our physical model is depicted in Fig. 1. In this

paper, the eddy is based on an analytic model that

reproduces observed data in the South China Sea (WU

et al., 2001; JIAN et al., 2009). The effective depth of

the eddy is 1.6 km and the effective radius is 150 km

in horizontal range. The water depth is 2,200 m, and

below water there are two homogeneous layers sep-

arated by flat interfaces H1 and H2. It should be

pointed out that the water is inhomogeneous in both

horizontal and vertical direction.

2.1. Equations for Inhomogeneous Moving Water

The general governing equations (TEMKIN, 1981)

for the motion of an adiabatic and nondissipative

fluid are:

oq
_

w

o t
_
þr � ðq_wv

_

wÞ ¼ 0 ð1aÞ

q
_

w

Dv
_

w

Dt
_
¼ �rP

_

w ð1bÞ

c
_2

w

Dq
_

w

Dt
_
¼ DP

_

w

Dt
_

ð1cÞ

where r is the gradient operator, D=Dt
_ ¼ ðo=o t

_þ
v
_

w �rÞ; q
_

w is fluid density, v
_

w is the fluid velocity

vector, P
_

w is pressure in water, c
_

w is sound speed in

water.

The quantities q
_

w; P
_

w; v
_

w in Eqs. (1a)–(1c) are

assumed to have the following form (ROBERTSON

et al., 1985):

p
_

w ¼ p
_

w0 þ p
_

w1; q
_

w ¼ q
_

w0 þ q
_

w1; v
_

w ¼ v
_

w0 þ v
_

w1

ð2Þ

The quantities are composed of two components.

One describes the state in absence of an acoustic

disturbance, indicated by zero subscript, and the other

represents acoustic perturbation components caused

by eddies, indicated by a unit subscript.

We assumed that the fluid density q
_

wðx
_
; z
_
; t
_Þ and

the velocities c
_

wðx_; z
_Þ and v

_

wðx_; z
_
; t
_Þ of sound and

fluid, respectively, depend arbitrarily on the vertical

coordinate z
_

and weakly on the horizontal coordi-

nates x
_

.

To nondimensionalize Eqs. (1a)–(1c) and (2), we

let:

x
_ ¼ xL

_

; z
_ ¼ zL

_

; t
_ ¼ tT

_

ð3Þ

v
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_

0v
_
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_
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0v1ðx; z; tÞ; ð4bÞ

q
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q
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_
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_
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p
_

0 x
_
; z
_

� �

¼ q
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00U
_ 2
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p
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1 x
_
; z
_
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� �

¼ dq
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00c
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0L
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T
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p1 x; z; tð Þ ð4fÞ

where L
_

and T
_

are characteristic length and time

scales to be specified later, q
_

00;U
_

0 and c
_

0 are a ref-

erence density, current speed and sound speed,
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respectively. u0; v1; p0; p1; q0 and q1 are dimension-

less quantities of order of magnitude unity, I is the

unit vector along the x axis, and d which represents

the acoustic perturbation is a small dimensionless

number.

Substituting Eqs. (2)–(4f) into Eqs. (1a)–(1c) and

neglecting the terms of high order, we obtain (see

Sect. ‘‘5’’)

lq0r
1

q0

rp1t

� �

¼ 2Mln2u0p1xtt

� 2 M= lq2
0

� �	 


u
0

0p1zx þ l2n2p1tt

ð5Þ

where l ¼ L
_

c
_�1

0 T
_�1

; M denotes the mach number

U
_

0=c
_

0:

Next, we rescale the current gradient u00 to

indicate its actual magnitude. This is necessary

because small currents may give rise to rather large

current shears (ROBERTSON et al., 1985). Thus, the

current gradient can be expressed as

u00 ¼ nG zð Þ ð6Þ

where G is an order unity function. Here we define n
is as the maximum of u00

�

�

�

� over all depth z. In order to

indicate possible values for n; we consider that depth

at which the maximum current shear occurs. In the

vicinity of this depth, G ffi 1: In particular, our scal-

ing can be used to express u00 as

u00 ¼ L
_

U
_�1

0

du
_

0

dz
_
¼ c

_

0

2pf
_

U
_

0

 !

du
_

0

dz
_

� �

ð7Þ

where the second equality in Eq. (7) follows from

our choice of L
_

, and f
_

is the source frequency in

hertz.

