
This article was downloaded by: [Institute of Mechanics]
On: 01 November 2012, At: 04:24
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Optimization Methods and Software
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/goms20

Some modifications of low-dimensional
simplex evolution and their
convergence
Changtong Luo a , Shao-Liang Zhang b & Bo Yu c
a Institute of Mechanics, Chinese Academy of Sciences, Beijing,
100190, P.R. China
b Department of Computational Science and Engineering, Nagoya
University, Nagoya, 464-8603, Japan
c Department of Applied Mathematics, Dalian University of
Technology, Dalian, 116024, P.R. China
Version of record first published: 01 Sep 2011.

To cite this article: Changtong Luo, Shao-Liang Zhang & Bo Yu (2013): Some modifications of low-
dimensional simplex evolution and their convergence, Optimization Methods and Software, 28:1,
54-81

To link to this article: http://dx.doi.org/10.1080/10556788.2011.584876

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation
that the contents will be complete or accurate or up to date. The accuracy of any
instructions, formulae, and drug doses should be independently verified with primary
sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/goms20
http://dx.doi.org/10.1080/10556788.2011.584876
http://www.tandfonline.com/page/terms-and-conditions

Optimization Methods & Software
Vol. 28, No. 1, February 2013, 54–81

Some modifications of low-dimensional simplex evolution and
their convergence

Changtong Luoa*, Shao-Liang Zhangb and Bo Yuc

aInstitute of Mechanics, Chinese Academy of Sciences, Beijing 100190, P.R. China; bDepartment of
Computational Science and Engineering, Nagoya University, Nagoya 464-8603, Japan; cDepartment of

Applied Mathematics, Dalian University of Technology, Dalian 116024, P.R. China

(Received 3 February 2010; final version received 26 April 2011)

Low-dimensional simplex evolution (LDSE) is a real-coded evolutionary algorithm for global optimization.
In this paper, we introduce three techniques to improve its performance: low-dimensional reproduction
(LDR), normal struggle (NS) and variable dimension (VD). LDR tries to preserve the elite by keeping
some of its (randomly chosen) components. LDR can also help the offspring individuals to escape from
the hyperplane determined by their parents. NS tries to enhance its local search capability by allowing
unlucky individual search around the best vertex of m-simplex. VD tries to draw lessons from recent
failure by making further exploitation on its most promising sub-facet. Numerical results show that these
techniques can improve the efficiency and reliability of LDSE considerably. The convergence properties
are then analysed by finite Markov chains. It shows that the original LDSE might fail to converge, but
modified LDSE with the above three techniques will converge for any initial population. To evaluate
the convergence speed of modified LDSE, an estimation of its first passage time (of reaching the global
minimum) is provided.

Keywords: global optimization; evolutionary algorithm; genetic algorithm; low dimensional; variable
dimension; Markov chain

1. Introduction

Global optimization (GO) methods are widely used in different application fields, including
economics, financial industry, engineering, modern management, information and control. We
consider the GO as follows:

min
x∈�

f (x),

where � = {x ∈ R
n|l ≤ x ≤ u}, and the objective function f might be non-linear, non-convex,

multi-modal, non-smooth, discontinuous, or black-box type.
Since 1960s, different kinds of evolutionary algorithms (EAs) have been proposed [4], includ-

ing genetic algorithm [9], evolution strategy [17], evolutionary programming [5], differential
evolution (DE) [21], particle swarm optimization [11], etc. EAs play an important role in GO,

*Corresponding author. Email: luo@imech.ac.cn

ISSN 1055-6788 print/ISSN 1029-4937 online
© 2013 Taylor & Francis
http://dx.doi.org/10.1080/10556788.2011.584876
http://www.tandfonline.com

D
ow

nl
oa

de
d

by
 [

In
st

itu
te

 o
f

M
ec

ha
ni

cs
]

at
 0

4:
24

 0
1

N
ov

em
be

r
20

12

Optimization Methods & Software 55

especially in case there are many local optima and/or the gradient information is unavailable, hard
to compute, or unreliable (numerically unstable, e.g. in the presence of noise). However, their effi-
ciency (i.e. convergence speed) and reliability (i.e. percentage of success at a given computational
cost) are not satisfactory yet, and have become the bottleneck of their applications.

Hybridizing conventional local optimization methods is a good way to speed up EAs. Existing
ways of hybridization could be classified into three types: (1) (E +T)-type, in which EA is focused
on global exploration, and the conventional optimization algorithm is used for local exploitation.
First, EA is applied to find a most promising basin of attraction and get an initial point. Then the
conventional algorithm is used to discover the bottom of the basin from the initial point provided
by EA. This type of hybridization is very easy to use, so it is widely used in practical engineering
computation. For example, the latest Matlab uses a hybrid function to specify a local optimizer
(fminsearch, patternsearch, fminunc, or fmincon) that runs after the genetic algorithm terminates
[14]. (2) (E +T + E)-type, in which the conventional algorithm is embedded in EA to improve
the current individual in the process of evolution. For example, Genetic Powell Learning (GPL)
is a combination of real-coded GA and Powell’s method [18]. (3) (E < T > E)-type, in which
the conventional operator is directly used as an evolutionary operator. For example, simplex-GA
[18] and simplex coding genetic algorithm [8] are hybridizations of real-coded GA and simplex
method.

The above three ways of hybridization do work to improve the performance of EA. But they are
just some combinations of existing operators. Disharmony between evolutionary and conventional
operators might arise. The hybrid algorithm needs a tune-up to fit the combination. To this end,
we try modifying the involved operators essentially to take advantage of their specialties. This
method is referred to as (< ET >)-type hybridization, where < ET > means evolutionary and
conventional operators are closely combined. In this new way of hybridization, we have attained
a hybrid EA named low-dimensional simplex evolution (LDSE) [12] (detailed abstract of LDSE
was presented at SNPD 2007). LDSE uses simplex operators conditionally and selectively with
essential modifications. It has shown its advantage against differential evolution with random
localization (DERL) [10], which is an improved version of DE [21] proposed by Kaelo and Ali.
Basic form of LDSE (basic LDSE) has been successfully applied to some practical problems
[13,23].

However, basic LDSE needs a large population to ensure its convergence. Obviously, the large
population-size could slow down LDSE’s convergence speed. There are at least three reasons
why basic LDSE needs a large population: (1) Its reproduction operators (including reflection,
contraction and struggle) are all linear. Therefore, a large population is required to maintain its
population diversity. (2) The simplex method might be failed in high-dimensional space if the
population size is not large enough. (3) Its local search ability will be dramatically reduced if it
uses a small population.

In this paper, we will introduce three techniques to improve LDSE’s performance. To reduce
its required population size, we try to (1) use nonlinear operators to replace the linear ones, (2)
implement simplex operations in low-dimensional spaces, and (3) enhance LDSE’s local search
ability. Specifically, the three techniques are called low-dimensional reproduction (LDR), normal
struggle (NS) and variable dimension (VD). LDR keeps some (randomly chosen) components
fixed to those of the current individual. As a result, the offspring individuals are capable of
escaping from the hyperplane determined by their parents, and the elitism information is partially
preserved. This can help to maintain the diversity of population. Numerical results show that LDSE
with LDR can converge with less population size than LDSE without LDR. NS tries to enhance
LDSE’s local search capability by allowing unlucky individual search around the best vertex of m-
simplex. VD tries to draw lessons from recent failure by making further exploitation on its most
promising sub-facet. Numerical experiments indicate the three techniques can work together,
and LDSE with the three techniques (modified LDSE) outperforms basic LDSE considerably.

D
ow

nl
oa

de
d

by
 [

In
st

itu
te

 o
f

M
ec

ha
ni

cs
]

at
 0

4:
24

 0
1

N
ov

em
be

r
20

12

56 C. Luo et al.

Comparison of modified LDSE and DERL (an improved version of DE) is also carried out. The
result shows that modified LDSE can find the global optimum with fewer numbers of evaluations
(nf e) in most cases, and it can also solve some problems which DERL cannot solve within a given
number of nfe.

The convergence properties of LDSE and its modifications are also analysed in this paper. It
shows that basic LDSE might fail to converge but modified LDSE with the above three techniques
will converge for any initial population. To evaluate the convergence speed of modified LDSE,
an estimation of its first passage time (of reaching the global minimum) is provided.

The rest of this paper is organized as follows. Basic LDSE is briefly reviewed in Section 2. The
three techniques are introduced in Section 3. Convergence analyses are discussed in Section 4.
Numerical results are provided in Section 5. Concluding remarks are drawn in Section 6.

2. Basic form of low-dimensional simplex evolution

LDSE [12] is a real-coded EA for GO of continuous variables. Similar to other EAs, LDSE is
also population-set-based and stochastic. The individuals survive by the rule of natural selection
(i.e. survival of the fittest). Different from other EAs, LDSE generates new individuals with
low-dimensional simplex operators selectively and conditionally, and the individuals are updated
in the framework of try-try-struggle. Let the population size be N, for each individual Xi(t)
(i = 1, 2, . . . , N) in current population �X(t), LDSE selects m + 1 points (vectors or individuals)
randomly to form an m-simplex, where m is usually much less than the problem dimension n. Then,
LDSE will find the best Xb and the worst Xw among the m + 1 points. In LDSE, an individual
Xi(t) has two chances to improve at every generation t. The first chance is provided by reflection.
The reflection point Xr will replace Xi(t) if it is better. Thus, the ith individual Xi(t) is improved.
Otherwise, the second chance, contraction, will be carried out. Similarly, the contraction point Xc

will replace Xi(t) if it is better. The reflection point Xr is generated by reflecting the worst point
Xw through the centroid of the other m points X̄, i.e. Xr = X̄ + α · (X̄ − Xw), and the contraction
point Xc complies with the rule Xc = X̄ + β · (Xw − X̄), where α and β are scaling factors of
preset positive numbers. If the i-th individual Xi(t) has lost the above two chances, and it cannot
receive its average profit, that is, its function value is greater than or equal to the average value of
the current population (i.e. f (Xi (t)) ≥ (1/N)

∑
i f (Xi (t))), it will take its last struggle to step

towards the best individual Xb (i.e. the struggle point Xs = Xi + 0.618 · (Xb − Xi)) or away from the
worst individual Xw (i.e. Xs = Xi + 0.382 · (Xi − Xw)). LDSE’s hybridization way is (< ET >)-
type. It comprises the ideas of Nelder-Mead, ES and elite preservation. However, the individuals
are generated in low dimensional spaces and updated in a framework of try-try-struggle.