In a typical example of mesoscale eddies discussed

by WU (WU et al., 2001), du
_

0

d z
_

� �

¼ 0:002 s�1 with a

surface current speed of U
_

0 ¼ 1:0 m/s: It follows that:

n ffi 0:5

f
ð8Þ

Consequently, n is considerably small even at

lower acoustic frequencies. For instance, when f
_

¼
50 Hz, we have n�O M

1
2

� �

:

Then Eq. (5) becomes

lq0r �
1

q0

rp1t

� �

¼ 2Mln2u0p1xtt

� 2 Mn= lq2
0

� �	 


Gp1zx

þ l2n2p1tt ð9Þ

Consequently, terms of O Mnð Þ will be negligibly

small compared to M (ROBERTSON et al., 1985), then

Eq. (9) reduces to

lq0r �
1

q0

rp1

� �

¼ 2Mln2u0p1xt þ l2n2p1t ð10Þ

Then Eq. (10) may be written in dimensional form

as follows

c
_2

wq
_

0r �
1

q
_

0

rp
_

1

 !

¼ 2u
_

0

o2p
_

1

o t
_

ox
_
þ o2p

_

1

o t
_2

ð11Þ

Figure 1
Physical Model
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The first term on the right hand of Eq. (11) is due

to current effect of eddies.

For the homogeneous media below water, the

pressure p
_

h satisfies the governing equations:

c
_2

hr2p
_

h ¼
o2p

_

h

o t
_2

ð12Þ

where c
_

h is the sound speed in each layer.

2.2. Numerical Algorithm

In the following, we describe briefly the propa-

gation algorithm for the equations mentioned above,

which consists of a finite-difference scheme imple-

mented on a uniform grid with the same size D in the

x- and z-axis. Then the classical explicit second-order

finite-difference scheme for Eq. (11) yields

c
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� 1
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Dx2

� 1

q
_

0:ij

p
_

1;i;jþ1 � 2p
_
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_

1;i;j�1

Dz2

þ 1

4Dx2

1

q
_
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� 1

q
_
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 !

� p
_

1;iþ1;j � p
_

1;i�1;j

� �

þ 1

4Dz2

1

q
_
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� 1

q
_
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 !

� p
_
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_
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� �

)

ð13Þ

p
_

1;tt ¼
p
_nþ1

1;ij � 2p
_n

1;ij þ p
_n�1

1;ij

Dt2
ð14Þ

p
_

1;xt ¼
p
_n

1;iþ1;j � p
_n�1

1;iþ1;j � p
_n

1;i�1;j þ p
_n�1

1;i�1;j

2Dx
_D t

_
ð15Þ

The first-order PML introduced by Kormann are

used in this paper. It is worthwhile to emphasize that,

to observe the reflections yielded by the eddy clearly,

spurious numerical reflections at the lateral PML

boundaries must be at least one order smaller than the

magnitude of the physical phenomena of interest.

3. Numerical Results

In this section we investigate the effect of eddies

on seismic wave propagation using the algorithm

described in Sect. 2.

3.1. Forward Modeling

Firstly, we extract the center region of the eddy to

observe seismic wave propagation. Figure 2a shows a

sketch of the numerical model. The source with

dominant frequency 40 Hz is place at mid-range,

50 m deep. The space and time discretization are

Dx ¼ Dz ¼ 1 and Dt ¼ 1:25� 10�4 s; respectively.

The region we simulated is 4,000 m long and

2,600 m deep and the PML thickness is set to four

wavelengths of the Ricker wavelet. The depth of the

water is 2,200 m, and the properties of each layer

Figure 2
a Sketch of the numerical model with the positions of the source and the receivers; b sound speed map of water around the center of the eddy
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below water are listed in Table 1. There are two

reflectors (H1, H2) at the depth of 2,200 and 2,400 m,

respectively. In the following, we will investigate the

characteristic of seismic wave propagation for both

having eddy case and no-eddy case. For having eddy

case, sound speed map of water around the center of

the eddy is illustrated in Fig. 2b. We can see that

sound speed in the upper part of the eddy vary more

quickly than that in the lower part if the eddy. And in

the center of the eddy, sound speed has little change.

Figure 3 illustrates the wavefields at time 1.592 s

both in region containing the eddy and in the same

region where the perturbation of the eddy is absent.

From the plots, we can see that the algorithm

described in this paper gives no visible numerical

dispersion. At the resolution of the figure, no reflected

waves can be seen coming from the PML domain.