3. Three techniques introduced to improve basic LDSE

3.1 Low-dimensional reproduction

From Section 2, we can see that the three reproduction operators, including reflection, contrac-
tion and struggle, are all linear. As a result, new individuals cannot escape from the hyperplane
determined by their parent individuals (see Figure 1(a)). Therefore, basic LDSE needs a large
population to ensure its convergence. This might slow down its convergence speed. Therefore,
we want to change the linear operators to nonlinear ones.

Subspace technique is successfully used in linear algebra. For example, Krylov subspace meth-
ods are regarded as one of the 10 most-important classes of numerical methods [7]. Another fact

D
ow

nl
oa

de
d

by
 [

In
st

itu
te

 o
f

M
ec

ha
ni

cs
]

at
 0

4:
24

 0
1

N
ov

em
be

r
20

12

Optimization Methods & Software 57

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Linear reflection

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Low dimensional reflection

X
2 X

2

X
r
i

X
3

X
1X

1

X
3

X
r
i

(a) (b)

Figure 1. Possible offsprings generated by reflection with and without LDR technique in case m = 2 and n = 2, where
X1, X2, and X3 are parents, and X1 and X3 are the worst and the best vertex, respectively. Fifty possible offsprings are
shown, only one is labelled as Xri .

is that the simplex method is quite efficient for low-dimensional problems. These facts motivate
us to use the simplex method in low-dimensional spaces.

Elitism selection is a widely used technique in EAs, in which the elite individual is preserved
for the next generation. It has been successfully used to ensure their global convergence and accel-
erate the convergence speed. Therefore, we want to combine elitism selection with reproduction
operators in LDSE.

Now the question is how to implement the above three ideas with one modification. In fact,
this is not a difficult task. We have implemented it in a simple way: (1) keep some (randomly
chosen) components of a local best vector (regarded as an elite individual here) for its offspring
in the reproduction process, and (2) let the original reproduction operators act only on the rest
components.

In this way, the reproduction operator is no longer linear. The problems caused by the linear-
ity are avoided. From Figure 1(b), we can see that the nonlinear operator is more suitable for
maintaining the diversity of the population. Now that the simplex operators act only on a part of
components, the searching process (a reflection or contraction) is actually limited to a subspace
of R

n. Some components of the elite individual are kept for its offspring. So the elite individual
is partially preserved. This is an incomplete elitism-selection process.

The above technique is referred to as LDR. The reflection in basic LDSE is

Xr = X̄ + α · (X̄ − Xw).

The reflection with LDR technique (also referred to as low-dimensional reflection, see Figure 1(b))
becomes

xr,j =
{

xi,j if pr < pa,

x̄j + α · (x̄j − xw,j) else,
j = 1, 2, . . . , n,

where pr is a random variable with uniform distribution generated from [0,1]; xr, j, xi, j, x̄j and
xw, j are the jth component of the reflection point Xr , the current individual Xi, the centroid X̄
and the worst vertex Xw, respectively; pa is a preset number called adsorption probability, and
0 ≤ pa ≤ 1.

D
ow

nl
oa

de
d

by
 [

In
st

itu
te

 o
f

M
ec

ha
ni

cs
]

at
 0

4:
24

 0
1

N
ov

em
be

r
20

12

58 C. Luo et al.

Low-dimensional contraction with LDR technique is defined similarly. The contraction point
Xc is generated as follows.

xc,j =
{

xi,j if pr < pa,

x̄j + β · (xw,j − x̄j) else,
j = 1, 2, . . . , n.

LDR can help offsprings escape from the hyperplane determined by their parents. Meanwhile,
it can prevent them from getting too decentralized and help to search mainly along a series of
orthogonal directions (coordinate axes) (see Figure 1(b)). LDR has something in common with
elitism selection if the current individual is considered as an elite. Both LDR and elitism selection
preserve something of the elite for its offsprings. However, in LDR, the preserved object is not the
elite itself, but some components of it. LDSE with low-dimensional reflection and low-dimensional
contraction techniques is referred to as LDR-LDSE.

3.2 Normal struggle

As previously mentioned, the struggle operator in basic LDSE is linear. This is not good for
maintaining the diversity of the population, because the search space is limited to 1-dimension
(two line segments, see Figure 2(a)). So we consider replacing the linear struggle operator with
a nonlinear one. The struggled point is defined as a normal disturbance of the best vertex of
m-simplex (see Figure 2(b)), i.e. Xs = Xb(t) + N(μ, σ2), where Xb(t) is the best vertex of m-
simplex, and N(μ, σ2) is a random vector of normal distribution with mean μ and standard variance
σ2. This nonlinear struggle operator is referred to as normal struggle (NS).

Obviously, NS can enhance local search around local best individual (the best vertex of m-
simplex). NS can also increase the diversity of the population. In this paper, NS is always used in
conjunction with LDR. The LDSE with NS and LDR will be referred to as NS-LDSE.

The idea of NS is borrowed from evolution strategy (ES) [17]. However, they are not exactly
the same. First, NS-LDSE uses low-dimensional normal distributions. Second, NS is based on
the best vertex of m-simplex, not the current individual (in ES). Third, NS will not take effect if
reflection or contraction has successfully improved the current individual.

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Linear struggle

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Normal struggle

X2 X2

X3

X1X1

X3

Xs

Xi

Xs

(a) (b)

Figure 2. Possible offsprings generated by linear struggle and normal struggle in case m = 2 and n = 2, where X1, X2, X3,
and Xi are parents, and X1 and X3 are the worst and the best vertex, respectively. Fifty possible offsprings are shown, only
one is labelled as Xs.

D
ow

nl
oa

de
d

by
 [

In
st

itu
te

 o
f

M
ec

ha
ni

cs
]

at
 0

4:
24

 0
1

N
ov

em
be

r
20

12

Optimization Methods & Software 59

3.3 Variable dimension

The essential difference between LDSE and other EAs is that LDSE is based on realtime-generated
m-simplex to find a most promising direction and an adapted step-length. In basic LDSE, each
m-simplex is used only once, and then it will be discarded. Clearly, this might be a waste, since we
have just got the latest information about the current m-simplex. To make use of this information,
we introduce a VD technique. VD tries to make further exploitation around the current simplex
(applying lower-dimensional simplex operators) if the m-simplex operators (including reflection
and contraction) fail to improve the current individual.

Note that m-simplex has many sub-facets. Specifically, it has Ck+1
m+1 sub-facets with dimension k

(also referred to as k-facets), where k = 1, 2, . . . , m − 1. Obviously, it is very important to choose
an appropriate sub-facet on which the simplex operation is conducted. We will introduce a new
concept, the most promising sub-facet, before proceeding. The most promising sub-facet is defined
such that the simplex operators on it will most likely lead to a descent direction.

Definition 3.1 A k-facet is said to be the most promising among all k-facets if it is selected in
the following steps.

Step 1: Let Df be the set of k-facets defined as Df = k-facet in m-simplex | The k-facet has
the largest function–value difference between its worst and the second worst vertexes}. If there is
only one k-facet in set Df , it will be selected as the most promising sub-facet, and the selection
process stops. Otherwise, continue to the next step.

Step 2: Let Vf be the set of k-facets defined as Vf = k-facet in Df | The k-facet has the smallest
function–value variance of all its vertexes except the worst one}. If there is only one k-facet in
set Vf , then it will be selected as the most promising sub-facet, and the selection process stops.
Otherwise, continue to the next step.

Step 3: Let Vd be the set of k-facets defined as Vd = k-facet in Vf | The k-facet has the smallest
distance variance of its worst vertex to the rest vertexes}. If there is only one k-facet in set Vd,
it will be selected as the most promising sub-facet, and the selection process stops. Otherwise,
select the first one as the most promising sub-facet, and the selection process stops.

Remark From the above definition, we can see that it might be a multi-level optimization process
to find the most promising sub-facet. If there are several sub-facets with the same function–value
difference in step 1, all of them will be candidates of the most promising sub-facet. Similarly, if
there are more than one sub-facets in set Df with the same function–value variance, any of them
will be a candidate of the most promising sub-facet. Finally, if there are still several sub-facets in
setV f with the same distance variance, then only the first one will be selected as the most promising
sub-facet. Therefore, there will be one and only one k-facet selected as the most promising one
at each iteration. It is common that some sub-facets share the same edge. In this case, the set Df

consists of several sub-facets. The selection process is demonstrated in Examples 3.2 and 3.3 as
follows.

LDSE with VD technique detects a most promising sub-facet of the current m-simplex first,
and then applies lower-dimensional simplex operators (including reflection and contraction) on it.
This process will be repeated if the lower-dimensional simplex operators are failed again. In other
words, k-simplex operators will be conducted recursively if all the previous simplex operators
with higher dimensions are failed, where k = m − 1, m − 2, . . . , 2 (see Example 3.2). Note that
the total number of k-facets of an m-simplex is Ck+1

m+1. However, here the k-simplex operators are
carried out only on the most promising k-facet. VD technique can help to draw lessons from recent
failure and make the most of the latest local information (provided by the current m-simplex). In
this paper, VD is also always used in conjunction with LDR. LDSE with VD and LDR techniques
is denoted by VD-LDSE.

D
ow

nl
oa

de
d

by
 [

In
st

itu
te

 o
f

M
ec

ha
ni

cs
]

at
 0

4:
24

 0
1

N
ov

em
be

r
20

12

60 C. Luo et al.

1rX
1r

X

4r
X

2r
X

3r
X

2rX

1cX

sX
iX

2cX

Figure 3. A possible way of applying simplex operators in case m = 3 and n = 3: Xr1 → Xr2 Xr3 Xr4 and Xr1 → Xr3 Xr4 .
Five parents include four vertices Xr1 , Xr2 , Xr3 and Xr4 and the current individual Xi. Possible offsprings are Xr1, Xc1,
Xr2, Xc2 and Xs, which will be generated in turn if and only if the previous offspring failed to improve the current
individual.

Note that VD technique will not be activated if the dimension of the original simplex satisfies
m = 2. In this case, VD-LDSE and LDR-LDSE are the same.