When the wave travels through the eddy, the

inhomogeneous velocities of the wavefields cause

weak reflected waves (Fig. 3a). To perform a further

comparison between having eddy and no-eddy case,

the wavefront curves in the zoom between 2,000 and

2,600 m are plotted in Fig. 3c. We can see that the

two curves are distinguished and in layers below

water the difference are larger than that in water.

Now we further examine the synthetic seismo-

grams generated from the numerical model with the

eddy. To observe the reflections from the eddy

clearly, a zoom of the synthetic seismograms between

0 and 2.9 s are depicted in Fig. 4b. We can see some

weak reflected waves in the upper and lower part of

Fig. 4b. The core of the eddy shows low reflectivity,

suggesting homogeneous water mass. Moreover, the

amplitude of these weak reflected waves is of order

10�4 while the amplitude of the reflections from the

reflectors below water is of order 10�2.

Table 1

Properties of the layers below water in Fig. 2a

Layers P wave speeds (m/s) Density (g/cm3) Thickness (m)

1 2,000 2.1 200

2 4,000 2.5 200

The layers are numbered from the sea floor.

Figure 3
a Wavefields at time 1.592 s computed with Eq. (11) for having eddy case. b Wavefields at time 1.592 s for no-eddy case. c Comparison of

wavefront between having eddy (solid line) and no-eddy case (dashed line)

Vol. 170, (2013) Numerical Analysis 263



To investigate the effect of the eddy on the

reflections from layers lying below water, we com-

pare the waveforms generated by the first reflector H1

between having eddy and no-eddy case. Figure 5

shows the signal recorded at two ranges. We can see

that seismic wave propagates more slowly because of

the perturbation of the eddy. For the numerical model

of Fig. 2, the time difference increases from 20 ms at

offset of 0 m (Fig. 5a) to 25 ms at offset of 2,000 m

(Fig. 5b).

3.2. Pre-Stack Depth Migration

In this section we will use several more general

models to investigate the effect of the eddy on

seismic imaging. Three models (Fig. 6) are consid-

ered: two five-layer models (labeled Model 1 and

Model 2) and a three-layer model (labeled Model 3).

The first layer of each model is water with eddy and

its velocity is plotted in Fig. 2b. In Models 1 and 2,

there are four flat layers with the same thickness

below water. In Model 3, the two layers below water

are separated by a dipping interface. Here we used the

algorithm described in Sect. 2 to obtain the seismic

data and then applied pre-stack reverse time depth

migration to them. For each model, the shot spacing

is 10 m, and the receiver spacing is 10 m. It is

necessary to point out that, during depth migration,

the migration velocity we used in water is the

velocity without eddy. Moreover, to remove the

Figure 4
Synthetic seismograms for the numerical model with the eddy (a) and a zoom between t = 0 s to 2.9 s (b)

Figure 5
Zoom on the recorded signals at two ranges along the receiver line for having eddy (dashed line) and no-eddy case (solid line): a 2,000 m and

b 4,000 m
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interference factors produced by velocity inaccuracy

in layers below water, the migration velocity in these

layers is exactly the real velocity.

Figure 7a, b show the images migrated with

Model 1 for no-eddy and having eddy case. Com-

paring these two images, one can observe that the

four reflectors in Fig. 7b are positioned incorrectly

due to the perturbation of the eddy. Further, the depth

perturbation of reflectors increases with the migration

velocity of the layer. For instance, the depth of the

first reflector is 2,220 m, while the depth of the forth

reflector increases to 2,840 m.

Table 2 lists the depth perturbation of reflectors

for the three models, where Dd is the depth pertur-

bation. Thus, we can conclude that the image

perturbation of reflectors introduced by the eddy is

proportion to the migration velocities. The propor-

tional coefficient is 0.01, which is half the travel time

difference between having eddy and no-eddy case at

the zero offset trace. As a consequence, the relation-

ship between depth perturbation of reflectors and the

migration velocity below the reflectors can be

summarized as following:

Dd ¼ vm � Dt=2 ð16Þ

where Dd ¼ d1 � d2; Dt ¼ t1 � t2; d1ðd2Þ is the

depth of the reflectors for having eddy (no-eddy

case). t1(t2) is the traveltime of reflections from the

reflectors for having eddy (no-eddy case) at zero

offset. vm is migration velocity below the reflector.

Next we consider a complex model (Fig. 8a) with

constant density to test the formulation (Eq. 16). As

shown in Fig. 8b, the model consists of four compli-

cated layers below water. Figure 8c is the image

migrated with seismic data computed with the algorithm

described in this paper while the dashed lines are the true

positions of the reflectors. We found that the formulation

(Eq. 16) is valid under the assumption of homogeneous

media below water, small offset angle (\10�) and small-

curvature reflectors.

4. Discussion and Conclusions

We have discussed the perturbation of the eddy

around its center. However, as mentioned in the

Figure 6
Model 1 (a); Model 2 (b); Model 3 (c)
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beginning of the paper, the eddy is moving and its

effective radius is 150 km in horizontal range, so in

deepwater field development we should investigate

the effect of the eddy on seismic wave propagation

and seismic imaging throughout the area of its

influence.

As shown in Fig. 1, the region we simulated is

300 km long and 2,600 m deep. In addition, we

assume that the material properties of two layers

below water are the same as listed in Table 1. The

zero-offset seismic profiling throughout the eddy is

described in Fig. 9a. The reflections from the eddy is

weak, and it can be checked more clearly in the zoom

between 0.1 and 2.9 s (Fig. 9b). In Fig. 9b highly

reflective lens-like structures can be observed, and

this result coincides with the observations in seismic

oceanography (DONG et al., 2010; SONG et al., 2008).

The core shows low reflectivity. Moreover, the

reflections in the upper part of the eddy are steeply-

dipping while those in the lower part are mainly

horizontal. These complex reflections in the eddy can

perturbate the primary reflections from sedimentary

reflectors.

Figure 10 shows the details of the reflections from

the first reflector H1 for having eddy and no-eddy

case. It can be seen that the arrival time in Fig. 10a is

slower than that in Fig. 10b. The difference of arrival

Figure 7
Images migrated with Model 1 for no-eddy case (a); Model 1 for having eddy case (b); Model 2 (c); Model 3 (d). The dashed lines represent

the true position of the reflections

Table 2

Depth perturbation of reflectors in three models

Reflectors Dd (m)

Model 1 Model 2 Model 3

H1 20 25 20

H2 25 20 25

H3 30 40 –

H4 40 30 –
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time increases from 10.5 ms at the edge of the eddy

to 20 ms at the center of the eddy. Further, the arri-

val-time difference is symmetric, as expected. As

mentioned above, the traveltime difference at zero-

offset trace is important, so Fig. 11 gives the

description of Dt throughout the eddy.

Then we can use Eq. (16) and Fig. 11 to estimate

the image perturbation of reflectors caused by the

eddy. We obtain that the depth of the first reflector H1

increases from 2,210 m at the edge of the eddy to

2,220 m at the center of the eddy while the depth of

the second reflector H2 increases from 2,420 to

2,440 m. Thus, the structure of the flat reflector

becomes distorted because of the perturbation of the

eddy.

The purpose of this paper is to study the effect of

eddies on seismic wave propagation and seismic

imaging. To highlights the inhomogeneous effects of

Figure 8
The complex model (a) and the detail of layers below water (b); images migrated with the complex model (c)

Figure 9
a Zero-offset seismic profiling throughout the eddy. b The zoom of zero-offset seismic profiling between 0.1 and 2.9 s
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water, we derive an appropriate partial differential

equation for the pressure field in water with eddies,

including current effects. Based on numerical calcu-

lations, we finally obtain that:

1. There are weak reflections in the eddy, the

amplitude of these weak reflected waves is of

order 10-4, and is two orders smaller than that

from layers below water.

2. Because of the perturbation of the eddy, seismic

wave propagates more slowly. This leads to

incorrect estimation of the depths of reflectors. A

simple formulation is given to estimate this image

perturbation.

3. As approaching the center of the eddy, the effect

of the eddy on seismic imaging becomes larger.

Thus the migrated images of flat reflectors below

the eddy become distorted.

In sum, the eddy plays an important role in seis-

mic wave propagation and seismic imaging, and it

can’t be neglected in deepwater field development.
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Appendix

In this appendix, we will derive Eq. (5) using

asymptotic method.

Substituting Eqs. (2)–(4f) into Eq. (1a) provides

dL
_

c
_�1

0 T�1 oq1

ot
þr Mq0v0 þ dq0v1 þMdq1v0 þ d2q1v1

� �

¼ 0 ð17Þ

where M denotes the Mach number U
_

0=c
_

0:

When d ¼ 0; Eq. (17) is identically zero since v
_

0

depends only on z and has no vertical component.