Example 3.2 Consider VD-LDSE in case m = 3, and let f (Xr1) ≥ f (Xr2) ≥ f (Xr3) ≥ f (Xr4). Each
individual will have four chances to improve, namely, 3-simplex reflection, 3-simplex contraction,
2-simplex reflection and 2-simplex contraction. 3-simplex operators are done in the way of Xr1 →
Xr2 Xr3 Xr4 . The two-dimensional sub-facet (2-simplex) on which the 2-simplex operators are done
is chosen in the following way:

If f (Xr3) − f (Xr2) < f (Xr4) − f (Xr3), Xr1 → Xr2 Xr3 , else if abs(|Xr1 Xr3 |− |Xr1 Xr4 |) < abs
(|Xr2 Xr3 |− |Xr2 Xr4 |), Xr1 → Xr3 Xr4 , else Xr2 → Xr3 Xr4 .

There are three possible ways of using the 2-simplex operators in Example 3.2. Figure 3 shows
only one possible way in R

3. Note that there are four two-dimensional sub-facets in Exam-
ple 3.2, namely, Xr1 Xr2 Xr3 , Xr1 Xr3 Xr4 , Xr2 Xr3 Xr4 and Xr1 Xr2 Xr4 . However, 2-simplex operators
should not be carried out on facet Xr1 Xr2 Xr4 . The reasons are as follows. For the sub-facet
Xr1 Xr2 Xr4 , we have f (Xr4) − f (Xr2) ≥ f (Xr4) − f (Xr3) and f (Xr4) − f (Xr2) ≥ f (Xr3) − f (Xr2). So
the angle between Xr2 Xr4 and the contour surface (through Xr4) is likely greater than that of
Xr3 Xr4 . Similarly, the angle between Xr2 Xr4 and the contour surface (through Xr2) is likely greater
than that of Xr2 Xr3 . This means that the chance of getting a decent direction is little if we choose
the sub-facet Xr1 Xr2 Xr4 to carry out the 2-simplex operators.

Example 3.3 Consider VD-LDSE in case m = 4, and let f (Xr1) ≥ f (Xr2) ≥ f (Xr3) ≥ f (Xr4) ≥
f (Xr5). Each individual will have six chances to improve, namely, two 4-simplex operators, two
3-simplex operators, and two 2-simplex operators.

The 4-simplex operators are done in the way of Xr1 → Xr2 Xr3 Xr4 Xr5 .
The three-dimensional operators are done in three possible ways: (1) Xr1 → Xr2 Xr3 Xr4 or

(2) Xr1 → Xr3 Xr4 Xr5 or (3) Xr2 → Xr3 Xr4 Xr5 . If var(f (Xr2), f (Xr3), f (Xr4)) < var(f (Xr3), f (Xr4),
f (Xr5)), choose (1); else if var(d13, d14, d15) < var(d23, d24, d25), then choose (2); otherwise,
choose (3).

The two-dimensional operators are done in six possible ways: (1) Xr1 → Xr2 Xr3 or (2) Xr1 →
Xr3 Xr4 or (3) Xr1 → Xr4 Xr5 or (4) Xr2 → Xr3 Xr4 or (5) Xr2 → Xr4 Xr5 or (6) Xr3 → Xr4 Xr5 . First,
find the minimum of (f (Xr3) − f (Xr2)), (f (Xr4) − f (Xr3)), and (f (Xr5) − f (Xr4)). If (f (Xr3) − f (Xr2))
is the minimum, choose (1). If (f (Xr4) − f (Xr3)) is the minimum, choose (2) or (4); furthermore,
if |d13 − d14|< |d23 − d24|, then choose (2), otherwise choose (4). If (f (Xr5) − f (Xr4)) is the
minimum, choose (3), or (5), or (6); furthermore, find i∗ = arg mini∈{1,2,3} |di4 − di5|. If i∗ = 1,
choose (3), else if i∗ = 2, choose (5), otherwise (i∗ = 3), choose (6). Here, dij =|Xri Xrj | denotes
the distance between Xri and Xrj .

D
ow

nl
oa

de
d

by
 [

In
st

itu
te

 o
f

M
ec

ha
ni

cs
]

at
 0

4:
24

 0
1

N
ov

em
be

r
20

12

Optimization Methods & Software 61

From Example 3.3, we can see that there are at least 18 possible ways (three possible
three-dimensional operators times six possible two-dimensional operators) of generating a new
individual in case the simplex dimension m = 4.

As can be seen from Examples 3.2 and 3.3, identifying the most promising sub-facet is a key
step in LDSE with VD technique. By Definition 3.1, the identification method in general cases is
as follows. Let Xw → Xl1 Xl2 · · · Xlk denote a k-simplex operator on the most promising sub-facet,
where f (Xw) > f (Xl1) > f (Xl2) > · · · > f (Xlk), then the most promising means that (1) the differ-
ence f (Xw) − f (Xl1) should be as large as possible, (2) the variance var(f (Xl1), f (Xl2), . . . , f (Xlk))
should be as small as possible, and (3) the variance var(dXwXl1

, dXwXl2
, . . . , dXwXlk

) should be as
small as possible.

It is worth pointing out that the evolution process of basic LDSE, as well as LDR-LDSE
and NS-LDSE should be non-generational, that is to say, an individual will be used as a parent
individual to generate offsprings as soon as it is generated. In fact, non-generational evolution can
help to save storage space and sometimes can accelerate the convergence speed as well. However,
VD-LDSE should be generational if m ≥ 3. In fact, the matrix of individual-distances is needed
to find the most promising sub-facet (as shown in general case (3)). If the individuals change
frequently, then the matrix of individual-distances needs to update at the same time. As a result,
the identification of the most promising sub-facet might become very expensive, especially for
high-dimensional problems.

3.4 Procedure of modified LDSE

In this subsection, we will integrate the above three techniques together into basic LDSE. The
resulted algorithm is referred to as modified LDSE. Its flowchart is shown in Figure 4 and its
procedure can be described as follows.

Figure 4. Flow chart of modified LDSE.

D
ow

nl
oa

de
d

by
 [

In
st

itu
te

 o
f

M
ec

ha
ni

cs
]

at
 0

4:
24

 0
1

N
ov

em
be

r
20

12

62 C. Luo et al.

Procedure of modified LDSE:

Step 1: Initialize: Input population size N, initial bounds l and u, simplex dimension m, adsorption
probability pa, scaling factors α and β, struggle scale σ . Set the current generation t = 0;
And initialize population �X(0) = {X1(0), X2(0), . . . , XN(0)}, where Xi(0) ∈ R

n.
Step 2: Evaluate population: For each individual in the current population �X(t), compute f (Xi(t));

set the current position i = 1.
Step 3: Update population: If the current position i ≤ N, then set success mark suc = False, and

do step 3.1–3.3.

(3.1) Construct simplex: Randomly choose m + 1 mutually different individuals Xrk , k =
1, 2, . . . , m + 1 from current population, find their best vertex Xb; Set the dimension of
sub-facet k = m.

(3.2) If the dimension of sub-facet k > 1, then do steps 3.2.1–3.2.4. /* VD technique */
(3.2.1) Identify sub-facet: Find the most promising k-facet of the m-simplex and its worst

vertex Xw, and calculate its centroid X̄ except Xw.
(3.2.2) Try reflection: Generate a reflection point Xr(t) = (xr, 1(t), xr, 2(t), . . . , xr, n(t)) as

follows.
for (j = 1; j ≤ n; j + +){

if rand < pa /* LDR technique */
xr,j (t) = xi,j (t)

else
xr,j (t) = x̄j + α · (x̄j − xw,j)

}
If f (Xr) < f (Xi(t)), then Xi(t + 1) = Xr,

set the current position i = i + 1, and then return to step 3.
(3.2.3) Try contraction: Generate a contraction point Xc(t) = (xc, 1(t), xc, 2(t), . . . , xc, n(t))

as follows.
for (j=1; j ≤ n; j++){

if rand < pa , /* LDR technique */
xc,j (t) = xi,j (t)

else
xc,j (t) = x̄j + β · (xw,j − x̄

j
)

}
If f (Xc) < f (Xi(t)), then Xi(t + 1) = Xc,

set the current position i = i + 1, and then return to step 3.
(3.2.4) Check point: If k > 2, Set the dimension of sub-facet k = k − 1, and then return to

step 3.2.
(3.3) Struggle: If the current individual Xi(t) is worse than average, i.e. f (Xi(t)) ≥

(1/N)
∑N

k=1 f (Xk(t)), then generate a struggle point Xs = (xs, 1, xs, 2, . . . , xs, n) as follows.
for (j=1; j ≤ n; j++){

if rand < pa /* NS and LDR techniques */
xs,j = xb,j

else
xs,j = xb,j + N(0, σ 2).

}
Let Xi(t + 1) = Xs, set the current position i = i + 1, and then return to step 3.

Step 4: Check point: If some stopping criterion is satisfied, output the best-so-far individual X∗
and its function value f (X∗); otherwise, set the current generation t = t + 1, set the current
position i = 1 and then return to step 3.

D
ow

nl
oa

de
d

by
 [

In
st

itu
te

 o
f

M
ec

ha
ni

cs
]

at
 0

4:
24

 0
1

N
ov

em
be

r
20

12

Optimization Methods & Software 63

From the above procedure and Figure 4, whether the k-reflection (or k-contraction) is successful
or not depends on the function values of the new generated individual and the current one. The
current individual will hibernate until next generation once it gets improved. It has 2*(m − 1)
chances to improve. It will take its last struggle only if it is worse than average and has lost all of
the chances.

The initial population is usually randomly scattered within the given initial bounds. Of course
you can specify some or all of them to expect a faster convergence if you have some previ-
ous information. Stopping criteria are easy to set. You may specify a maximum number of
generations/function-evaluations, a time limit, a fitness goal, or a number of stall generations
to determine when to terminate the searching process.

4. Convergence analysis of LDSEs

Although empirical evidences indicate that LDSE and its modifications can find global optimal
solutions in most cases, there is no theoretical result which can be used directly to analyze
its convergence. In this section, we analyse the convergence properties of basic LDSE and its
modifications by homogeneous finite Markov chains. We also present an upper bound of its first
passage time (of reaching the global minimum) to evaluate the convergence speed of modified
LDSE.

4.1 Convergence properties of LDSEs

Markov chain is often used to analyse the convergence properties of EAs [3,2,16,20]. A most
popular Markov chain analysis of genetic algorithms is made by Rudolph [19]. He analysed
the convergence properties of canonical genetic algorithms (CGAs). Next we will show that the
evolutionary process of LDSE, similar to that of CGAs, could be also described as a Markov
chain. However, no result could be used directly to analyse the convergence properties of LDSE,
because LDSE is real-coded and its transition matrix is quite different from that of other EAs.
This makes the analysis of its convergence properties necessary.

Consider the GO problem of the following form:

min
x∈�⊂Rn

f (x).