Keeping terms of O dð Þ; Eq. (17) reduces to

l
oq1

ot
þr � q0v1 þMq1v0ð Þ ¼ 0 ð18Þ

where

l ¼ L
_

c
_�1

0 T
_�1

ð19Þ

Figure 10
a Zoom of zero-offset seismic profiling between 2.9 and 3.0 s for having eddy. b Zoom of zero-offset seismic profiling between 2.9 and 3.0 s

for no-eddy case

Figure 11
Dt throughout the eddy
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Since we anticipate that the parameter l is order

unity for acoustic waves, Eq. (18) represents a scaled

conservation of mass equation.

Now we consider the scaling of Eq. (1b). Substi-

tuting Eqs. (4a)–(4f) into Eq. (1b) and algebraically

simplifying, it yields

q0þ dq1ð Þ½ld
ov1

ot
þM2 v~0 �rð Þv0þMd v~0 �rð Þv1

þMd v1 �rð Þv0þ d2 v1 �rð Þv1� ¼ �r M2p0þldp1

� �

ð20Þ

Further, d ¼ 0 and the left side of Eq. (20) is

identically zero since v0 depends only on z and has no

vertical component. Eliminating ambient terms from

the linearized version of Eq. (20) provides

l
ov1

ot
þM v0 � rð Þv1 þM v1 � rð Þv0 ¼ �

l
q0

rp1

ð21Þ

Finally, we scale Eq. (1c) in the same manner,

using n ¼ c
_

0=c
_

w as the index of refraction. With the

scaled variables already defined, Eq. (1c) becomes

n�2 ld
oq1

ot
þ dv1 � rq0þ dMv0 � rq1þ d2v1 � rq1

� �

¼M3v0 � rp0þ lMdv0 � rp1þM2dv1 � rp0

þ ld2v1 � rp1þ l2d
op1

ot
ð22Þ

when d¼ 0; the reduced equation is the balance

condition to be satisfied identically by the ambient

terms. Under the condition d¼ O M2ð Þ; where, as

usual, M� 1; the appropriate simplification of

Eq. (1c) is

n�2 l
oq1

ot
þ v1 � rq0 þMv0 � rq1

� �

¼ lMv0 � rp1 þ l2 op1

ot
ð23Þ

That this condition on d is reasonable follows

from Eq. (4b), which implies that

d ¼ O v
_

w1

�

�

�

�

�

�
=c
_

0

� �

ð24Þ

Since M in the ocean is never bigger than 10-3,

the condition d ¼ O M2ð Þ and Eq. (24) imply that the

magnitude of the velocity induced by the acoustic

disturbance is no more than about 10�3 ms�1: This is

a reasonable and conservation means the acoustically

induced disturbance is smaller than the ambient flow

by a scaling factor of order Mach number.

Next, we wish to extract from Eqs. (18), (21) and

(23) a single equation for acoustic pressure. It is a

straightforward calculation to show that these equa-

tions reduce to the pair

lq0r �
1

q0

rp1

� �

¼ 2Mln2u0P1xt

� 2 M= lq0ð Þ½ �u00wx þ l2n2p1tt

ð25aÞ

�p1z ¼ q0

ow

ot
þ M=lð Þq0u0wx ð25bÞ

where u00 ¼ du0=dz, and w ¼ v1 � k is the z compo-

nent of acoustic velocity v1. The dimensionless

ambient current component u0 zð Þ is defined in

Eq. (4a). Now, by taking the t derivative of Eq. (25a)

and the x derivative of Eq. (25b), the w can be

eliminated to give the following third-order equation,

correct to terms of order M:

lq0r �
1

q0

rp1t

� �

¼ 2Mln2u0p1xtt

� 2 M= lq2
0

� �	 


u00p1zx

þ l2n2p1tt ð26Þ

Picking T
_

¼ 2pf
_

� ��1

ensures that time deriva-

tives are O 1ð Þ; where f
_

is the frequency of the source

in hertz. Also, we choose the reference wavenumber

k
_

0 k
_

0 ¼ 2pf
_

=c
_

0

� �

as our length scale, and then we

have L
_

¼ c
_

0T
_

. Consequently, l ¼ 1:
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