Suppose that it has finite global optimal value f ∗ with optimal solution x∗. In finite precision, the
search space � is a finite point-set in R

n, and each point xi corresponds to an individual Xi(t)
in current population �X(t). Let the population size be N, then each population �X(t) maps to an
N-point-set and also maps to a state of the evolutionary process Sk (see Figure 5). Suppose that
there are L points in the search space �, and the N-point-set allow to duplicate elements, then
the total number of possible N-point-sets will be LN . Let the state space be � ={S1, S2, . . . , SM},
where M is the cardinality number, i.e. |�|= M.As shown in Figure 5, all N-point-sets are mapped
to all possible populations and all possible populations are mapped to all states. So there exists
a one-to-one map between the space of N-point-set and the state space. If the population allows
to duplicate individuals, we can get M = LN . For the convenience of representation, sometimes a
population �X(t) is directly regarded as a state of the evolutionary process.

Definition 4.1 A state S∗ is said to be optimal, if its corresponding N-point-set contains an
optimal point x∗ such that ∀x ∈�, f (x∗) ≤ f (x), and its corresponding population is called an
optimal population, denoted by �X∗

. The set of all optimal states is called the optimal state set,
denoted by �∗.

D
ow

nl
oa

de
d

by
 [

In
st

itu
te

 o
f

M
ec

ha
ni

cs
]

at
 0

4:
24

 0
1

N
ov

em
be

r
20

12

64 C. Luo et al.

Figure 5. Relationship of three spaces.

Based on the above definition, the state space � can be divided into two parts, i.e. � = �1 ∪ �2,
where �1 =�∗, �2 =�\�∗.

Suppose that a population �X is in state Si with probability qi, i ={1, 2, . . . , M}, then we have

(1) 0 ≤ qi ≤ 1.
(2)

∑M
i=1 qi = 1.

(3) The state distribution of a population �X could be described by a probability vector
q = (q1, q2, . . . , qM).

Let q(t) = (q
(t)
1 , q

(t)
2 , . . . , q

(t)
M) denote the distribution vector at generation t, then q(0) represents

the distribution of initial population �X(0). Suppose that the transition matrix P exists, and the
distribution vector at generation t is q(t), then the distribution vector at generation t + 1 would
be q(t+1) = q(t)P, where P is a M × M stochastic matrix such that 0 ≤ pij ≤ 1 and

∑M
j=1 pij =

1, i ={1, 2, . . . , M}. The sequence of the distribution vectors {q(t)}∞t=0 forms a Markov chain.
Accordingly, the sequence of the population { �X(t)}∞t=0 is also called a Markov chain. If there
exists a distribution vector q∞, such that q(t) → q∞, as t → ∞, then its corresponding Markov
chain is said to be convergent, and q∞ is called the limit distribution of the Markov chain, or the
stationary distribution of the transition matrix P. In this case, P t → P ∞, q∞ = q(0)P ∞, and the
Markov sequence { �X(t)}∞t=0 is said to be convergent.

Remark It is worth noticing that the convergence of the population sequence { �X(t)}∞t=0 generated
by LDSE, or its state distribution {q(t)}∞t=0 is not equivalent to the convergence of LDSE. In fact,
the convergence of {q(t)}∞t=0 is only a necessary condition for LDSE to be convergent. If there
exists a component q∞

i > 0 in the limit distribution vector q∞, and its corresponding state is not
global optimal, then the LDSE could not be guaranteed to converge to the global minimizer, even
in infinite computing time. To ensure that the LDSE converges to the global minimum, the limit
distribution vector q∞ must satisfy that the sum of the components corresponding to the optimal
states in it be equal to 1, and all other components equal to 0, that is, ∀i ∈ {1, 2, . . . , M}, if Si �∈�∗,
then q∞

i = 0, and
∑

Si∈�∗ q∞
i = 1 for all states in �∗.

Now we conclude the above discussions as the following lemma:

Lemma 4.2 Let �X(t) (t = 0, 1, 2, . . .) be the population sequence generated by an EA, �∗ denote
its optimal state set, q(t) be the state distribution of population �X(t). If its limit distribution q∞
satisfies

q∞
i =

{
0 if Si /∈ �∗,
q∞

i ≥ 0 if Si ∈ �∗,
for all i = 1, 2, . . . , M

and
∑

Si∈�∗ q∞
i = 1, then the EA converges to the global minimum.

D
ow

nl
oa

de
d

by
 [

In
st

itu
te

 o
f

M
ec

ha
ni

cs
]

at
 0

4:
24

 0
1

N
ov

em
be

r
20

12

Optimization Methods & Software 65

Theorem 4.3 In finite precision, the population sequence {�X(t)}∞t=0 generated by LDSE is a
homogeneous finite Markov chain.

Proof First, the new population �X(t + 1) depends only on the current population �X(t) and has
nothing to do with the former generations �X(τ), τ < t . Thus, the population sequence { �X(t)}∞t=0
generated by LDSE is a Markov chain.

Second, the evolutionary operators in LDSE (either basic LDSE or modified LDSE) are all
time independent. As a result, the Markov chain generated by LDSE is homogeneous.

Third, as discussed above, the number of all possible populations is finite in finite precision
(although LDSE is real-coded), i.e. the state space is finite. Consequently, the Markov chain
generated by LDSE is finite. �

Note that the population sequence { �X(t)}∞t=0 generated by CGA is a homogeneous, irreducible,
aperiodic and finite Markov chain. But for LDSE, the Markov chain is neither irreducible nor
aperiodic. In fact, we have the following results.

Theorem 4.4 For the population Markov chain {�X(t)}∞t=0 generated by LDSE, the following
state sets are closed: (1) the optimal state set �∗; (2) (for basic LDSE) the state set corresponding
to some populations distributed in the same subspace of R

n; (3) (for basic LDSE) the state set
corresponding to uniform populations (in which all individuals are same).

Proof (1) If the current population �X(t) contains an optimal individual X∗, then all the latter
populations �X(τ), τ > t will always contain optimal individual(s) during the evolutionary process
of LDSE. In fact, reflection point Xr(t) (or contraction point Xc(t)) replaces the current individual
Xi(t) if and only if it is better than Xi(t). Therefore, reflection and contraction operators will not
remove the optimal individual X∗ from the population �X(t). The last struggle operator might
remove an optimal individual X∗ in �X(t), but the population �X(t) would still contain some other
optimal individuals X̂

∗
. In fact, the last struggle will take place only if the current individual

Xi(t) is not better than the average of the population, i.e. f (Xi (t)) ≥ f̄ = (1/N)
∑

j f (Xj (t)).

Meanwhile, for an optimal individual X∗, we havef (x∗) ≤ f̄ . Consequently, an optimal individual
takes its last struggle if and only if f (x∗) = f̄ , which implies all individuals in the current
population �X(t) are optimal. As a result, the population �X(t) would still contain some other
optimal individual X̂

∗
even if the optimal individual X∗ is removed by the last struggle operator.

So the population �X(t) is still an optimal population. Therefore, for the population Markov chain
{ �X(t)}∞t=0 generated by LDSE, the optimal state set �∗ is a closed set.

(2) Note that all of the reproduction operators in basic LDSE, including reflection, contraction
and last struggle are linear. Once all individuals in the population are degenerated to a subspace of
R

n, then no offspring individual can get out of this subspace, even though the evolutionary process
continues infinitely. Therefore, the state set corresponding to some populations distributed in the
same subspace of R

n is a closed set.
(3) Because all the reproduction operators in basic LDSE are linear, so all individuals in a uni-

form population would remain unchanged in the evolutionary process of basic LDSE. As a result,
the population can never get out of the uniform population. That is, the state set corresponding to
uniform populations is a closed set. �

The above result, optimal state set �∗ is a closed set, indicates that LDSE can preserve elite
information, although an elite individual might be replaced by another elite one. Theorem 4.4(2)
and (3) indicate that basic LDSE is not guaranteed to converge to the global minimum. Despite
this, basic LDSE is still applicable. In fact, basic LDSE has a good balance between the global

D
ow

nl
oa

de
d

by
 [

In
st

itu
te

 o
f

M
ec

ha
ni

cs
]

at
 0

4:
24

 0
1

N
ov

em
be

r
20

12

66 C. Luo et al.

and local search, and numerical results show that basic LDSE converge to the global optimum
very fast in many applications.

Next, we will show that modified LDSE is globally convergent. Note that the NS operator
enables modified LDSE to search any point in the search space �. As a result, LDSE has an
ergodic property in some sense. In fact, normal struggle operator enables the new individual
to escape from the subspace spanned by all individuals in the current population, even if the
current population is uniform. Theorem 4.4(1) indicates that the ergodic property of LDSE is not
complete since the optimal state set �∗ is a closed set. In the state space � ={S1, S2, . . . , SM},
without loss of generality, it can be assumed that the first k states are optimal state and the remains
are non-optimal, i.e.

Si ∈
{

�∗, i = 1, 2, . . . , k;
�\�∗, i = k + 1, k + 2, . . . , M.

Let pij be the probability of going from state Si to state Sj and the matrix P = (pij)M×M be the
transition matrix of the Markov chain generated by modified LDSE. Based on the above analysis,
the transition matrix P = (pij)M×M has the following form:

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

p1,1 · · · p1,k 0 · · · 0
· · · · · · · · · · · · · · · · · ·
pk,1 · · · pk,k 0 · · · 0

pk+1,1 · · · pk+1,k pk+1,k+1 · · · pk+1,M

· · · · · · · · · · · · · · · · · ·
pM,1 · · · pM,k pM,k+1 · · · pM,M

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where k is the number of optimal state, 0 < pij < 1, for i = 1, 2, . . . , k, j = 1, 2, . . . , k, and∑k
j=1 pij = 1, i = 1, 2, . . . , k. 0 < pij < 1, for i = k + 1, . . . , M, j = 1, 2, . . . , M, and

∑M
j=1 pij =

1, i = k + 1, k + 2, . . . , M.
The above transition matrix can be partitioned into four blocks, i.e, P = (

P1 O
P2 P3

)
, where

P1 is a k × k matrix, P2 is an (M − k) × k matrix, O is a k × (M − k) zero matrix, P3 is an
(M − k) × (M − k) matrix.

Before the proof of convergence, we give some relevant conclusions.

Lemma 4.5 (Perron Frobenius theorem [15]) Let A = (aij)n×n, aij ≥ 0 be irreducible, then the
following propositions are true.

(1) λ=ρ(A) and λ> 0;
(2) the algebraic multiple of λ is 1.

where λ, ρ(A) is the eigenvalue, spectral radius of matrix A, respectively.

Lemma 4.6 (Gerschgorin circular disc theorem [15]) Let λ be an eigenvalue of an arbi-
trary matrix A = (aij)n×n ∈ C

n×n, then λ ∈ ⋃n
i=1 Di, where Di = {z ∈ C| |z − aii | ≤ ri},ri =∑

j �=i |aij |.

Lemma 4.7 Let A be a stochastic matrix, i.e., A = (aij)n×n ∈ R
n×n, 0 ≤ aij ≤ 1,

∑
j aij = 1,

then A to the power of t, At, is also a stochastic matrix for any positive integer t.

Proof First, we will prove that C =A2 =A ·A is a stochastic matrix.
In fact, it is obvious that 0 ≤ cij ≤ 1, where cij = ∑n

k=1 aikakj , and the sum of the ith
row of C satisfies ci· = ∑n

j cij = ∑n
j

∑n
k=1 aikakj = ∑n

k

∑n
j=1 aikakj = ∑n

k (aik · ∑n
j=1 akj) =∑n

k aik = 1. Therefore, C is a stochastic matrix.

D
ow

nl
oa

de
d

by
 [

In
st

itu
te

 o
f

M
ec

ha
ni

cs
]

at
 0

4:
24

 0
1

N
ov

em
be

r
20

12

Optimization Methods & Software 67

Based on the fact that A2 is a stochastic matrix, it is easy to show that B =At is still a stochastic
matrix by mathematical induction. �

Next, we will study the limit of Pt as t → ∞.

Theorem 4.8 For the above transition matrix P, the following statements are true:

(1) P1 has only one simple eigenvalue 1, and the modulus of the other eigenvalues are all less
than 1.

(2) The modulus of all eigenvalues of P3 are less than 1.

Proof (1) Note that the matrix P1 satisfies
∑k

j=1 pij = 1 (i = 1, 2, . . . , k), and
0 < pij < 1 (i = 1, 2, . . . , k;j = 1, 2, . . . , k), so P1 is nonnegative and irreducible.

It is obvious that P1

⎛
⎝ 1

1
...
1

⎞
⎠ =

⎛
⎝ 1

1
...
1

⎞
⎠, so 1 is an eigenvalue of P1. Thus, ρ(P1) ≥ 1.

On the other hand, since ρ(P1) ≤ ||P1||∞ = 1, we have ρ(P1) = 1. By Perron–Frobenius
theorem, 1 is a simple eigenvalue of P1.

Note that Gerschgorin discs Di, i = 1, 2, . . . , k are all tangent to the unit circle in the complex
plane, and they have a unique tangent point 1 + 0 · i (see Figure 6). By Gerschgorin circular disc
theorem, the modulus of all eigenvalues of P1 are less than or equal to 1. Since 1 is its simple
eigenvalue, the modulus of the other eigenvalues are all less than 1.

(2) The matrix P3 satisfies
∑k

j=1 pij < 1, (i = k + 1, k + 2, . . . , M), and 0 < pij <

1, (i = k + 1,
k + 2, . . . , M, j = k + 1, k + 2, . . . , M). So the spectral radius of the matrix ρ(P3) < 1. Thus, the
modulus of all eigenvalues of P3 are less than 1. �

Theorem 4.9 Let Pt be the t-power of the above matrix P, then the limit of Pt exists as t → ∞,

and the limit matrix P ∞ is a stable matrix of the form

P ∞ =

⎛
⎜⎜⎜⎝

1
1
...

1

⎞
⎟⎟⎟⎠ (p1, p2, . . . , pk, 0, 0, . . . , 0),

k∑
i=1

pi = 1.

1

i

Figure 6. Gerschgorin discs of Matrix P1, only two discs are shown.

D
ow

nl
oa

de
d

by
 [

In
st

itu
te

 o
f

M
ec

ha
ni

cs
]

at
 0

4:
24

 0
1

N
ov

em
be

r
20

12

68 C. Luo et al.

Proof The Jordan normal form of P can be described as

P = H−1

⎛
⎜⎜⎜⎜⎝

λ1 σ1

λ2
. . .

. . . σM−1

λM

⎞
⎟⎟⎟⎟⎠ H,

where σ i ∈ {0, 1}. It can be assumed that |λ1|≥ |λ2|≥ · · · ≥ |λM |. By Theorem 4.8(1), P1 has
only one simple eigenvalue 1, and the modulus of the other eigenvalues are all less than 1. By
Theorem 4.8(2), the modulus of all eigenvalues of P3 are all less than 1. So P can be rewritten as

P = H−1

⎛
⎜⎜⎜⎜⎝

1 σ1

λ2
. . .

. . . σM−1

λM

⎞
⎟⎟⎟⎟⎠ H,

where |λi|< 1, i = 2, . . . , M. Therefore,

P t = H−1

⎛
⎜⎜⎜⎜⎝

1 σ1

λ2
. . .

. . . σM−1

λM

⎞
⎟⎟⎟⎟⎠

t

H.

Thus the limit of Pt exists. Let limt→∞ P t = P ∞, then

P ∞ = H−1

⎛
⎜⎜⎜⎝

1
0

. . .

0

⎞
⎟⎟⎟⎠ H.

Let

H =

⎛
⎜⎜⎝

h11 h12 · · · h1M

h21 h22 · · · h2M

· · · · · · · · · · · ·
hM1 hM2 · · · hMM

⎞
⎟⎟⎠ , H−1 =

⎛
⎜⎜⎝

g11 g12 · · · g1M

g21 g22 · · · g2M

· · · · · · · · · · · ·
gM1 gM2 · · · gMM

⎞
⎟⎟⎠ ,

then

P ∞ = H−1

⎛
⎜⎜⎜⎝

1
0

. . .

0

⎞
⎟⎟⎟⎠ H = H−1

⎛
⎜⎜⎜⎝

1
0

. . .

0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1
0

. . .

0

⎞
⎟⎟⎟⎠ H

=

⎛
⎜⎜⎝

g11 0 · · · 0
g21 0 · · · 0
· · · · · · · · · · · ·
gM1 0 · · · 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

h11 h12 · · · h1M

0 0 · · · 0
· · · · · · · · · · · ·
0 0 · · · 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

g11

g21
...

gM1

⎞
⎟⎟⎟⎠ (h11 h12 · · · h1M).

D
ow

nl
oa

de
d

by
 [

In
st

itu
te

 o
f

M
ec

ha
ni

cs
]

at
 0

4:
24

 0
1

N
ov

em
be

r
20

12

Optimization Methods & Software 69

Meanwhile, note that

P t =
(

P1 O

P2 P3

)t

=
(

P t
1 O

X P t
3

)
,

then

P ∞ =
(

Â Ok×(M−k)

X̂ O(M−k)×(M−k)

)
.

The result indicates that the columns after the kth column in P ∞ are all zeros. Therefore,

P ∞ =

⎛
⎜⎜⎜⎝

g11

g21
...

gM1

⎞
⎟⎟⎟⎠ (h11 · · · h1k 0 · · · 0) =

⎛
⎝ g11h11 · · · g11h1k 0 · · · 0

· · · · · · · · · · · · · · · · · ·
gM1h11 · · · gM1h1k 0 · · · 0

⎞
⎠ .

It is easy to show that P ∞ is still a stochastic matrix by Lemma 4.7. Consequently,

gi1h11 + · · · + gi1h1k = gi1 · (h11 + · · · + h1k) = 1, i = 1, 2, . . . , M.

So

g11 = g21 = · · · = gM1.

Define

g11h11 = · · · = gM1h11 = p1,

...

g11h1k = · · · = gM1h1k = pk.

Then

P ∞ =
⎛
⎝p1 · · · pk 0 · · · 0

· · · · · · · · · · · · · · · · · ·
p1 · · · pk 0 · · · 0

⎞
⎠ =

⎛
⎜⎜⎜⎝

1
1
...

1

⎞
⎟⎟⎟⎠ (p1, p2, . . . , pk, 0, 0, . . . , 0)

and

k∑
i=1

pi = 1. �

Theorem 4.10 For any initial population �X(0), modified LDSE converges to the global optimum.

D
ow

nl
oa

de
d

by
 [

In
st

itu
te

 o
f

M
ec

ha
ni

cs
]

at
 0

4:
24

 0
1

N
ov

em
be

r
20

12

70 C. Luo et al.

Proof Let q(t) be the state distribution of population �X(t), P be the transition matrix of population
sequence generated by modified LDSE, then we have

q(1) = q(0) · P,

q(2) = q(1) · P = q(0) · P 2,

...

q(t) = q(t−1) · P = q(0) · P t ,

...

By Theorem 4.9, the limit matrix P ∞ exists, and it has the following form:

P ∞ =

⎛
⎜⎜⎜⎝

1
1
...

1

⎞
⎟⎟⎟⎠ (p1, p2, . . . , pk, 0, 0, . . . , 0)

and
k∑

i=1

pi = 1.

So, we have

lim
t→∞ q(t) = q(0) · P ∞ = q(0) ·

⎛
⎜⎜⎜⎝

1
1
...

1

⎞
⎟⎟⎟⎠ (p1, p2, . . . , pk, 0, 0, . . . , 0).

Note that q(0) is a distribution vector, so 0 ≤ qi ≤ 1, and
∑M

i=1 qi = 1. Thus,

lim
t→∞ q(t) = (p1, p2, . . . , pk, 0, 0, . . . , 0).

Therefore, for any initial distribution q(0) = (q1, q2, . . . , qM), we have

q∞ = (p1, p2, . . . , pk, 0, 0, . . . , 0).

Note that the first k states Si, i = 1, 2, . . . , k belongs to optimal state set �∗ and the latest M − k
states Si, i = k + 1, k + 2, . . . , M are non-optimal. That is, q∞ satisfies

q∞
i =

{
0 if Si /∈ �∗

pi ≥ 0 if Si ∈ �∗ for all i = 1, 2, . . . , M

and ∑
Si∈�∗

q∞
i = 1.

By Lemma 4.2 on p. 20, modified LDSE converges to the global optimum for any initial
population �X(0). �

D
ow

nl
oa

de
d

by
 [

In
st

itu
te

 o
f

M
ec

ha
ni

cs
]

at
 0

4:
24

 0
1

N
ov

em
be

r
20

12

Optimization Methods & Software 71

4.2 Estimate of convergence speed

In this subsection, we give an estimate of the convergence speed of modified LDSE by Markov
stopping time.

Definition 4.11 Let {�X(t)}∞t=0 be the population Markov chain generated by modified LDSE,
then

T = min{t ∈ N|�X(t) ∈ �∗}
is called the first passage time of the Markov chain.

Theorem 4.12 Let T be the first passage time of the population Markov chain gener-
ated by modified LDSE, then its mathematical expectation E(T) satisfies E(T) ≤T0, where
T0 = max{t0 + 2, (M − k)/(1 − p∗) · ∑k

j=1 pi0j },t0, p∗ are constants, t0 ∈ N, 0 < p∗ < 1,
i0 ∈ {k + 1, k + 2, . . . , M}.
Proof To estimate the mathematical expectation of the first passage time E(T), we reduce the
transition matrix. Similar to the above section, the state space is divided into two parts: � =
�1 ∪ �2, where �1 =�∗, �2 =�\ï¸Ł�∗. Let dij be the probability of transition from state set �i

to state set �j, then D = (dij)2×2 is the transition matrix between the state sets �i and �j of the
population Markov sequence. By Theorem 4.4, the state in �1 will never transit to the state in �2,
so d11 = 1, d12 = 0. Let d21 = x, then d22 = 1 − x.

Let T ij be the first passage time of the population Markov sequence of the state sets. It is obvious
that E(T) ≤ E(T 21).

Since P{T 21 = t}= x(1 − x)t−1, we have

E(T21) =
∞∑
t=1

t · x · (1 − x)t−1 = x · (−1)
d

dx

(∞∑
t=1

(1 − x)t

)
= −x · d

dx

(
1 − x

x

)
= 1

x
.

Thus

E(T) ≤ 1

x
.

Let p
t0
i be the probability that the population is in state Si at the time t0, i = 1, 2, . . . , M, then

M∑
i=1

p
t0
i = 1.

Let pt0∗ = ∑k
i=1 p

t0
i , then pt0∗ is the probability that the population is in an optimal state.

(1) If there exists a p∗ ∈ (0, 1), such that pt0∗ ≤ p∗ < 1, then

M∑
i=k+1

p
t0
i ≥ 1 − p∗.

It is obvious that there exists an i0 ∈ {k + 1, k + 2, . . . , M}, such that p
t0
i0

> (1 − p∗)/
(M − k) > 0.

By the formula of total probability, we have

x =
M∑

i=k+1

⎛
⎝p

t0
i ·

k∑
j=1

pij

⎞
⎠ ≥ p

t0
i0

·
k∑

j=1

pi0j ≥ 1 − p∗
M − k

k∑
j=1

pi0j .

Therefore, E(T) ≤ (M − k)/(1 − p∗) · ∑k
j=1 pi0j .

D
ow

nl
oa

de
d

by
 [

In
st

itu
te

 o
f

M
ec

ha
ni

cs
]

at
 0

4:
24

 0
1

N
ov

em
be

r
20

12

72 C. Luo et al.

(2) If the above p∗ does not exist, then there exists a r, 0.5 < r < 1, such that pt0∗ ≥ r .

Since pt∗ is monotone nondecreasing with the generation t, if τ > t0, then pτ∗ ≥ r .
Therefore, P{T = τ }≤ r(1 − r)τ−1.
Thus, E(T) ≤ t0 + ∑∞

τ=1 r · τ · (1 − r)τ−1 = t0 + 1/r ≤ t0 + 2.
As a result, we have E(T) ≤ max{t0 + 2, (M − k)/(1 − p∗) · ∑k

j=1 pi0j }. �

The above theorem gives an upper bound of the mathematical expectation E(T) of the first
passage time T. By Markov’s inequality, we have

P {T > T̃ } ≤ E(T)

T̃
.

If E(T) ≤ T̃ /μ, then

P {T > T̃ } ≤ 1

μ
.

The result can be explained as follows. If modified LDSE is executedλ times independently, then
the probability that the population can reach the optimal state before the T̃ th step at least one time
is not less than p̃ = 1 − (1/μ)λ. In the case of μ= 4, λ= 10, p̃ = 1 − 9.53674 × 10−7 < 10−6.

This means that if we set T̃ = 4 · T0 and modified LDSE are applied 10 times, then the probability
that the population can reach the optimal state before the T̃ th step at least one time is not less
than 1 − 10−6.

5. Numerical results

We have introduced three techniques and four modified versions of LDSE. It can be seen from
Section 3 that their relations are:

• LDR + basic LDSE = LDR-LDSE;
• NS + LDR + basic LDSE = NS-LDSE;
• VD + LDR + basic LDSE = VD-LDSE;
• LDR + NS + VD + basic LDSE = modified LDSE;
• VD-LDSE = LDR-LDSE if in case m = 2;
• LDR-LDSE = basic LDSE if we set pa = 0.0.

In this section, we will (1) show you the performance of these algorithms; (2) study the effect of
each technique; and (3) discuss the choice of control parameters for modified LDSE.

5.1 Comparison of LDSEs and DERL

To compare with other evolutionary algorithms, we choose DE algorithm with random localiza-
tion (DERL) [10], which is an improved version of DE. We choose it because (1) DE is a widely
used GO algorithm, and DERL is reported to have improved the performance of DE significantly;
(2) LDSEs and DERL share similar method for parent selection, and both of them make use of
function–value information of selected parents while generating offsprings. In fact, Both algo-
rithms reproduce new individuals from the ith individual and some randomly selected parents.
LDSEs need to find the best and the worst parents to apply the simplex operations and DERL also

D
ow

nl
oa

de
d

by
 [

In
st

itu
te

 o
f

M
ec

ha
ni

cs
]

at
 0

4:
24

 0
1

N
ov

em
be

r
20

12

Optimization Methods & Software 73

needs to find the best parent to conduct the mutation operation. In DE/bin/1, the mutated point is
generated in the following way:

Xm(t) = Xr1(t) + F · (Xr2(t) − Xr3(t))

DERL requires that the base point Xr1 (t) is the best and the scaling factor F is uniformly drawn
from [−1, −0.4] ∪ [0.4, 1]. The source code of DERL used in this section is adapted from the C
code (de36.C) downloaded from the home page of R. Storn. The adaption follows paper [10].

Two groups of test functions are used to assess the performance of concerned algorithms.
The first group consists of 10 dimension-adjustable (that is, n is an adjustable parameter of the
functions) problems with box-constraints selected from the test suite in [1], which are frequently
used for testing the performance of evolutionary algorithms. Only dimension-adjustable problems
are selected because we want to use them to study the influence of problem dimension n on
modified LDSE. The second group consists of 12 benchmark functions from the CEC’2005
Special Session on real-parameter optimization [22]. There are 25 problems altogether in the
CEC’2005 test suite. The selected benchmark functions are their first 12. The last 13 problems
are omitted in this paper because all our concerned algorithms (including modified LDSE and
DERL) failed to find global optimum for them.

The stopping criteria are set as follows. The algorithm will stop if any one of the following three
conditions is satisfied: (1) the global minimum is attained, i.e. fGloBest(t) − f ∗ < ε, where ε = 10−6,
and f ∗ is its known global minimum; (2) the population is matured, i.e. fPopWorst(t) − fPopBest(t) <

δ, where δ = 10−4; (3) the maximum number of function evaluations E is reached, where E is
set to E = n2 × 104 in our numerical experiments. A run is said to be successful if and only if it
satisfies condition (1). Otherwise, we say the algorithm is failed in this run. The percentage of
success (ps) and the averaged number of function evaluations (nf e) required to find the global
minimum are recorded to show the performance (reliability and efficiency) of each algorithm.
To reduce the influence of randomness, 100 replications are done for each problem and each
algorithm with different random seeds, and the results presented in this section are all averaged
values. The statistical processes are done within the programs automatically.

As known to all, the choice of control parameters in an algorithm may affect its efficiency
and reliability. Finding appropriate parameter values for the algorithm is sometimes a key step in
practical implementations. The more the parameters in the algorithm, the harder to tune. So, we
restrict the number of parameters as few as possible for modifications of LDSE to make them easy
to implement. Some parameters are treated as implicit parameters. They will be tuned to fixed
values in advance. For example, in our numerical experiments, the scale factor α and β for modified
LDSE are fixed to α = 1, β = 1

3 ; the mean and the variance of normal distribution N(μ, σ 2) are
fixed to μ= 0 and σ = (u − l)/3. The others (explicit parameters) are left for users to tune. In
this way, only one control parameter, the adsorption probability pa for using LDR technique, is
added. Therefore, modified LDSE has only three explicit parameters to tune: population size N,
adsorption probability pa, and simplex dimension m. It means that no additional control parameter
is needed for using NS and/or VD techniques.

In our experiments, the population size N is tuned empirically in a simple way. First we do
a series of numerical experiments with different parameter values (e.g. with step 100) in a wide
range (10–2000) to find an appropriate range. This is a coarse tuning process. Then we do another
series of numerical experiments with different parameter values (e.g. with step 10) within the range
attained by the coarse turning. This is a fine tuning process. Other parameters are tuned in a similar
way, but they are fixed to some discrete values empirically. For example, adsorption probability
pa is confined to {0.1, 0.2, 0.8, 0.9} and simplex dimension m is confined to {2, 3, 4}. Note that
the scaling factor F is a preset parameter in the original DE, but it becomes a random number
chosen from the interval [−1, −0.4] ∪ [0.4, 1] in DERL. So DERL has only two parameters: the

D
ow

nl
oa

de
d

by
 [

In
st

itu
te

 o
f

M
ec

ha
ni

cs
]

at
 0

4:
24

 0
1

N
ov

em
be

r
20

12

74
C

.L
uo

etal.

Table 1. Comparison of LDSEs and DERL using the first group of test problems.

Problem Basic LDSE LDR-LDSE NS-LDSE VD-LDSE Modified LDSE DERL

No Name N m nf e ps N pa nfe nfe nfe nfe N Pc nfe

1 ACK 800 4 39,809 74 40 0.8 35,593 33,974 32,043 28,795 40 0.1 40,271
2 CM 400 3 19,445 100 40 0.2 12,113 9286 11,608 8748 40 0.5 13,689
3 GW 800 3 15,007 100 30 0.8 13,957 12,396 10,877 10,053 40 0.1 22,391
4 LM1 1000 3 8487 100 40 0.2 7486 7976 7511 7643 40 0.5 12,964
5 LM2 800 3 10,557 100 30 0.8 7283 61,154 64,856 6109 40 0.5 12,687
6 NF3 400 2 559,892 100 100 0.1 285,380 337,863 285,380 276,872 100 0.1 874,017
7 RB 600 3 1,179,414 25 80 0.1 620,677 367,079 522,714 317,951 80 0.9 174,193
8 RG 600 3 33,561 100 50 0.8 27,983 27,553 27,012 26,935 50 0.1 38,664
9 SWF 800 2 58,485 100 50 0.8 40,908 31,594 40,908 21,830 50 0.1 23,098

10 SIN 100 3 17,530 100 50 0.1 14,012 13,088 13,765 12,769 50 0.5 18,456

Problem dimension n = 20. Control parameters and performance indicators, including percentage of success (ps), the averaged number of function evaluations (nfe) required to reach the global optimum with the
given precision (f ∗ + 10−6) are listed. All modified versions of LDSE share the same control parameter m. NS-LDSE, VD-LDSE, and modified LDSE share the same control parameters N and pa as LDR-LDSE.
The least required nfe are marked in bold.

D
ow

nl
oa

de
d

by
 [

In
st

itu
te

 o
f

M
ec

ha
ni

cs
]

at
 0

4:
24

 0
1

N
ov

em
be

r
20

12

Optimization Methods & Software 75

Table 2. Number of points of each algorithm on each problem according to the result of Table 1.

No Basic LDSE LDR-LDSE NS-LDSE VD-LDSE Modified LDSE DERL

1 2 3 4 5 6 1
2 1 3 5 4 6 2
3 2 3 4 5 6 1
4 2 6 3 5 4 1
5 2 3 5 4 6 1
6 2 4 3 5 6 1
7 1 2 4 3 5 6
8 2 3 4 5 6 1
9 1 2 4 3 6 5

10 2 3 5 4 6 1
Total 17 32 41 43 57 20

Scoring method: Start with 1 point, add 1 point if an algorithm wins another one in terms of averaged nfe for the same problem.

population size N and the crossover probability Pc. The population size N is tuned in the same
way as that of LDSEs. And the crossover probability Pc is confined to {0.1, 0.5, 0.9}. Only the best
parameter combination for each algorithm to each test problem is presented in Tables 1 and 3.
These parameter values might not be optimal, but they should be good ones.

In Table 1, percentage of success (ps) is omitted except for basic LDSE because all modified
versions of LDSE and DERL have solved the problems with ps = 100%. From the sixth column
of Table 1, we can see that basic LDSE might fail to solve problem ACK and RB with the listed
population size N. One can get a better ps by giving a larger population size, but the success
performance (nfe/ps) will decrease dramatically. From the third and seventh columns of Table 1,
we can see that the population size N of basic LDSE is usually much larger than that of modified
versions of LDSE for the same problem. In this test, to get a good success performance, N is
selected from [100, 1000] for basic LDSE, and [30, 100] for modified versions of LDSE. The
result confirms that basic LDSE needs a large population to ensure its convergence because their
reproduction operators are linear, and LDR technique does work to reduce the population size.
We believe that this is the main reason why LDR-LDSE (and its followers) converge faster than
basic LDSE.

Numerical experiments indicate that modified versions of LDSE can share similar population
size N, adsorption probability pa, and simplex dimension m, for a given problem. The sharing
does not have much influence on their performance. So all modified versions of LDSE use the
same control parameters in our test. The parameters are tuned by LDR-LDSE and shared by the
others.

Non-parametric tests can be used here to compare the performance of involved algorithms. For
example, S. Garcia et al recommend using Wilcoxon signed-rank test for detecting the differ-
ences between two algorithms, and Holm and Hochberg procedures for multiple comparisons [6].
Non-parametric tests are scientifically informative, but they are difficult to understand for those
who are not familiar with statistics. In this work, we define a scoring method (see Table 2) and
count the number of points according to the result of Table 1. The performance of an algorithm
is simplified as its number of points scored from competitions. It is easier to understand. The
simplified performance is listed in Table 2.

We can see that basic LDSE gets the least number of points 17. It performs worst. LDR-LDSE,
NS-LDSE and VD-LDSE get 32, 41 and 43 points, respectively. NS-LDSE performs better than
LDR-LDSE. This result confirms that NS technique does work to enhance the local search ability
of LDR-LDSE. VD performs better than LDR-LDSE. This result confirms that drawing lessons
from the recent failure by searching on the sub-facet does help to accelerate its convergence speed.
All modified versions of LDSE perform better than basic LDSE. Modified LDSE gets the most

D
ow

nl
oa

de
d

by
 [

In
st

itu
te

 o
f

M
ec

ha
ni

cs
]

at
 0

4:
24

 0
1

N
ov

em
be

r
20

12

76
C

.L
uo

etal.

Table 3. Comparison of modified LDSE and improved DE using CEC’2005 test functions, problem dimension n = 10.

DERL Modified LDSE

No N Pc nfe_min nfe_max nfe_ave nfe_std ps N m pa nfe_min nfe_max nfe_ave nfe_std ps

1 50 0.1 11,773 13,188 12,482 332.7 100% 50 2 0.1 4084 6505 5573 361.74 100%
2 50 0.9 19,295 21,679 20,427 873.64 100% 50 2 0.1 10,019 12,941 11,218 891.87 100%
3 50 0.9 35,930 42,508 39,073 2263.55 100% 50 2 0.1 232,158 349,915 297,509 36949.21 100%
4 50 0.5 67,243 83,209 75,379 3198.61 100% 50 2 0.1 10,322 61,216 15,392 5154.9 100%
5 50 0.9 50,333 55,696 52,638 1645.02 100% 50 2 0.1 26,171 30,451 27,481 1197.27 100%
6 50 0.9 26,982 132,655 36,385 22301.74 95% 50 2 0.1 33,791 139,450 47,169 32481.53 98%
7 /300 /0.9 Failed 0 300 3 0.1 33,127 42,589 36,619 4133.32 47%
8 /300 /0.9 Failed 0 /300 /3 /0.9 Failed 0
9 50 0.5 16,508 18,085 17,584 2546.05 100% 50 3 0.1 19,189 29,841 27,534 7869.58 86%

10 /300 /0.9 Failed 0 200 4 0.1 37,663 13,652 54,247 8359.22 23%
11 50 0.9 76,087 90,551 82591 17341.11 100% 200 2 0.1 114,346 121,651 117,998 5165.41 74%
12 50 0.9 23,481 229,142 50,728 12097.17 76% 200 2 0.1 27,605 11,358 53,433 1073.24 36%

Control parameters and performance indicators, including percentage of success (ps), the minimum, averaged and maximum number of function evaluations (nfe_min, nfe_ave, nfe_max) and its standard deviation
(nfe_std) are listed, where N = /300, Pc = /0.9 means all possible combinations of N = 50/100/200/300 and Pc = 0.1/0.5/0.9 are tested for DERL, and N = /300, pa = /0.9, m = /4 means all possible combinations
of N = 50/100/200/300, Pa = 0.1/0.9 and m = 2/3/4 are tested for modified LDSE.

D
ow

nl
oa

de
d

by
 [

In
st

itu
te

 o
f

M
ec

ha
ni

cs
]

at
 0

4:
24

 0
1

N
ov

em
be

r
20

12

Optimization Methods & Software 77

number of points 57. It has the best performance for this group of test problems. This result shows
that LDR, NS and VD techniques can work well together to improve the performance of LDSE.
The improved DERL gets 20 points. It is only a little better than basic LDSE. Modified LDSE
outperforms DERL considerably on this group of test problems.

To make a further comparison, we apply modified LDSE and DERL to the second group of
test problems. The test result is shown in Table 3. We can see that DERL is failed to solve 3
problems (including the 7th, 8th and 10th problem) within the limited number of nfe. Modified
LDSE also failed to solve the 8th problem, but it can solve all other problems with positive ps.
For the 9th, 11th and 12th problem, DERL performs better for its higher ps. For the first five
problems, modified LDSE performs better than DERL for its less nfe.

5.2 Choice of control parameters for modified LDSE

As previously described, the choice of control parameters in an algorithm may affect its efficiency
and reliability. In this section, we will demonstrate the effect of the three explicit parameters
in modified LDSE: population size N, adsorption probability pa, and simplex dimension m,
respectively. This might be helpful to choose appropriate parameter values.

The experience of numerical experiments shows that increasing population size N can defi-
nitely improve the percentage of success (ps) if the maximum number of function evaluations E
is sufficient large. The required number of function evaluations (nfe) will increase almost linearly
with the increase of population size N (see Figure 7(b)). Decreasing nfe can accelerate the conver-
gence speed at the risk of getting stuck in a non-optimal point. Usually, N = 2 · n is a first choice.
If it works well, you can reduce it in the hope of a faster convergence. A reasonable choice might
be 1.5 · n. However, be aware that N should be greater than the problem dimension n in general.
If N = 2 · n does not work, try to increase N for a larger percentage of success. The reasonable
choice might be 5 · n, 10 · n, 20 · n, etc. Usually, N should not be larger than 30 · n.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8
x 104

pa

av
er

ag
ed

 n
fe

0 100 200 300
0

2

4

6

8

10

12

14
x 104

N

av
er

ag
ed

 n
fe

Ackley
Schwefel 2.6

Ackley
Schwefel 2.6

(a) (b)

Figure 7. Effect of different parameters. Problem dimension n = 10. Population size N is fixed (N = 40) in case of (a),
and adsorption probability pa is fixed (pa = 0.8 for ACK and pa = 0.1 for Schwefel 2.6) in case of (b).

D
ow

nl
oa

de
d

by
 [

In
st

itu
te

 o
f

M
ec

ha
ni

cs
]

at
 0

4:
24

 0
1

N
ov

em
be

r
20

12

78
C

.L
uo

etal.

Table 4. Choice of simplex dimension m.

Problem Problem dimension n = 10 Problem dimension n = 20 Problem dimension n = 50

No Name N pa m = 2 3 4 N pa m = 2 3 4 N pa m = 2 3 4

1 ACK 30 0.8 15,112 15,838 11,189 40 0.9 32,533 35,261 28,795 80 0.9 81,013 72,716 79,646
2 CM 30 0.8 3322 3450 5641 40 0.9 10,644 8748 90,781 80 0.8 20,639 17,334 22,665
3 GW 30 0.8 7635 8169 86301 30 0.8 11,228 10,053 12,566 80 0.8 31,614 29,458 26,296
4 LM1 20 0.8 2708 4383 5370 40 0.8 7762 7543 8019 80 0.8 25,362 23,106 18,784
5 LM2 30 0.8 4394 5262 5631 30 0.8 6864 6309 7297 80 0.8 28,173 31,127 30,481
6 NF3 80 0.1 15,766 18,867 21,221 100 0.1 316,971 276,872 423,775 100 0.1 1,672,537 1,417,112 1,176,943
7 GB 50 0.1 125,515 137,833 89,905 80 0.1 670,356 317,951 583,917 80 0.1 1,281,485 893,804 1,431,299
8 RG 30 0.8 17746 9056 9308 50 0.8 31,442 26,935 27,405 80 0.8 130,710 96,239 704,284
9 SWF 30 0.8 25,852 12,587 13,609 50 0.8 21,830 28,162 32,216 80 0.8 275,351 316,574 395,343

10 SIN 20 0.8 2546 4951 7361 50 0.8 12,927 12,769 13,398 100 0.8 392,356 385,031 429,787

Tol. points 25 18 17 18 27 15 17 23 20

Control parameters and averaged number of function evaluations (nfe) required to reach the global optimum with the given precision (f ∗ + 10−6) using different control parameter m for the problems with different
numbers of dimension n are listed. The total points (in the last line) are scored using the same scoring method as that of Table 2. The least required nfe are marked in bold.

D
ow

nl
oa

de
d

by
 [

In
st

itu
te

 o
f

M
ec

ha
ni

cs
]

at
 0

4:
24

 0
1

N
ov

em
be

r
20

12

Optimization Methods & Software 79

The choice of adsorption probability pa is problem dependent (see Figure 7(a)). It ranges from
0.1 to 0.95 in our experiments. But in most cases, it is a good choice to set pa = 0.1/0.2, where
pa = 0.1/0.2 denotes pa = 0.1 or pa = 0.2. Similar notations are used anywhere in this paper. For
example, it works well for all test functions from the second test group (see Table 3) and a half of
the first test group (see Table 1). In some cases, pa = 0.8/0.9 works well, e.g. for problem ACK,
GW, LM2, RG and SWF. Usually, pa = 0.5 is a safe choice. If you care about ps more than nfe,
just choose it. The best adsorption probability pa is not sensitive to problem dimension n for a
given function structure. For example, if pa = 0.8 works well for ACK in case n = 10, you can
expect a good result with pa = 0.8/0.9 for ACK in case n = 20/50 (see Table 4). It is likely to get
a bad result with pa = 0.1/0.2.

For a given problem, if pa = p0 works the best, reducing/increasing will increase the required
nfe nonlinearly (see Figure 7(a)).

Simplex dimension m is another control parameter in modified LDSE. Numerical experiments
indicate that the optimal simplex dimension m∗ depends on problem dimension n. To find it out,
we conduct a series of experiments on problems with different numbers of dimension n using
different control parameter m. Control parameter N, pa, and maximum nfe are set such that all
algorithm can find the global optimum with ps = 100%. The averaged nfe required to reach the
global optimum with the given precision (f ∗ + 10−6) is recorded to show the convergence speed
of a given combination (n and m). The test result is listed in Table 4. Number of points is also
counted to simplify the comparison. We can see that (1) for problems with the dimension n = 10,
the best choice is m = 2; (2) for problems with dimension n = 20 and 50, the best choice is m = 3;
(3) m = 2 works best on problems with n = 10; (4) m = 3 works best on problems with n = 20;
(5) m = 3 works best on problems with n = 20. We can conclude that the optimal choice of m will
increase very slowly with the increase of problem dimension.

5.3 An implementation issue

Although modified LDSE has been proved to be global convergent, it may fail to find the global
optimum within a limited nfe. If you need a high reliability for your optimization result, then
you can follow the result from Section 4.2. Modified LDSE can find the global optimum with
probability not less than 1 − (T 0/T)λ, where T 0 is the upper bounds of its first passage time,
T is the maximum number of generations, λ is the number which modified LDSE is executed.
Usually, the exact T 0 is unknown, but it can be estimated by T 0 ≈ nfe/N. Take the problem ACK
(n = 20) as an example (see Table 1), T 0 ≈ nfe/N = 28750/40 ≈ 720. Therefore, we can get the
global minimum of ACK with probability not less than 1 − 10−6 if we execute modified LDSE
10 times independently with the fixed number of generations T = 4 ·T 0 = 2880, or equivalently,
if we execute modified LDSE 20 times with T = 2 ·T 0 = 1440. Note that the probability 1 − 10−6

here is an upper boundary, the actual probability will be much closer to 1.

6. Conclusion

We have introduced three techniques, including LDR, NS and VD to improve the performance of
LDSE. LDR makes LDSE capable of finding the global optimum with a small population. NS can
enhance LDSE’s local search ability. VD can help LDSE make better use of recent information.
The performance of modified versions of LDSE with the three techniques is assessed using two
groups of test functions. Numerical results show that these techniques improve not only LDSE’s
efficiency, but also its reliability. Modified LDSE outperforms basic LDSE, and it performs better
than DERL considerably in most cases.

D
ow

nl
oa

de
d

by
 [

In
st

itu
te

 o
f

M
ec

ha
ni

cs
]

at
 0

4:
24

 0
1

N
ov

em
be

r
20

12

80 C. Luo et al.

We have also analysed the convergence properties of LDSEs by means of finite Markov chains.
It shows that basic LDSE might fail to converge, but modified LDSE (with the above three
techniques) will converge for any initial population. In addition, a formula for estimating the
convergence speed of modified LDSE is provided.

Although numerical results show that modified versions of LDSE work better than basic LDSE,
the modifications are still heuristic. Their working mechanism cannot be explained completely
with the presented theoretical results and discussions. However, the idea of the three techniques
should be universal, and it could also be used to improve the performance of other real-coded
EAs. More comparisons of modified LDSE and other GO algorithms should be carried out
to give modified LDSE a more comprehensive evaluation. These topics are left for our future
research.

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Grant No. 90916028) and a
Grant-in-Aid for 21st Century COE Frontiers of Computational Science in Japan.

References

[1] M.M.Ali, C. Khompatraporn, and Z.B. Zabinsky, A numerical evaluation of several stochastic algorithms on selected
continuous global optimization test problems, J. Global Optim. 31 (2005), pp. 635–672.

[2] U.K. Chakraborty, D. Kalyanmoy, and M. Chakraborty, Analysis of selection algorithms: a Markov chain approach,
Evol. Comput. 4 (1996), pp. 133–167.

[3] T.E. Davis and J.C. Principe, A Markov chain framework for the simple genetic algorithm, Evol. Comput. 1 (1993),
pp. 269–288.

[4] D.B. Fogel, Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, 3rd ed., Wiley-IEEE
Press, Piscataway, NJ, 2006.

[5] L.J. Fogel, A.J. Owens, and M.J. Walsh, Artificial intelligence through a simulation of evolution, Biophysics and
Cybernetic Systems: Proc. 2nd Cybernetic Sciences Symposium, M. Maxfield, A. Callahan and L.J. Fogel, eds.,
Washington DC: Spartan Books, pp. 131–155, 1965.

[6] S. Garcia, A. Fernandez, J. Luengo, and F. Herrera, A study of statistical techniques and performance measures for
genetics-based machine learning: accuracy and interpretability, Soft Comput. 13 (2009), pp. 959–977.

[7] M.H. Gutknecht, A brief introduction to krylov space methods for solving linear systems, Frontiers of Computational
Science, Springer Berlin Heidelberg, (2007), pp. 53–62.

[8] A. Hedar and M. Fukushima, Minimizing multimodal functions by simplex coding genetic algorithm, Optim. Method
Softw. 18 (2003), pp. 265–282.

[9] J.H. Holland, Adaption in Natural and Artificial Systems, MIT Press, Cambridge, MA, 1992.
[10] P. Kaelo and M.M. Ali, A numerical study of some modified differential evolution algorithms, Eur. J. Oper. Res. 169

(2006), pp. 1176–1181.
[11] J. Kennedy and R. Eberhart, Particle swarm optimization, Proc, IEEE Int’l. Conf. on Neural Networks, Vol. 4, 1995,

pp. 1942–1948.
[12] C.T. Luo and B. Yu, Low dimensional simplex evolution: a hybrid heuristic for global optimization, Global Optim.

(DOI:10.1007/s10898-011-96781).
[13] C.T. Luo and B. Yu, Solving min UR problem by triangle evolution algorithm with archiving and Niche techniques,

J. Inform. Comput. Sci. 4(1) (2007), pp. 195–203.
[14] Global Optimization Toolbox 3 Users Guide, The MathWorks, Inc., Natick, MA, 2010.
[15] C.D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, PA, 2000.
[16] R. Poli and N.F. McPhee, General schema theory for genetic programming with subtree-swapping crossover: Part

II, Evol. Comput. 11 (2003), pp. 169–206.
[17] I. Rechenberg, Evolutions strategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution,

Frommann-Holzboog Verlag, Stuttgart, 1973.
[18] J.M. Renders and H. Bersini, Hybridizing genetic algorithms with hill-climbing methods for global optimization:

Two possible ways, Proc. 1st IEEE Conf. Evolutionary Computation. Vol. 1, 1994, pp. 312–317.
[19] G. Rudolph, Convergence analysis of canonical genetic algorithms, IEEE Trans. Neural Network 5 (1994),

pp. 96–101.
[20] L.M. Schmitt, Theory of genetic algorithms II: models for genetic operators over the string-tensor representation

of populations and convergence to global optima for arbitrary fitness function under scaling, Theor. Comput. Sci.
310 (2004), pp. 181–231.

D
ow

nl
oa

de
d

by
 [

In
st

itu
te

 o
f

M
ec

ha
ni

cs
]

at
 0

4:
24

 0
1

N
ov

em
be

r
20

12

Optimization Methods & Software 81

[21] R. Storn and K. Price, DE-a simple and efficient heuristic for global optimization over continuous space, J. Global
Optim. 11 (1997), pp. 341–359.

[22] P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.-P. Chen, A. Auger, and S. Tiwari, Problem definitions and
evaluation criteria for the CEC 2005 special session on real-parameter optimization, Technical Report, Nanyang
Technological University, Singapore, 2005.

[23] B. Yu, C.T. Luo, and Y. Zhang, Studies on Complicated System of Inequalities with Possible Inconsistency, Frontiers
Science Series, 49 (2007), pp. 147–148.

D
ow

nl
oa

de
d

by
 [

In
st

itu
te

 o
f

M
ec

ha
ni

cs
]

at
 0

4:
24

 0
1

N
ov

em
be

r
20

12

